High-Performance X-Ray Detection and Optical Information Storage via Dual-Mode Luminescent Modulation in Na3KMg7(PO4)6:Eu
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Structure Description
2.2. Radio-Photoluminescence Property
2.3. Photochromic Property
2.4. Photochromic and Radio-Photoluminescence Mechanism
2.5. Optical Information Storage and Information Encryption Applications
3. Materials and Methods
3.1. Material Synthesis
3.2. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Q.S.; Wu, J.; Ou, X.Y.; Huang, B.L.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.W.; Han, S.Y.; Liang, L.L.; Yi, Z.G.; et al. All-Inorganic Perovskite Nanocrystal Scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef]
- Han, X.J.; Xu, K.; Taratula, O.; Farsad, K. Applications of Nanoparticles in Biomedical Imaging. Nanoscale 2019, 11, 799–819. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.H.; Shin, D.H.; Park, J.K.; Kim, D.H.; Lee, S.J.; Im, S.H. High-Performance Next-Generation Perovskite Nanocrystal Scintillator for Nondestructive X-Ray Imaging. Adv. Mater. 2018, 30, 1801743. [Google Scholar] [CrossRef]
- Hachadorian, R.L.; Bruza, P.; Jermyn, M.; Gladstone, D.J.; Pogue, B.W.; Jarvis, L.A. Imaging Radiation Dose in Breast Radiotherapy by X-ray CT Calibration of Cherenkov Light. Nat. Commun. 2020, 11, 2298. [Google Scholar] [CrossRef] [PubMed]
- Grotzer, M.A.; Schültke, E.; Bräuer-Krisch, E.; Laissue, J.A. Microbeam Radiation Therapy: Clinical Perspectives. Phys. Medica-Eur. J. Med. Phys. 2015, 31, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Thirimanne, H.M.; Jayawardena, K.; Parnell, A.J.; Bandara, R.M.I.; Karalasingam, A.; Pani, S.; Huerdler, J.E.; Lidzey, D.G.; Tedde, S.F.; Nisbet, A.; et al. High Sensitivity Organic Inorganic Hybrid X-ray Detectors with Direct Transduction and Broadband Response. Nat. Commun. 2018, 9, 2926. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Li, Y.H.; Su, Z.E.; Li, B.; Huang, H.L.; Ding, X.; Chen, M.C.; Liu, C.; Qin, J.; et al. High-Efficiency Multiphoton Boson Sampling. Nat. Photonics 2017, 11, 361–365. [Google Scholar] [CrossRef]
- Yang, Z.T.; Hu, J.Q.; Van der Heggen, D.; Feng, A.; Hu, H.R.; Vrielinck, H.; Smet, P.F.; Poelman, D. Realizing Simultaneous X-Ray Imaging and Dosimetry Using Phosphor-Based Detectors with High Memory Stability and Convenient Readout Process. Adv. Funct. Mater. 2022, 32, 2201684. [Google Scholar] [CrossRef]
- Li, R.F.; Jiang, L.L.; Zou, Q.H.; Bai, J.L.; Wu, L.K.; Li, J.R.; Liao, J.S. Highly Luminescent and Scintillating Hybrid Halide of (C13H25N)2 MnBr4 Enabled by Rigid Cation. Molecules 2025, 30, 2157. [Google Scholar] [CrossRef]
- Liu, J.Y.; Shabbir, B.; Wang, C.J.; Wan, T.; Ou, Q.D.; Yu, P.; Tadich, A.; Jiao, X.C.; Chu, D.W.; Qi, D.C.; et al. Flexible, Printable Soft-X-Ray Detectors Based on All-Inorganic Perovskite Quantum Dots. Adv. Mater. 2019, 31, 1901644. [Google Scholar] [CrossRef]
- Gao, X.Y.; Sun, H.; Yang, D.Y.; Wangyang, P.H.; Zhang, C.F.; Zhu, X.H. Large-Area CdZnTe Thick Film Based Array X-ray Detector. Vacuum 2021, 183, 109855. [Google Scholar] [CrossRef]
- Yanagida, T.; Kato, T.; Nakauchi, D.; Kawaguchi, N. Fundamental Aspects, Recent Progress and Future Prospects of Inorganic Scintillators. Jpn. J. Appl. Phys. 2023, 62, 010508. [Google Scholar] [CrossRef]
- Koshimizu, M. Recent Progress of Organic Scintillators. Jpn. J. Appl. Phys. 2023, 62, 010503. [Google Scholar] [CrossRef]
- Liu, X.M.; Li, R.H.; Xu, X.L.; Jiang, Y.Y.; Zhu, W.J.; Yao, Y.; Li, F.Y.; Tao, X.F.; Liu, S.J.; Huang, W.; et al. Lanthanide(III)-Cu4I4 Organic Framework Scintillators Sensitized by Cluster-Based Antenna for High-Resolution X-ray Imaging. Adv. Mater. 2023, 35, 2206741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Liu, Y.C.; Xu, Z.; Ye, H.C.; Yang, Z.; You, J.X.; Liu, M.; He, Y.H.; Kanatzidis, M.G.; Liu, S.Z. Nucleation-Controlled Growth of Superior Lead-Free Perovskite Cs3Bi2I9 Single-Crystals for High-Performance X-ray Detection. Nat. Commun. 2020, 11, 2304. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tanabe, S. Persistent Luminescence Instead of Phosphorescence: History, Mechanism, and Perspective. J. Lumin. 2019, 205, 581–620. [Google Scholar] [CrossRef]
- Ou, X.Y.; Qin, X.; Huang, B.L.; Zan, J.; Wu, Q.X.; Hong, Z.Z.; Xie, L.L.; Bian, H.Y.; Yi, Z.G.; Chen, X.F.; et al. High-Resolution X-ray Luminescence Extension Imaging. Nature 2021, 590, 410–415. [Google Scholar] [CrossRef]
- Li, Y.; Gecevicius, M.; Qiu, J.R. Long Persistent Phosphors-from Fundamentals to Applications. Chem. Soc. Rev. 2016, 45, 2090–2136. [Google Scholar] [CrossRef]
- Lei, L.; Wang, Y.B.; Xu, W.X.; Ye, R.G.; Hua, Y.J.; Deng, D.G.; Chen, L.; Prasad, P.N.; Xu, S.Q. Manipulation of Time-Dependent Multicolour Evolution of X-ray Excited Afterglow in Lanthanide-Doped Fluoride Nanoparticles. Nat. Commun. 2022, 13, 5739. [Google Scholar] [CrossRef]
- Zhang, J.W.; Wang, Z.J.; Huo, X.X.; Meng, X.; Wang, Y.; Suo, H.; Li, P.L. Anti-Counterfeiting Application of Persistent Luminescence Materials and Its Research Progress. Laser Photonics Rev. 2024, 18, 2300751. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Ning, L.X.; Qiao, J.W.; Zhao, Y.F.; Xiong, P.X.; Xia, Z.G. Interplay of Defect Levels and Rare Earth Emission Centers in Multimode Luminescent Phosphors. Nat. Commun. 2022, 13, 7589. [Google Scholar] [CrossRef]
- Bai, X.; Xu, Z.; Zi, Y.Z.; Zhao, H.P.; Zhu, B.K.; Feng, R.B.; Cun, Y.K.; Huang, A.J.; Liu, Y.; Li, Y.W.; et al. Dual-Functional X-Ray Photochromic Phosphor: High-Performance Detection and 3D Imaging. Adv. Funct. Mater. 2024, 34, 2402452. [Google Scholar] [CrossRef]
- Zhang, Y.; Shan, X.H.; Lv, X.L.; Chen, D.X.; Miao, S.H.; Wang, W.L.; Liang, Y.J. Multimodal Luminescence in Pr3+ Single-Doped Li2CaSiO4 Phosphor for Optical Information Storage and Anti-Counterfeiting Applications. Chem. Eng. J. 2023, 474, 145886. [Google Scholar] [CrossRef]
- Chen, H.S.; Dong, Z.G.; Chen, W.W.; Sun, L.; Du, X.N.; Zhao, Y.A.; Chen, P.; Wu, Z.P.; Liu, W.W.; Zhang, Y. Flexible and Rewritable Non-Volatile Photomemory Based on Inorganic Lanthanide-Doped Photochromic Thin Films. Adv. Opt. Mater. 2020, 8, 1902125. [Google Scholar] [CrossRef]
- Ren, Y.T.; Yang, Z.W.; Wang, Y.H.; Li, M.J.; Qiu, J.B.; Song, Z.G.; Yu, J.; Ullah, A.; Khan, I. Reversible Multiplexing for Optical Information Recording, Erasing, and Reading-Out in Photochromic BaMgSiO4:Bi3+ Luminescence Ceramics. Sci. China-Mater. 2020, 63, 582–592. [Google Scholar] [CrossRef]
- Li, Y.C.; Yang, X.C.; Ren, K.; Liu, Y.L.; Xu, Z.; Feng, H.; Deng, K.L.; Deng, B.; Shang, W.L.; Dong, J.J.; et al. Flexible X-ray Imaging and Stable Information Storage of SrF2:Eu Based on Radio-Photoluminescence. ACS Appl. Mater. Interfaces 2024, 16, 58827–58837. [Google Scholar] [CrossRef]
- Li, Y.; Ren, K.; Cheng, S.; Hu, Y.; Yang, X.; Hao, S.; Liu, S.; Li, N.; Xu, Z.; Feng, H.; et al. Storage and Encryption of Submicron Spatial Resolution X-ray Images Based on Ag-Doped Phosphate Glass. J. Alloys Compd. 2023, 958, 170414. [Google Scholar] [CrossRef]
- Yanagida, T.; Okada, G.; Kato, T.; Nakauchi, D.; Kawaguchi, N. A Review and Future of RPL Dosimetry. Radiat. Meas. 2022, 158, 106847. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, Y.T.; Zhao, H.P.; Zi, Y.Z.; Xu, Z.; Huang, A.J.; Cun, Y.K.; Liu, Y.; Song, Z.G.; Qiu, J.B.; et al. Flexible X-Ray Detector for Cumulative Dose Monitoring Through Reversible Photochromism and Luminescence Modulation. Adv. Sci. 2025, 12, 2412986. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.L.; Gao, J.; Gao, F.; Kuang, Q.Q.; Pan, Y.; Chen, Y.F.; Pan, Z.W. Quintuple-Mode Dynamic Anti-Counterfeiting Using Multi-Mode Persistent phosphors. J. Mater. Chem. C 2021, 9, 16634–16644. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Bai, G.X.; Huang, Y.Q.; Liu, Y.; Peng, D.F.; Chen, L.; Xu, S.Q. Stimuli Responsive Lanthanide Ions Doped Layered Piezophotonic Microcrystals for Optical Multifunctional Sensing Applications. Nano Energy 2021, 87, 106177. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Song, H.; Wang, W.R.; Rao, H.S.; Fang, Y.P.; Pan, Z.X.; Zhong, X.H. Dual Ligand Capped Quantum Dots Improving Loading Amount for High-Efficiency Quantum Dot-Sensitized Solar Cells. ACS Energy Lett. 2023, 8, 647–656. [Google Scholar] [CrossRef]
- Hossain, M.K.; Hossain, S.; Ahmed, M.H.; Khan, M.I.; Haque, N.; Raihan, G.A. A Review on Optical Applications, Prospects, and Challenges of Rare-Earth Oxides. ACS Appl. Electron. Mater. 2021, 3, 3715–3746. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, J.; Sun, Z.; Ran, J.Y.; Guo, L.; Sun, J.Y.; Zhu, S.; Ran, X.Q.; Li, S.; Jiang, C.; et al. A Novel Orange-Red Emission of Ba2La8(SiO4)6O2: Sm3+ Phosphor with Good Thermal Stability and Hydrophobicity. J. Alloys Compd. 2024, 971, 172686. [Google Scholar] [CrossRef]
- Verma, B.; Baghel, R.N.; Bisen, D.P.; Brahme, N.; Jena, V. Structural, Luminescent Properties and Judd-Ofelt Analysis of CaMgSiO4: Eu3+ Phosphor for Solid Atate Lighting. Opt. Mater. 2022, 123, 111787. [Google Scholar] [CrossRef]
- Zhang, H.W.; Fu, X.Y.; Niu, S.Y.; Xin, Q. Synthesis and Photoluminescence Properties of Eu3+-Doped AZrO3 (A=Ca, Sr, Ba) Perovskite. J. Alloys Compd. 2008, 459, 103–106. [Google Scholar] [CrossRef]
- Shao, B.H.; Lv, Q.Y.; Ma, X.X.; Li, Y.; Zhou, X.F.; Wang, C.; Wang, Y. A Potential Red-Emitting Phosphor Na2.5Zr2Si1.5P1.5O12: Eu3+ for WLEDs with Excellent Thermal Stability, Color Purity and High Quantum Efficiency. J. Lumin. 2022, 247, 118912. [Google Scholar] [CrossRef]
- Madkhali, O.; Kaynar, H.; Alajlani, Y.; Coban, M.B.; Guinea, J.G.; Ayvacikli, M.; Pierson, J.F.; Can, N. Structural and Temperature Dependence Luminescence Characteristics of RE (RE=Eu3+, Dy3+, Sm3+ and Tb3+) in the New Gadolinium Aluminate Borate Phosphor. Ceram. Int. 2023, 49, 19982–19995. [Google Scholar] [CrossRef]
- Khrongchaiyaphum, F.; Wantana, N.; Kaewnuam, E.; Pakawanit, P.; Phoovasawat, C.; Vittayakorn, N.; Chanthima, N.; Phongsa, A.; Intachai, N.; Kothan, S.; et al. Novel Tb3+ Doped Borophosphate Glass Scintillator for X-ray Imaging. Radiat. Phys. Chem. 2024, 223, 111851. [Google Scholar] [CrossRef]
- Zhang, H.S.; Zhong, J.Y.; Du, F.; Chen, L.; Zhang, X.L.; Mu, Z.F.; Zhao, W.R. Efficient and Thermally Stable Broad-Band Near-Infrared Emission in a KAlP2O7:Cr3+ Phosphor for Nondestructive Examination. ACS Appl. Mater. Interfaces 2022, 14, 11663–11671. [Google Scholar] [CrossRef]
- Gupta, I.; Singh, S.; Bhagwan, S.; Singh, D. Rare Earth (RE) Doped Phosphors and Their Emerging Applications: A review. Ceram. Int. 2021, 47, 19282–19303. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, M.; Mei, Y.M.; Wu, Z.C.; Kuang, S.P. Single-Phased White Phosphor for White Light Emitting Diodes. Prog. Chem. 2013, 25, 2068–2079. [Google Scholar]
- Jiao, J.H.; Jin, W.Q.; Zhang, M.; Yang, Z.H.; Pan, S.L. Na3AMg7(PO4)6(A = K, Rb and Cs): Structures, Properties and Theoretical Studies of Alkali Metal Magnesium Orthophosphates. J. Mol. Struct. 2021, 1226, 129349. [Google Scholar] [CrossRef]
- Leng, Z.H.; Bai, H.; Qing, Q.; He, H.B.; Hou, J.Y.; Li, B.Y.; Tang, Z.B.; Song, F.; Wu, H.Y. A Zero-Thermal-Quenching Blue Phosphor for Sustainable and Human-Centric WLED Lighting. ACS Sustain. Chem. Eng. 2022, 10, 10966–10977. [Google Scholar] [CrossRef]
- Wang, Z.H.; Liang, S.S.; Zhan, C.Y.; Xu, K.Y.; Hu, J.; Chen, D.J.; Song, L.P.; Zhu, H.M. Synthesis and Optical Properties of Highly Efficient Na3KMg7(PO4)6:Eu2+ Blue Phosphor for Full-Spectrum White-Light-Emitting Diodes: The Role of Li2CO3 Flux. J. Rare Earths 2024, 42, 1217–1223. [Google Scholar] [CrossRef]
- Lin, Y.; Bai, X.; Xiong, F.; Hu, Z.; Li, M.; Zhuang, Q.; Cheng, Z. Synthesis and Multi-Color Emission Properties of Novel Na3KMg7(PO4)6:RE3+(RE = Eu, Dy, Tb) Phosphor for White LED and Indoor Plant Growth. Opt. Mater. 2025, 162, 116887. [Google Scholar] [CrossRef]
- Ben Hamed, T.; Boukhris, A.; Badri, A.; Ben Amara, M. Synthesis and Crystal Structure of a New Magnesium Phosphate Na3RbMg7(PO4)6. Acta Crystallogr. Sect. E Crystallogr. Commun. 2017, 73, 817–820. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Baloch, A.A.B.; Alqahtani, S.M.; Mumtaz, F.; Muqaibel, A.H.; Rashkeev, S.N.; Alharbi, F.H. Extending Shannon’s Ionic Radii Database Using Machine Learning. Phys. Rev. Mater. 2021, 5, 043804. [Google Scholar] [CrossRef]
- Alsalman, M.; Alghofaili, Y.A.; Baloch, A.A.B.; Alsadah, H.; Alsaui, A.A.; Alqahtani, S.M.; Muqaibel, A.H.; Alharbi, F.H. Outliers in Shannon’s Effective Ionic Radii Table and the Table Extension by Machine Learning. Comput. Mater. Sci. 2023, 228, 112350. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Takei, Y.; Nanto, H.; Kurobori, T.; Konnai, A.; Yanagida, T.; Yoshikawa, A.; Shimotsuma, Y.; Sakakura, M.; Miura, K.; et al. Radiophotoluminescence from Silver-Doped Phosphate Glass. Radiat. Meas. 2011, 46, 1480–1483. [Google Scholar] [CrossRef]
- Gogolinskiy, K.V.; Syasko, V.A. Prospects and Challenges of the Fourth Industrial Revolution for Instrument Engineering and Metrology in the Field of Non-Destructive Testing and Condition Monitoring. Insight 2019, 61, 434–440. [Google Scholar] [CrossRef]
- Ramírez, I.S.; Márquez, F.P.G.; Papaelias, M. Review on Additive Manufacturing and Non-Destructive Testing. J. Manuf. Syst. 2023, 66, 260–286. [Google Scholar] [CrossRef]
- Miao, S.H.; Lv, X.L.; Shan, X.H.; Zhang, Y.; Liang, Y.J. Ultraviolet-B and Near-Infrared Dual-Band Luminescence in Bi3+/Bi2+ Codoped Persistent Phosphor for Optical Storage Application. ACS Appl. Mater. Interfaces 2024, 16, 23585–23595. [Google Scholar] [CrossRef] [PubMed]
- Kuang, R.Y.; Lian, H.W.; Zhu, Y.F.; Gu, S.M.; Huang, L.; Liu, B.M.; Wang, J. Designing Photochromic Materials La2MgSnO6:Er,Fe with Dynamic Luminescence Modulation for Dual-mode Optical Information Reading. Adv. Opt. Mater. 2024, 12, 2400045. [Google Scholar] [CrossRef]
- Idriss, H. On the Wrong Assignment of the XPS O1s Signal at 531–532 eV Attributed to Oxygen Vacancies in Photo- and Electro-Catalysts for Water Splitting and Other Materials Applications. Surf. Sci. 2021, 712, 121894. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Li, Y.; Yang, X.; Hu, Y.; Ning, Y.; Gu, M.; Zhai, G.; Yang, S.; Chen, J.; Li, N.; et al. High-Performance X-Ray Detection and Optical Information Storage via Dual-Mode Luminescent Modulation in Na3KMg7(PO4)6:Eu. Molecules 2025, 30, 3495. https://doi.org/10.3390/molecules30173495
Han Y, Li Y, Yang X, Hu Y, Ning Y, Gu M, Zhai G, Yang S, Chen J, Li N, et al. High-Performance X-Ray Detection and Optical Information Storage via Dual-Mode Luminescent Modulation in Na3KMg7(PO4)6:Eu. Molecules. 2025; 30(17):3495. https://doi.org/10.3390/molecules30173495
Chicago/Turabian StyleHan, Yanshuo, Yucheng Li, Xue Yang, Yibo Hu, Yuandong Ning, Meng Gu, Guibin Zhai, Sihan Yang, Jingkun Chen, Naixin Li, and et al. 2025. "High-Performance X-Ray Detection and Optical Information Storage via Dual-Mode Luminescent Modulation in Na3KMg7(PO4)6:Eu" Molecules 30, no. 17: 3495. https://doi.org/10.3390/molecules30173495
APA StyleHan, Y., Li, Y., Yang, X., Hu, Y., Ning, Y., Gu, M., Zhai, G., Yang, S., Chen, J., Li, N., Ren, K., Zhao, J., & Li, Q. (2025). High-Performance X-Ray Detection and Optical Information Storage via Dual-Mode Luminescent Modulation in Na3KMg7(PO4)6:Eu. Molecules, 30(17), 3495. https://doi.org/10.3390/molecules30173495