Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = lane localization of pavement damage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5815 KiB  
Article
Damage Detection and Localization of Bridge Deck Pavement Based on Deep Learning
by Youhao Ni, Jianxiao Mao, Yuguang Fu, Hao Wang, Hai Zong and Kun Luo
Sensors 2023, 23(11), 5138; https://doi.org/10.3390/s23115138 - 28 May 2023
Cited by 15 | Viewed by 3336
Abstract
Bridge deck pavement damage has a significant effect on the driving safety and long-term durability of bridges. To achieve the damage detection and localization of bridge deck pavement, a three-stage detection method based on the you-only-look-once version 7 (YOLOv7) network and the revised [...] Read more.
Bridge deck pavement damage has a significant effect on the driving safety and long-term durability of bridges. To achieve the damage detection and localization of bridge deck pavement, a three-stage detection method based on the you-only-look-once version 7 (YOLOv7) network and the revised LaneNet was proposed in this study. In stage 1, the Road Damage Dataset 202 (RDD2022) is preprocessed and adopted to train the YOLOv7 model, and five classes of damage were obtained. In stage 2, the LaneNet network was pruned to retain the semantic segmentation part, with the VGG16 network as an encoder to generate lane line binary images. In stage 3, the lane line binary images were post-processed by a proposed image processing algorithm to obtain the lane area. Based on the damage coordinates from stage 1, the final pavement damage classes and lane localization were obtained. The proposed method was compared and analyzed in the RDD2022 dataset, and was applied on the Fourth Nanjing Yangtze River Bridge in China. The results shows that the mean average precision (mAP) of YOLOv7 on the preprocessed RDD2022 dataset reaches 0.663, higher than that of other models in the YOLO series. The accuracy of the lane localization of the revised LaneNet is 0.933, higher than that of instance segmentation, 0.856. Meanwhile, the inference speed of the revised LaneNet is 12.3 frames per second (FPS) on NVIDIA GeForce RTX 3090, higher than that of instance segmentation 6.53 FPS. The proposed method can provide a reference for the maintenance of bridge deck pavement. Full article
Show Figures

Figure 1

22 pages, 6618 KiB  
Article
Lane Marking Detection and Reconstruction with Line-Scan Imaging Data
by Lin Li, Wenting Luo and Kelvin C.P. Wang
Sensors 2018, 18(5), 1635; https://doi.org/10.3390/s18051635 - 20 May 2018
Cited by 33 | Viewed by 8323
Abstract
Abstract: Lane marking detection and localization are crucial for autonomous driving and lane-based pavement surveys. Numerous studies have been done to detect and locate lane markings with the purpose of advanced driver assistance systems, in which image data are usually captured by [...] Read more.
Abstract: Lane marking detection and localization are crucial for autonomous driving and lane-based pavement surveys. Numerous studies have been done to detect and locate lane markings with the purpose of advanced driver assistance systems, in which image data are usually captured by vision-based cameras. However, a limited number of studies have been done to identify lane markings using high-resolution laser images for road condition evaluation. In this study, the laser images are acquired with a digital highway data vehicle (DHDV). Subsequently, a novel methodology is presented for the automated lane marking identification and reconstruction, and is implemented in four phases: (1) binarization of the laser images with a new threshold method (multi-box segmentation based threshold method); (2) determination of candidate lane markings with closing operations and a marching square algorithm; (3) identification of true lane marking by eliminating false positives (FPs) using a linear support vector machine method; and (4) reconstruction of the damaged and dash lane marking segments to form a continuous lane marking based on the geometry features such as adjacent lane marking location and lane width. Finally, a case study is given to validate effects of the novel methodology. The findings indicate the new strategy is robust in image binarization and lane marking localization. This study would be beneficial in road lane-based pavement condition evaluation such as lane-based rutting measurement and crack classification. Full article
(This article belongs to the Special Issue Visual Sensors)
Show Figures

Figure 1

Back to TopTop