Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = lanthanide upconversion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2273 KB  
Communication
Iridescence and Luminescence from Opal Matrices for Show Business
by Nikolai V. Gaponenko, Svetlana M. Kleshcheva, Ekaterina I. Lashkovskaya, Uladzimir A. Zaitsau, Vladimir A. Labunov, Bashar Z. S. Hamadneh, Vadim D. Zhivulko, Alexander V. Mudryi, Yuriy V. Radyush, Nikolai I. Kargin and Tamara F. Raichenok
Photonics 2025, 12(9), 908; https://doi.org/10.3390/photonics12090908 - 10 Sep 2025
Viewed by 541
Abstract
The paper reports on obtaining visually appealing images from opal matrices to artificial samples comprising regular packing of monodisperse silica globules. We show the images of iridescence, photoluminescence, and both of them simultaneously, exciting upconversion luminescence of Er3+ ions from BaTiO3 [...] Read more.
The paper reports on obtaining visually appealing images from opal matrices to artificial samples comprising regular packing of monodisperse silica globules. We show the images of iridescence, photoluminescence, and both of them simultaneously, exciting upconversion luminescence of Er3+ ions from BaTiO3 xerogel/opal matrix. Opal matrix with BaTiO3 xerogel doped with Er3+ and Yb3+ ions demonstrates upconversion luminescence under excitation with the wavelength 980 nm of the laser with the main bands ranging from 500 to 570 nm and 640–700 nm, corresponding to the transitions from the excited states 2H11/2, 4S3/2, 4F9/2, 4I9/2 to the ground state 4I15/2 of trivalent Er ions. In our view, the synthesis of opal matrices along with the generation of luminescent xerogels doped, for example, with trivalent lanthanides, is a promising approach for obtaining colorful images, always very individual and often very attractive, bringing joy and pleasure at concerts and other show business events. Full article
Show Figures

Figure 1

12 pages, 2702 KB  
Article
Integrated Seamless Non-Noble Plasmonic Ni-Upconversion Nanofilm for Stable and Enhanced Fluorescence Performance
by Hao Zeng, Longhui Han, Yang Li, Yaru Ni and Chunhua Lu
Materials 2025, 18(17), 3995; https://doi.org/10.3390/ma18173995 - 26 Aug 2025
Viewed by 583
Abstract
Thickness-controlled, easily patterned upconversion (UC) nanofilms are essential for high-precision optoelectronic devices, but challenges such as imprecise thickness control and low fluorescence intensity hinder their application. High-performance lanthanide-doped sodium yttrium fluoride UC materials are typically available in powder form, making direct integration into [...] Read more.
Thickness-controlled, easily patterned upconversion (UC) nanofilms are essential for high-precision optoelectronic devices, but challenges such as imprecise thickness control and low fluorescence intensity hinder their application. High-performance lanthanide-doped sodium yttrium fluoride UC materials are typically available in powder form, making direct integration into advanced devices difficult. Although physical vapor deposition (PVD) enables precise film formation, it often produces poor crystalline structures and weak fluorescence. To overcome these limitations, integrating non-noble plasmonic Ni with surface plasmon resonance to enhance fluorescence intensity is a promising yet understudied strategy, likely due to Ni’s ultraviolet resonant wavelength and oxidation susceptibility. This study introduces an integrated Ni-UC nanofilm design, combining an ultrathin Ni layer with a NaYF4:Tm, Yb UC layer via PVD, followed by post-annealing. Annealing at 500 °C transforms the UC layer into a hexagonal-phase crystal structure while protecting the Ni layer from oxidation. The unannealed UC nanofilm showed no fluorescence, whereas the annealed UC nanofilm displayed clear peaks at 476, 648, and 699 nm. Notably, the integrated Ni-UC nanofilm exhibited fluorescence intensities 5.29, 4.43, and 4.29 times higher at these wavelengths, respectively. Additionally, the integrated design exhibited high transparency and stability, highlighting its protective benefits. These results underscore the potential of the integrated Ni-UC nanofilm for advanced optoelectronics and sensing technologies, offering enhanced fluorescence, micro-processing compatibility, and robust performance in a cost-effective, non-noble plasmonic system. Full article
Show Figures

Graphical abstract

35 pages, 9604 KB  
Review
Multifunctional Upconversion Nanoparticles Transforming Photoacoustic Imaging: A Review
by Yuqian Zhang, Zerui Li, Ziqing Du, Jianming Pan and Yanan Huang
Nanomaterials 2025, 15(14), 1074; https://doi.org/10.3390/nano15141074 - 10 Jul 2025
Cited by 1 | Viewed by 2404
Abstract
Photoacoustic imaging (PAI) merges the high spatial resolution of optical methods with the deep tissue penetration provided by ultrasound, making it a valuable tool in biomedical imaging. In recent years, a diverse array of photoacoustic contrast agents, spanning both organic and inorganic materials, [...] Read more.
Photoacoustic imaging (PAI) merges the high spatial resolution of optical methods with the deep tissue penetration provided by ultrasound, making it a valuable tool in biomedical imaging. In recent years, a diverse array of photoacoustic contrast agents, spanning both organic and inorganic materials, has been developed. Among them, upconversion nanoparticles (UCNPs) stand out as promising candidates due to their unique optical features, tunable absorption in the near-infrared I (NIR-I, 750–1350 nm) region, and strong potential for both imaging and treatment-related uses. This review discusses the growing significance of UCNPs in the field of PAI, focusing on their structural characteristics, strengths, and existing challenges. Then, we talk about an up-to-date account of the current literature on the use of UCNPs as contrast agents for PAI. Lastly, we discuss the challenges and perspectives of UCNPs as a contrast agent for PAI in preclinical research and clinical diagnosis. Full article
Show Figures

Figure 1

13 pages, 3647 KB  
Article
Near-Infrared Synaptic Responses of WSe2 Artificial Synapse Based on Upconversion Luminescence from Lanthanide Doped Nanoparticles
by Yaxian Lu, Chuanwen Chen, Qi Sun, Ni Zhang, Kun Lv, Zhiling Chen, Yuelan He, Haowen Tang and Ping Chen
Inorganics 2025, 13(7), 236; https://doi.org/10.3390/inorganics13070236 - 10 Jul 2025
Viewed by 810
Abstract
Near-infrared (NIR) photoelectric synaptic devices show great potential in studying NIR artificial visual systems integrating excellent optical characteristics and bionic synaptic plasticity. However, NIR synapses based on transition metal dichalcogenides (TMDCs) suffer from low stability and poor environmental performance. Thus, an environmentally friendly [...] Read more.
Near-infrared (NIR) photoelectric synaptic devices show great potential in studying NIR artificial visual systems integrating excellent optical characteristics and bionic synaptic plasticity. However, NIR synapses based on transition metal dichalcogenides (TMDCs) suffer from low stability and poor environmental performance. Thus, an environmentally friendly NIR synapse was fabricated based on lanthanide-doped upconversion nanoparticles (UCNPs) and two-dimensional (2D) WSe2 via solution spin coating technology. Biological synaptic functions were simulated successfully through 975 nm laser regulation, including paired-pulse facilitation (PPF), spike rate-dependent plasticity, and spike timing-dependent plasticity. Handwritten digital images were also recognized by an artificial neural network based on device characteristics with a high accuracy of 97.24%. In addition, human and animal identification in foggy and low-visibility surroundings was proposed by the synaptic response of the device combined with an NIR laser and visible simulation. These findings might provide promising strategies for developing a 24/7 visual response of humanoid robots. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

40 pages, 4806 KB  
Review
On the Origin of Thermally Enhanced Upconversion Luminescence in Lanthanide-Doped Nanosized Fluoride Phosphors
by Shirun Yan
Materials 2025, 18(12), 2700; https://doi.org/10.3390/ma18122700 - 8 Jun 2025
Viewed by 1005
Abstract
Thermally enhanced upconversion luminescence (UCL), also known as negative thermal quenching of UCL, denotes a continuous increase in the UCL emission intensity of a particular phosphor with a rising temperature. In recent years, the thermal enhancement of UCL has attracted extensive research attention, [...] Read more.
Thermally enhanced upconversion luminescence (UCL), also known as negative thermal quenching of UCL, denotes a continuous increase in the UCL emission intensity of a particular phosphor with a rising temperature. In recent years, the thermal enhancement of UCL has attracted extensive research attention, with numerous reports detailing this effect in phosphors characterized by varying particle sizes, architectures, and compositions. Several hypotheses have been formulated to explain the underlying mechanisms driving this thermal enhancement. This paper rigorously examines thermally enhanced UCL in fluoride nanoparticles by addressing two key questions: (1) Is the thermal enhancement of UCL an intrinsic feature of these nanoparticles? (2) Can the proposed mechanisms explaining this enhancement be unequivocally supported by the existing literature? Upon analyzing a compilation of experimental observations alongside the concurrent phenomena occurred during spectral measurements, it is postulated that thermally enhanced UCL intensity is likely a consequence of multiple extrinsic factors operating simultaneously at elevated temperatures, rather than being an intrinsic property of nanoparticles. These factors include moisture desorption, laser-induced local heating, and lattice thermal expansion. The size-dependent properties of nanoparticles, such as surface-to-volume ratio, thermal expansion coefficient, and quantum yield, are the fundamental reasons for the size-dependent thermal enhancement factor of UCL. Temperature-dependent emission spectral intensity is not a dependable indicator for assessing the thermal quenching properties of phosphors. This is because it is influenced not only by the phosphor’s quantum yield, but also by various extrinsic factors at high temperatures. The nonlinear nature of UCL further magnifies the impact of these extrinsic factors. Full article
(This article belongs to the Special Issue Advances in Optical and Photonic Materials)
Show Figures

Graphical abstract

35 pages, 3912 KB  
Review
Pr3+ Visible to Ultraviolet Upconversion for Antimicrobial Applications
by Miroslav D. Dramićanin, Mikhail G. Brik, Željka Antić, Radu Bănică, Cristina Mosoarca, Tatjana Dramićanin, Zoran Ristić, George Daniel Dima, Tom Förster and Markus Suta
Nanomaterials 2025, 15(7), 562; https://doi.org/10.3390/nano15070562 - 6 Apr 2025
Cited by 6 | Viewed by 1985
Abstract
This paper addresses the upconversion of blue light to ultraviolet-C (UVC) with Pr3+-activated materials for antibacterial applications of UVC. It discusses the processes through which UV radiation provides biocidal effects on microorganisms, along with the most popular UVC sources employed in [...] Read more.
This paper addresses the upconversion of blue light to ultraviolet-C (UVC) with Pr3+-activated materials for antibacterial applications of UVC. It discusses the processes through which UV radiation provides biocidal effects on microorganisms, along with the most popular UVC sources employed in these processes. We describe the electronic and optical properties of the Pr3+ ion, emphasizing the conditions the host material must meet to obtain broad and intense emission in the UVC from parity-allowed transitions from the 4f5d levels and provide a list of materials that fulfill these conditions. This paper also delineates lanthanide-based upconversion, focusing on Pr3+ blue to UVC upconversion via the 3P0 and 1D2 intermediate states, and suggests routes for improving the quantum efficiency of the process. We review literature related to the use of upconversion materials in antimicrobial photodynamic treatments and for the blue to UVC upconversion germicidal effects. Further, we propose the spectral overlap between the UVC emission of Pr3+ materials and the germicidal effectiveness curve as a criterion for assessing the potential of these materials in antimicrobial applications. Finally, this paper briefly assesses the toxicity of materials commonly used in the preparation of upconversion materials. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

15 pages, 5216 KB  
Article
Anomalous Diffusion and Decay of Clusters of Dopants in Lanthanide-Doped Nanocrystals
by Grzegorz Pawlik and Antoni C. Mitus
Materials 2025, 18(4), 815; https://doi.org/10.3390/ma18040815 - 13 Feb 2025
Viewed by 820
Abstract
Upconversion (UC) luminescence in doped lanthanide nanocrystals is associated with the energy migration (EM) process within clusters of dopant ions. The process of the synthesis of core–shell nanocrystals occurs at elevated temperatures, promoting the diffusion of the dopants into the shell accompanied by [...] Read more.
Upconversion (UC) luminescence in doped lanthanide nanocrystals is associated with the energy migration (EM) process within clusters of dopant ions. The process of the synthesis of core–shell nanocrystals occurs at elevated temperatures, promoting the diffusion of the dopants into the shell accompanied by the decay of dopant clusters. The details of this unwanted effect are poorly understood. In this paper, we theoretically study a model of the diffusion of dopant ions in a nanocrystal using Monte Carlo (MC) simulations. We characterize the diffusion, spatial neighboring relations and clustering of dopant ions regarding the function of reduced temperature and MC time of the heating process. The dopants undergo a weak subdiffusion caused by trapping effects. The main results of this study are as follows: (i) the phase diagram of the variables reduced the temperature and MC time, which separates the enhanced and limited cluster-driven EM regimes, and (ii) a dependence of the average nearest distance between Yb ions as a function of reduced temperature, the concentration of Yb ions and MC time was found. In both cases, the requirements for an effective EM are formulated. Full article
(This article belongs to the Special Issue Development and Research on Theoretical Chemistry in Materials)
Show Figures

Figure 1

14 pages, 2930 KB  
Article
High-Level Lanthanide-Doped Upconversion Nanoparticles-Based Aptasensor to Increase Carcinoembryonic Antigen Detection Sensitivity
by Lujun Niu, Qiren Sun, Shijia Wei, Dixiang Gong, Enhui Wang, Yan Chen, Lu Xia, Xingyu Liu, Langping Tu, Long Shao, Hongfei Li and Jing Zuo
Materials 2025, 18(4), 796; https://doi.org/10.3390/ma18040796 - 11 Feb 2025
Viewed by 1431
Abstract
Boosting the accuracy and speed of cancer detection is highly desirous in tumor detection, and sensors capable of detecting carcinoembryonic antigen (CEA) have great application prospects in this field. A highly sensitive sensor is constructed based on the fluorescence resonance energy transfer (FRET) [...] Read more.
Boosting the accuracy and speed of cancer detection is highly desirous in tumor detection, and sensors capable of detecting carcinoembryonic antigen (CEA) have great application prospects in this field. A highly sensitive sensor is constructed based on the fluorescence resonance energy transfer (FRET) with heavily rare-earth-doped upconversion nanoparticles (UCNPs) as energy donors and polydopamine nanoparticles (PDA NPs) as energy acceptors. This sensor detects the fluctuations in CEA molecules via luminescence quenching and recovery resulting from a competitive binding assay between CEA and PDA NPs. The high-level-doped design of UCNPs (i.e., NaYF4@NaYbF4:1%Tm@NaYF4) is beneficial, providing upconversion luminescence intensity that is more than 10 times higher than that of the conventional low-level-doped UCNPs (i.e., NaYF4@NaYF4:20%Yb, 0.2%Tm@NaYF4). The sensor exhibits impressive sensitivity. Specifically, in diluted fetal bovine serum, the detection limit reaches 0.013 ng/mL in the range of 0–1.5 ng/mL (S/N = 3), while the detection limit is 1.38 ng/mL in the range of 1.5–250 ng/mL (S/N = 3). This method has great potential for future applications in the rapid and early diagnosis and treatment of cancer. Full article
Show Figures

Graphical abstract

27 pages, 2585 KB  
Review
Lanthanide-Doped Upconversion Luminescence: A New Frontier in Pathogenic Bacteria and Metabolite Detection from Design to Point-of-Care Application
by Huanhuan Li, Yu Wu, Muhammad Shoaib, Wei Sheng, Qiyi Bei and Arul Murugesan
Chemosensors 2025, 13(2), 60; https://doi.org/10.3390/chemosensors13020060 - 8 Feb 2025
Cited by 2 | Viewed by 2124
Abstract
Pathogens and their metabolites in food present significant risks to both human health and economic development. Rising living standards and increasing awareness of food safety have driven the demand for sensitive and rapid detection methods. Lanthanide-doped upconversion nanoparticles (UCNPs), with their exceptional optical [...] Read more.
Pathogens and their metabolites in food present significant risks to both human health and economic development. Rising living standards and increasing awareness of food safety have driven the demand for sensitive and rapid detection methods. Lanthanide-doped upconversion nanoparticles (UCNPs), with their exceptional optical properties, have emerged as a promising platform for developing biosensors to detect pathogenic bacteria and their metabolites. The integration of UCNPs with point-of-care testing (POCT) has garnered considerable attention for its portability and immediacy, highlighting a promising future for biosensing, particularly in applications requiring quick and accurate diagnostics. This review explores the recognition elements and design principles commonly used in UCNP-based biosensors and examines various applications, including lateral flow assays, microfluidic systems, photoelectrochemical devices, and smartphone-integrated platforms. Despite significant advancements, challenges remain in the applicability and commercialization of UCNP-based biosensing technology. Future research should focus on enhancing sensitivity and specificity, developing scalable and cost-effective production methods, and integrating with advanced digital technologies to enable broader adoption. Addressing these challenges, establishing regulatory frameworks, and considering sustainability will be crucial to fully realizing the potential of UCNP-based biosensors. Full article
(This article belongs to the Special Issue Advanced Material-Based Fluorescent Sensors)
Show Figures

Figure 1

40 pages, 9873 KB  
Review
Luminescent Lanthanide Infinite Coordination Polymers for Ratiometric Sensing Applications
by Ziqin Song, Yuanqiang Hao, Yunfei Long, Peisheng Zhang, Rongjin Zeng, Shu Chen and Wansong Chen
Molecules 2025, 30(2), 396; https://doi.org/10.3390/molecules30020396 - 18 Jan 2025
Cited by 7 | Viewed by 2645
Abstract
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu3+, Tb3+, Ce3+) with the structural flexibility and tunability of coordination polymers. These materials are widely used in biological [...] Read more.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu3+, Tb3+, Ce3+) with the structural flexibility and tunability of coordination polymers. These materials are widely used in biological and chemical sensing, environmental monitoring, and medical diagnostics due to their narrow-band emission, long fluorescence lifetimes, and excellent resistance to photobleaching. This review focuses on the composition, sensing mechanisms, and applications of ratiometric Ln-CPs. The ratiometric fluorescence mechanism relies on two distinct emission bands, which provides a self-calibrating, reliable, and precise method for detection. The relative intensity ratio between these bands varies with the concentration of the target analyte, enabling real-time monitoring and minimizing environmental interference. This ratiometric approach is particularly suitable for detecting trace analytes and for use in complex environments where factors like background noise, temperature fluctuations, and light intensity variations may affect the results. Finally, we outline future research directions for improving the design and synthesis of ratiometric Ln-CPs, such as incorporating long-lifetime reference luminescent molecules, exploring near-infrared emission systems, and developing up-conversion or two-photon luminescent materials. Progress in these areas could significantly broaden the scope of ratiometric Ln-CP applications, especially in biosensing, environmental monitoring, and other advanced fields. Full article
(This article belongs to the Special Issue Nano-Functional Materials for Sensor Applications—2nd Edition)
Show Figures

Figure 1

22 pages, 8100 KB  
Article
Optically Controlled Drug Delivery Through Microscale Brain–Machine Interfaces Using Integrated Upconverting Nanoparticles
by Levente Víg, Anita Zátonyi, Bence Csernyus, Ágoston C. Horváth, Márton Bojtár, Péter Kele, Miklós Madarász, Balázs Rózsa, Péter Fürjes, Petra Hermann, Orsolya Hakkel, László Péter and Zoltán Fekete
Sensors 2024, 24(24), 7987; https://doi.org/10.3390/s24247987 - 14 Dec 2024
Cited by 1 | Viewed by 5738
Abstract
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding [...] Read more.
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study. With the upconverted higher energy photons, we demonstrate the induction of photochemical (cleaving) reactions that enable the local release of specific dyes as a model system near the implant. The modified ECoG electrodes can be implanted in brain tissue to act as an uncaging system that releases small amounts of substance while simultaneously measuring the evoked neural response upon light activation. In this paper, several technological challenges like the surface modification of UCNPs, the immobilization of particles on the implantable platform, and measuring the stability of integrated UCNPs in in vitro and in vivo conditions are addressed in detail. Besides the chemical, mechanical, and optical characterization of the ready-to-use devices, the effect of nanoparticles on the original electrophysiological function is also evaluated. The results confirm that silicone-based brain–machine interfaces can be efficiently complemented with UCNPs to facilitate local model drug release. Full article
(This article belongs to the Special Issue Sensing Technologies in Neuroscience and Brain Research)
Show Figures

Figure 1

12 pages, 4907 KB  
Article
Multi-Wavelength Excitable Multicolor Upconversion and Ratiometric Luminescence Thermometry of Yb3+/Er3+ Co-Doped NaYGeO4 Microcrystals
by Hui Zeng, Yangbo Wang, Xiaoyi Zhang, Xiangbing Bu, Zongyi Liu and Huaiyong Li
Molecules 2024, 29(20), 4887; https://doi.org/10.3390/molecules29204887 - 15 Oct 2024
Viewed by 1063
Abstract
Excitation wavelength controllable lanthanide upconversion allows for real-time manipulation of luminescent color in a composition-fixed material, which has been proven to be conducive to a variety of applications, such as optical anti-counterfeiting and information security. However, current available materials highly rely on the [...] Read more.
Excitation wavelength controllable lanthanide upconversion allows for real-time manipulation of luminescent color in a composition-fixed material, which has been proven to be conducive to a variety of applications, such as optical anti-counterfeiting and information security. However, current available materials highly rely on the elaborate core–shell structure in order to ensure efficient excitation-dependent energy transfer routes. Herein, multicolor upconversion luminescence in response to both near-infrared I and near-infrared II (NIR-I and NIR-II) excitations is realized in a novel but simple NaYGeO4:Yb3+/Er3+ phosphor. The remarkably enhanced red emission ratio under 1532 nm excitation, compared with that under 980 nm excitation, could be attributed to the Yb3+-mediated cross-relaxation energy transfers. Moreover, multi-wavelength excitable temperature-dependent (295–823 K) upconversion luminescence realizes a ratiometric thermometry relying on the thermally coupled levels (TCLs) of Er3+. Detailed investigations demonstrate that changing excitation wavelength makes little difference for the performances of TCL-based ratiometric thermometry of NaYGeO4:Yb3+/Er3+. These findings gain more insights to manipulate cross-relaxations for excitation controllable upconversion in single activator doped materials and benefit the cognition of the effect of excitation wavelength on ratiometric luminescence thermometry. Full article
(This article belongs to the Special Issue Rare Earth Based Luminescent Materials)
Show Figures

Graphical abstract

16 pages, 3426 KB  
Article
Maximizing Upconversion Luminescence of Co-Doped CaF₂:Yb, Er Nanoparticles at Low Laser Power for Efficient Cellular Imaging
by Neha Dubey, Sonali Gupta, Sandeep B. Shelar, K. C. Barick and Sudeshna Chandra
Molecules 2024, 29(17), 4177; https://doi.org/10.3390/molecules29174177 - 3 Sep 2024
Cited by 5 | Viewed by 2571
Abstract
Upconversion nanoparticles (UCNPs) are well-reported for bioimaging. However, their applications are limited by low luminescence intensity. To enhance the intensity, often the UCNPs are coated with macromolecules or excited with high laser power, which is detrimental to their long-term biological applications. Herein, we [...] Read more.
Upconversion nanoparticles (UCNPs) are well-reported for bioimaging. However, their applications are limited by low luminescence intensity. To enhance the intensity, often the UCNPs are coated with macromolecules or excited with high laser power, which is detrimental to their long-term biological applications. Herein, we report a novel approach to prepare co-doped CaF2:Yb3+ (20%), Er3+ with varying concentrations of Er (2%, 2.5%, 3%, and 5%) at ambient temperature with minimal surfactant and high-pressure homogenization. Strong luminescence and effective red emission of the UCNPs were seen even at low power and without functionalization. X-ray diffraction (XRD) of UCNPs revealed the formation of highly crystalline, single-phase cubic fluorite-type nanostructures, and transmission electron microscopy (TEM) showed co-doped UCNPs are of ~12 nm. The successful doping of Yb and Er was evident from TEM–energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy (XPS) studies. Photoluminescence studies of UCNPs revealed the effect of phonon coupling between host lattice (CaF2), sensitizer (Yb3+), and activator (Er3+). They exhibited tunable upconversion luminescence (UCL) under irradiation of near-infrared (NIR) light (980 nm) at low laser powers (0.28–0.7 W). The UCL properties increased until 3% doping of Er3+ ions, after which quenching of UCL was observed with higher Er3+ ion concentration, probably due to non-radiative energy transfer and cross-relaxation between Yb3+-Er3+ and Er3+-Er3+ ions. The decay studies aligned with the above observation and showed the dependence of UCL on Er3+ concentration. Further, the UCNPs exhibited strong red emission under irradiation of 980 nm light and retained their red luminescence upon internalization into cancer cell lines, as evident from confocal microscopic imaging. The present study demonstrated an effective approach to designing UCNPs with tunable luminescence properties and their capability for cellular imaging under low laser power. Full article
Show Figures

Graphical abstract

12 pages, 3508 KB  
Article
Upconversion Emission and Dual-Mode Sensing Characteristics of NaYF4:Yb3+/Er3+ Microcrystals at High and Ultralow Temperatures
by Xinyi Xu, Zhaojin Wang, Jin Hou, Tian Zhang, Xin Zhao, Siyi Di and Zijie Li
Nanomaterials 2024, 14(10), 871; https://doi.org/10.3390/nano14100871 - 17 May 2024
Cited by 6 | Viewed by 1551
Abstract
In this study, we investigate micrometer-sized NaYF4 crystals double-doped with Yb3+/Er3+ lanthanide ions, designed for temperature-sensing applications. In contrast to previous studies, which focused predominantly on the high-temperature regime, our investigation spans a comprehensive range of both high and [...] Read more.
In this study, we investigate micrometer-sized NaYF4 crystals double-doped with Yb3+/Er3+ lanthanide ions, designed for temperature-sensing applications. In contrast to previous studies, which focused predominantly on the high-temperature regime, our investigation spans a comprehensive range of both high and ultralow temperatures. We explore the relationship between temperature and the upconversion luminescence (UCL) spectra in both frequency and time domains. Our findings highlight the strong dependence of these spectral characteristics of lanthanide-doped NaYF4 crystals on temperature. Furthermore, we introduce a dual-mode luminescence temperature measurement technique, leveraging the upconversion emission intensity ratio for both green and red emissions. This study also examines the correlation between temperature sensing, energy level disparities, and thermal coupling in Er3+ ions across various temperature scales. Our research contributes to advancing the understanding and application of lanthanide-doped materials, setting a foundation for future innovations in temperature sensing across diverse fields. Full article
Show Figures

Figure 1

13 pages, 2123 KB  
Article
Novel Nanocomposites for Luminescent Thermometry with Two Different Modalities
by Masfer Alkahtani, Yahya A. Alzahrani, Abdulaziz Alromaeh and Philip Hemmer
Molecules 2024, 29(6), 1350; https://doi.org/10.3390/molecules29061350 - 18 Mar 2024
Cited by 1 | Viewed by 1608
Abstract
In this work, we successfully integrated fluorescent nanodiamonds (FNDs) and lanthanide ion-doped upconversion nanoparticles (UCNPs) in a nanocomposite structure for simultaneous optical temperature sensing. The effective integration of FND and UCNP shells was confirmed by employing high-resolution TEM imaging, X-ray diffraction, and dual-excitation [...] Read more.
In this work, we successfully integrated fluorescent nanodiamonds (FNDs) and lanthanide ion-doped upconversion nanoparticles (UCNPs) in a nanocomposite structure for simultaneous optical temperature sensing. The effective integration of FND and UCNP shells was confirmed by employing high-resolution TEM imaging, X-ray diffraction, and dual-excitation optical spectroscopy. Furthermore, the synthesized ND@UCNP nanocomposites were tested by making simultaneous optical temperature measurements, and the detected temperatures showed excellent agreement within their sensitivity limit. The simultaneous measurement of temperature using two different modalities having different sensing physics but with the same composite nanoparticles inside is expected to greatly improve the confidence of nanoscale temperature measurements. This should resolve some of the controversy surrounding nanoscale temperature measurements in biological applications. Full article
Show Figures

Figure 1

Back to TopTop