Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = landslide erosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 12716 KiB  
Article
Bridging the Gap Between Active Faulting and Deformation Across Normal-Fault Systems in the Central–Southern Apennines (Italy): Multi-Scale and Multi-Source Data Analysis
by Marco Battistelli, Federica Ferrarini, Francesco Bucci, Michele Santangelo, Mauro Cardinali, John P. Merryman Boncori, Daniele Cirillo, Michele M. C. Carafa and Francesco Brozzetti
Remote Sens. 2025, 17(14), 2491; https://doi.org/10.3390/rs17142491 - 17 Jul 2025
Viewed by 401
Abstract
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and [...] Read more.
We inspected a sector of the Apennines (central–southern Italy) in geographic and structural continuity with the Quaternary-active extensional belt but where clear geomorphic and seismological signatures of normal faulting are unexpectedly missing. The evidence of active tectonics in this area, between Abruzzo and Molise, does not align with geodetic deformation data and the seismotectonic setting of the central Apennines. To investigate the apparent disconnection between active deformation and the absence of surface faulting in a sector where high lithologic erodibility and landslide susceptibility may hide its structural evidence, we combined multi-scale and multi-source data analyses encompassing morphometric analysis and remote sensing techniques. We utilised high-resolution topographic data to analyse the topographic pattern and investigate potential imbalances between tectonics and erosion. Additionally, we employed aerial-photo interpretation to examine the spatial distribution of morphological features and slope instabilities which are often linked to active faulting. To discern potential biases arising from non-tectonic (slope-related) signals, we analysed InSAR data in key sectors across the study area, including carbonate ridges and foredeep-derived Molise Units for comparison. The topographic analysis highlighted topographic disequilibrium conditions across the study area, and aerial-image interpretation revealed morphologic features offset by structural lineaments. The interferometric analysis confirmed a significant role of gravitational movements in denudating some fault planes while highlighting a clustered spatial pattern of hillslope instabilities. In this context, these instabilities can be considered a proxy for the control exerted by tectonic structures. All findings converge on the identification of an ~20 km long corridor, the Castel di Sangro–Rionero Sannitico alignment (CaS-RS), which exhibits varied evidence of deformation attributable to active normal faulting. The latter manifests through subtle and diffuse deformation controlled by a thick tectonic nappe made up of poorly cohesive lithologies. Overall, our findings suggest that the CaS-RS bridges the structural gap between the Mt Porrara–Mt Pizzalto–Mt Rotella and North Matese fault systems, potentially accounting for some of the deformation recorded in the sector. Our approach contributes to bridging the information gap in this complex sector of the Apennines, offering original insights for future investigations and seismic hazard assessment in the region. Full article
Show Figures

Figure 1

26 pages, 35238 KiB  
Article
Sediment Connectivity in Human-Impacted vs. Natural Conditions: A Case Study in a Landslide-Affected Catchment
by Mohanad Ellaithy, Davide Notti, Daniele Giordan, Marco Baldo, Jad Ghantous, Vincenzo Di Pietra, Marco Cavalli and Stefano Crema
Geosciences 2025, 15(7), 259; https://doi.org/10.3390/geosciences15070259 - 5 Jul 2025
Viewed by 399
Abstract
This research aims to characterize sediment dynamics in the Rupinaro catchment, a uniquely terraced and human-shaped basin in Italy’s Liguria region, employing geomorphometric methods to unravel sediment connectivity in a landscape vulnerable to shallow landslides. Within a scenario-based approach, we utilized high-resolution LiDAR-derived [...] Read more.
This research aims to characterize sediment dynamics in the Rupinaro catchment, a uniquely terraced and human-shaped basin in Italy’s Liguria region, employing geomorphometric methods to unravel sediment connectivity in a landscape vulnerable to shallow landslides. Within a scenario-based approach, we utilized high-resolution LiDAR-derived digital terrain models (DTMs) to calculate the Connectivity Index, comparing sediment dynamics between the original terraced landscape and a virtual natural scenario. To reconstruct a pristine slope morphology, we applied a topographic roughness-based skeletonization algorithm that simplifies terraces into linear features to simulate natural hillslope conditions and remove anthropogenic structures. The analysis was carried out considering diverse targets (e.g., hydrographic networks, road networks) and the effect of land use. The results reveal significant differences in sediment connectivity between the anthropogenic and natural morphologies, with implications for erosion and landslide susceptibility. The findings reveal that sediment connectivity is moderately higher in the scenario without terraces, indicating that terraces function as effective barriers to sediment transfer. This highlights their potential role in mitigating landslide susceptibility on steep slopes. Additionally, the results show that roads exert a stronger influence on the Connectivity Index, significantly altering flow paths. These modifications appear to contribute to increased landslide susceptibility in adjacent areas, as reflected by the higher observed landslide density within the study region. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

22 pages, 7977 KiB  
Article
Unlocking Coastal Insights: An Integrated Geophysical Study for Engineering Projects—A Case Study of Thorikos, Attica, Greece
by Stavros Karizonis and George Apostolopoulos
Geosciences 2025, 15(6), 234; https://doi.org/10.3390/geosciences15060234 - 19 Jun 2025
Viewed by 317
Abstract
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea [...] Read more.
Urban expansion in coastal areas involves infrastructure development, industrial growth, and mining activities. These coastal environments face various environmental and geological hazards that require geo-engineers to devise solutions. An integrated geophysical approach aims to address such complex challenges as sea level rise, sea water intrusion, shoreline erosion, landslides and previous anthropogenic activity in coastal settings. In this study, the proposed methodology involves the systematic application of geophysical methods (FDEM, 3D GPR, 3D ERT, seismic), starting with a broad-scale survey and then proceeding to a localized exploration, in order to identify lithostratigraphy, bedrock depth, sea water intrusion and detect anthropogenic buried features. The critical aspect is to leverage the unique strengths and limitations of each method within the coastal environment, so as to derive valuable insights for survey design (extension and orientation of measurements) and data interpretation. The coastal zone of Throrikos valley, Attica, Greece, serves as the test site of our geophysical investigation methodology. The planning of the geophysical survey included three phases: The application of frequency-domain electromagnetic (FDEM) and 3D ground penetrating radar (GPR) methods followed by a 3D electrical resistivity tomography (ERT) survey and finally, using the seismic refraction tomography (SRT) and multichannel analysis of surface waves (MASW). The FDEM method confirmed the geomorphological study findings by revealing the paleo-coastline, superficial layers of coarse material deposits and sea water preferential flow due to the presence of anthropogenic buried features. Subsequently, the 3D GPR survey was able to offer greater detail in detecting the remains of an old marble pier inland and top layer relief of coarse material deposits. The 3D ERT measurements, deployed in a U-shaped grid, successfully identified the anthropogenic feature, mapped sea water intrusion, and revealed possible impermeable formation connected to the bedrock. ERT results cannot clearly discriminate between limestone or deposits, as sea water intrusion lowers resistivity values in both formations. Finally, SRT, in combination with MASW, clearly resolves this dilemma identifying the lithostratigraphy and bedrock top relief. The findings provide critical input for engineering decisions related to foundation planning, construction feasibility, and preservation of coastal infrastructure. The methodology supports risk-informed design and sustainable development in areas with both natural and cultural heritage sensitivity. The applied approach aims to provide a complete information package to the modern engineer when faced with specific challenges in coastal settings. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

13 pages, 1169 KiB  
Article
The Selective Extraction of Natural Sesquiterpenic Acids in Complex Matrices: A Novel Strategy for Isolating Zizanoic Acid in Vetiver Essential Oil
by Ian Gardel Carvalho Barcellos-Silva, Ananda da Silva Antonio, Mateus Curty Cariello da Silva, Fernanda de Melo Regazio Cariello, Fernando Hallwass, Monica Costa Padilha and Valdir Florencio Veiga-Junior
Separations 2025, 12(6), 163; https://doi.org/10.3390/separations12060163 - 17 Jun 2025
Viewed by 319
Abstract
Essential oils are complex mixtures of apolar components, mainly phenylpropanoids, monoterpenes, and sesquiterpenes. Vetiver (Vetiveria zizanioides (L.) Nash) is a non-endemic grass in several tropical regions, widely used for slope stabilization and erosion control because of its long and deep roots that [...] Read more.
Essential oils are complex mixtures of apolar components, mainly phenylpropanoids, monoterpenes, and sesquiterpenes. Vetiver (Vetiveria zizanioides (L.) Nash) is a non-endemic grass in several tropical regions, widely used for slope stabilization and erosion control because of its long and deep roots that help to bind the soil together, preventing landslides and soil loss. From these roots, vetiver essential oil is obtained, which is extracted and produced worldwide and highly valued for its diverse range of bioactive substances used by the cosmetics and perfume industries. These substances, present in a very complex mixture, are difficult to isolate. Zizanoic acid is a very rare substance in nature and also very interesting because of the biological properties already described. In the present study, zizanoic acid was selectively isolated with 84–87% purity from vetiver commercial essential oils, in which it was present at less than 10%, using KOH-impregnated silica gel column chromatography alone. The experiments were monitored using GC-MS and UHPLC-HRMS, and the isolated substances (zizanoic and valerenic acids) were further determined by NMR experiments. The whole methodology and analytical approach proved to be very efficient for natural product complex mixture analysis and also very selective, allowing for a distinct capacity to recover carboxylic acids from complex biological samples. Full article
(This article belongs to the Special Issue Extraction and Characterization of Food Components)
Show Figures

Graphical abstract

20 pages, 8974 KiB  
Article
Applications of InSAR for Monitoring Post-Wildfire Ground Surface Displacements
by Ryan van der Heijden, Ehsan Ghazanfari, Donna M. Rizzo, Ben Leshchinsky and Mandar Dewoolkar
Remote Sens. 2025, 17(12), 2047; https://doi.org/10.3390/rs17122047 - 13 Jun 2025
Viewed by 373
Abstract
Wildfires pose a significant threat to the natural and built environment and may alter the hydrologic cycle in burned areas increasing the risk of flooding, erosion, debris flows, and shallow landslides. In this paper, we investigate the feasibility of using differential interferometric synthetic [...] Read more.
Wildfires pose a significant threat to the natural and built environment and may alter the hydrologic cycle in burned areas increasing the risk of flooding, erosion, debris flows, and shallow landslides. In this paper, we investigate the feasibility of using differential interferometric synthetic aperture radar (DInSAR) to interpret changes in ground surface elevation following the 2017 Eagle Creek Wildfire in Oregon, USA. We show that DInSAR is capable of measuring ground surface displacements in burned areas not obscured by vegetation cover and that interferometric coherence can differentiate between areas that experienced different burn severities. The distribution of projected vertical displacement was analyzed, suggesting that different areas experience variable rates of change, with some showing little to no change for up to four years after the fire. Comparison of the projected vertical displacements with cumulative precipitation and soil moisture suggests that increases in precipitation and soil moisture are related to periods of increased vertical displacement. The findings of this study suggest that DInSAR may have value where in situ instrumentation is infeasible and may assist in prioritizing areas at high-risk of erosion or other changes over large geographical extents and measurement locations for deployment of instrumentation. Full article
Show Figures

Figure 1

26 pages, 8541 KiB  
Article
Spatiotemporal Evolution and Driving Mechanisms of Composite Ecological Sensitivity in the Western Sichuan Plateau, China Based on Multi-Process Coupling Mechanisms
by Defen Chen, Yuchi Zou, Junjie Zhu, Wen Wei, Dan Liang, Weilai Zhang and Wuxue Cheng
Sustainability 2025, 17(11), 4941; https://doi.org/10.3390/su17114941 - 28 May 2025
Viewed by 389
Abstract
The Western Sichuan Plateau, an ecologically critical transition zone between the Qinghai–Tibet Plateau and the Sichuan Basin, is also a typical fragile and sensitive area in China’s ecological security. This study established a multi-process evaluation model using the Spatial Distance Index Method, integrating [...] Read more.
The Western Sichuan Plateau, an ecologically critical transition zone between the Qinghai–Tibet Plateau and the Sichuan Basin, is also a typical fragile and sensitive area in China’s ecological security. This study established a multi-process evaluation model using the Spatial Distance Index Method, integrating cluster analysis, Sen–Mann–Kendall trend detection, and OWA-based scenario simulations to assess composite ecological sensitivity dynamics. The optimal geodetector was further applied to quantitatively determine the driving mechanisms underlying these sensitivity dynamics. The research showed the following findings: (1) From 2000 to 2020, the ecological environment of the Western Sichuan Plateau exhibited a phased pattern characterized by significant improvement, partial rebound, and overall stabilization. The composite ecological sensitivity grading index showed a declining trend, indicating a gradual reduction in ecological vulnerability. The effectiveness of ecological restoration projects became evident after 2010, with the area of medium- to high-sensitivity zones decreasing by 24.29% at the regional scale compared to the 2010 baseline. (2) The spatial pattern exhibited a gradient-decreasing characteristic from west to east. Scenario simulations under varying decision-making behaviors prioritized Jiuzhaigou, Xiaojin, Jinchuan, Danba, and Yajiang counties as ecologically critical. (3) Driving force analysis revealed a marked increase in the explanatory power of freeze-thaw erosion, with its q-value rising from 0.49 to 0.80. Moreover, its synergistic effect with landslide disasters spans 74.19% of county-level units. Dominant drivers ranked: annual temperature range (q = 0.32) > distance to faults (q = 0.17) > slope gradient (q = 0.16), revealing a geomorphic-climatic-tectonic interactive mechanism. This study provided methodological innovations and decision-making support for sustainable environmental development in plateau transitional zones. Full article
Show Figures

Figure 1

18 pages, 4879 KiB  
Article
Water Level Rise and Bank Erosion in the Case of Large Reservoirs
by Jędrzej Wierzbicki, Roman Pilch, Robert Radaszewski, Katarzyna Stefaniak, Michał Wierzbicki, Barbara Ksit and Anna Szymczak-Graczyk
Water 2025, 17(11), 1576; https://doi.org/10.3390/w17111576 - 23 May 2025
Viewed by 563
Abstract
The article presents an analysis of the complex mechanism of abrasion of shorelines built of non-lithified sediments as a result of rising water levels in the reservoir, along with its quantitative assessment. It allows forecasting the actual risks of coastal areas intendent for [...] Read more.
The article presents an analysis of the complex mechanism of abrasion of shorelines built of non-lithified sediments as a result of rising water levels in the reservoir, along with its quantitative assessment. It allows forecasting the actual risks of coastal areas intendent for urbanization with similar morphology and geological structure. The task of the article is also to point out that for proper assessment of abrasion it is necessary to take into account the greater complexity of the mechanism in which abrasion is the result of co-occurring processes of erosion and landslides. During the analysis, the classic Kachugin method of abrasion assessment was combined with an analysis of the stability of the abraded slope, taking into account the circular slip surface (Bishop and Morgenster–Price methods) and the breaking slip surface (Sarma method). This approach required the assessment of the geotechnical properties of the soil using, among other things, advanced in situ methods such as static sounding. The results indicate that the cliff edge is in limit equilibrium or even in danger of immediate landslide. At the same time, it was possible to determine the horizontal extent of a single landslide at 1.2 to 5.8 m. In the specific cases of reservoir filling, the consideration of the simultaneous action of both failure mechanisms definitely worsens the prediction of shoreline sustainability and indicates the need to restrict construction development in the coastal zone. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

14 pages, 3042 KiB  
Article
Application of LiDAR Differentiation and a Modified Savage–Hutter Model to Analyze Co-Seismic Landslides: A Case Study of the 2024 Noto Earthquake, Japan
by Christopher Gomez and Danang Sri Hadmoko
Geosciences 2025, 15(5), 180; https://doi.org/10.3390/geosciences15050180 - 15 May 2025
Viewed by 693
Abstract
This study investigates co-seismic landslides triggered by the 1 January 2024 Mw 7.6 Noto Peninsula earthquake in Japan using LiDAR differentiation and a modified Savage–Hutter model. By analyzing pre- and post-earthquake high-resolution topographic data from 13 landslides in a geologically homogeneous area of [...] Read more.
This study investigates co-seismic landslides triggered by the 1 January 2024 Mw 7.6 Noto Peninsula earthquake in Japan using LiDAR differentiation and a modified Savage–Hutter model. By analyzing pre- and post-earthquake high-resolution topographic data from 13 landslides in a geologically homogeneous area of the peninsula, we characterized distinct landslide morphologies and dynamic behaviours. Our approach combined static morphological analysis from LiDAR data with simulations of granular flow mechanics to evaluate landslide mobility. Results revealed two distinct landslide types: those with clear erosion-deposition zonation and complex landslides with discontinuous topographic changes. Landslide dimensions followed power-law relationships (H = 7.51L0.50, R2 = 0.765), while simulations demonstrated that internal deformation capability (represented by the μ parameter) significantly influenced runout distances for landslides terminating on low-angle surfaces but had minimal impact on slope-confined movements. These findings highlight the importance of integrating both static topographic parameters and dynamic flow mechanics when assessing co-seismic landslide hazards, particularly for predicting potential runout distances on gentle slopes where human settlements are often located. Our methodology provides a framework for improved landslide susceptibility assessment and disaster risk reduction in seismically active regions. Full article
Show Figures

Figure 1

29 pages, 5998 KiB  
Article
Stability of Slope and Concrete Structure Under Cyclic Load Coupling and Its Application in Ecological Risk Prevention and Control
by Shicong Ren, Jun Wang, Nian Chen and Tingyao Wu
Sustainability 2025, 17(10), 4260; https://doi.org/10.3390/su17104260 - 8 May 2025
Viewed by 490
Abstract
This paper focuses on the stability issues of geological and engineering structures and conducts research from two perspectives: the mechanism of slope landslides under micro-seismic action and the cyclic failure behavior of concrete materials. In terms of slope stability, through the combination of [...] Read more.
This paper focuses on the stability issues of geological and engineering structures and conducts research from two perspectives: the mechanism of slope landslides under micro-seismic action and the cyclic failure behavior of concrete materials. In terms of slope stability, through the combination of model tests and theories, the cumulative effect of circulating micro-seismic waves on the internal damage of slopes was revealed. This research finds that the coupling of micro-vibration stress and static stress significantly intensifies the stress concentration on the slope, promotes the development of potential sliding surfaces and the extension of joints, and provides a scientific basis for the prediction of landslide disasters. This helps protect mountain ecosystems and reduce soil erosion and vegetation destruction. The number of cyclic loads has a power function attenuation relationship with the compressive strength of concrete. After 1200 cycles, the strength drops to 20.5 MPa (loss rate 48.8%), and the number of cracks increases from 2.7 per mm3 to 34.7 per mm3 (an increase of 11.8 times). Damage evolution is divided into three stages: linear growth, accelerated expansion, and critical failure. The influence of load amplitude on the number of cracks shows a threshold effect. A high amplitude (>0.5 g) significantly stimulates the propagation of intergranular cracks in the mortar matrix, and the proportion of intergranular cracks increases from 12% to 65%. Grey correlation analysis shows that the number of cycles dominates the strength attenuation (correlation degree 0.87), and the load amplitude regulates the crack initiation efficiency more significantly (correlation degree 0.91). These research results can optimize the design of concrete structures, enhance the durability of the project, and indirectly reduce the resource consumption and environmental burden caused by structural damage. Both studies are supported by numerical simulation and experimental verification, providing theoretical support for disaster prevention and control and sustainable engineering practices and contributing to ecological environment risk management and the development of green building materials. Full article
Show Figures

Figure 1

18 pages, 16483 KiB  
Article
Rill Erosion and Drainage Development in Post-Landslide Settings Using UAV–LiDAR Data
by Xinyu Chen, Albertus Stephanus Louw, Ali P. Yunus, Saleh Alsulamy, Deha Agus Umarhadi, Md. Alamgir Hossen Bhuiyan and Ram Avtar
Soil Syst. 2025, 9(2), 42; https://doi.org/10.3390/soilsystems9020042 - 1 May 2025
Viewed by 757
Abstract
Accurate microtopography data are an important input for characterizing small-scale rill erosion and its progression following disturbances. UAV–LiDAR systems are increasingly accessible and have successfully been used to measure microtopography data for several applications. Yet, the use of UAV–LiDAR systems for rill erosion [...] Read more.
Accurate microtopography data are an important input for characterizing small-scale rill erosion and its progression following disturbances. UAV–LiDAR systems are increasingly accessible and have successfully been used to measure microtopography data for several applications. Yet, the use of UAV–LiDAR systems for rill erosion studies in post-landslide landscapes have not been well investigated. Therefore, the purpose of this study was to implement and evaluate a UAV–LiDAR-based workflow to capture the microtopography of a post-landslide landscape, and by doing so, to help to determine best practices for UAV–LiDAR-based rill analysis. A commercial UAV–LiDAR system was used to map three post-landslide slopes and generate digital elevation models with a 1 cm-per-pixel ground resolution. Using data captured over multiple years, temporal rill development was assessed by comparing rill cross-sections and calculating changes to rill density and erosion volume. A flow-accumulation algorithm was adopted to automatically extract the rill network. We found that a flow accumulation algorithm with a threshold value of 5000 detected the rill network with overall accuracies of >88% and F1-scores of >93%. Vertical cross-sections of individual rills revealed an increase in the depth and width of rills over a one-year period. This study demonstrates that a commercial UAV–LiDAR system can effectively describe microtopography in a post-landslide landscape and facilitate analysis of small-scale rill characteristics and the progression of rill erosion. Full article
(This article belongs to the Special Issue Land Use and Management on Soil Properties and Processes: 2nd Edition)
Show Figures

Figure 1

18 pages, 2268 KiB  
Article
Study of the Hydrological and Erosion Characteristics of Typical Spoil Heaps in the Yangtze River Delta of China
by Yanzi He, Jing Du, Zhujun Gu, Yunhao Li, Jin Ni, Jiasheng Wu, Guanghui Liao and Maimai Zeng
Water 2025, 17(8), 1220; https://doi.org/10.3390/w17081220 - 18 Apr 2025
Viewed by 374
Abstract
Spoil heaps have become a major source of anthropogenic soil erosion, but the hydrological responses and erosion mechanisms of in situ slopes under rainstorms remain poorly understood. We performed simulated rainfall experiments at real estate (Site A), railway (Site B), and railway station [...] Read more.
Spoil heaps have become a major source of anthropogenic soil erosion, but the hydrological responses and erosion mechanisms of in situ slopes under rainstorms remain poorly understood. We performed simulated rainfall experiments at real estate (Site A), railway (Site B), and railway station (Site C) construction sites, as well as spoil sites (Site D) in China’s Yangtze River Delta. Rainfall parameters, surface runoff, interflow, vertical soil moisture profiles, and sediment yield were monitored: (1) Hydrological responses differed significantly across the sites due to soil structure complexity; stable erosion after the first rainfall event was not achieved at any site except Site C. Soil erosion was the strongest at Site C, followed by Sites D, B, and A. After the second rainfall event, erosion was stable, increasing, and decreasing at Sites A, B and C, and D, respectively. (2) Runoff and the soil loss rate were positively correlated (R2 > 0.7), and the slopes of the fitted regression lines were highest for Sites B and C, followed by Sites D and A. (3) Soil erodibility values based on field data were 0.0029, 0.1164, 0.1974, and 0.0989 t·hm2·h·hm−2·MJ−1·mm−1 for Sites A, B, C, and D, respectively. (4) The soil bulk density, gravel content, and silt content were key factors contributing to the severe erosion of field spoil heaps. Spoil heaps from different project types exhibited distinct hydrological and erosional behaviors, which necessitates targeted mitigation strategies to reduce severe erosion and landslide risks. Full article
(This article belongs to the Special Issue Effects of Hydrology on Soil Erosion and Soil Water Conservation)
Show Figures

Figure 1

22 pages, 11311 KiB  
Article
Quality Analysis for Conservation and Integral Risk Assessment of the Arribes del Duero Natural Park (Spain)
by Leticia Merchán, Antonio Miguel Martínez-Graña and Carlos E. Nieto
Land 2025, 14(4), 885; https://doi.org/10.3390/land14040885 - 17 Apr 2025
Viewed by 552
Abstract
The environment is being affected by the great development of human activities, which is why, in recent years, the need to protect the environment has increased, through the carrying out of a Strategic Environmental Assessment (SEA). Within this assessment, environmental geology constitutes an [...] Read more.
The environment is being affected by the great development of human activities, which is why, in recent years, the need to protect the environment has increased, through the carrying out of a Strategic Environmental Assessment (SEA). Within this assessment, environmental geology constitutes an instrument for territorial and urban planning based on the analysis of conservation and the integral analysis of risks, obtaining cartography that can be useful in territorial and regional planning strategies. The methodology carried out in this article consists of applying a multi-criteria analysis in territorial planning, combining vector and raster data. This novel, low-cost, and effective methodology assesses conservation areas and risks, using map algebra and network analysis to identify priority areas and facilitate decision-making in a precise and quantitative manner. This analysis has been carried out in the Arribes del Duero Natural Park, which stands out as a place where numerous environmental values coexist, i.e., geological, geomorphological, and edaphological, forming unique landscapes. With regard to the results obtained, the cartography of conservation quality classifies the territory into four categories according to its degree of conservation: very high, high, low, and very low quality. The integral risk cartography identifies the areas with the greatest geological risks, such as erosion and landslides, and establishes limitations for land use. Also, by integrating both cartographies, it is determined which activities are compatible with each zone, considering both conservation and risks. Finally, it can be concluded that the cartographies obtained are useful for efficient land management, protecting the environment, and allowing human development in a controlled manner. Full article
Show Figures

Figure 1

25 pages, 1980 KiB  
Review
UAV-Based Soil Water Erosion Monitoring: Current Status and Trends
by Beatriz Macêdo Medeiros, Bernardo Cândido, Paul Andres Jimenez Jimenez, Junior Cesar Avanzi and Marx Leandro Naves Silva
Drones 2025, 9(4), 305; https://doi.org/10.3390/drones9040305 - 14 Apr 2025
Cited by 1 | Viewed by 1915
Abstract
Soil erosion affects land productivity, water quality, and ecosystem resilience. Traditional monitoring methods are often time-consuming, labor-intensive, and resource-demanding, while unmanned aerial vehicles (UAVs) provide high-resolution, near-real-time data, improving accuracy. This study conducts a bibliometric analysis of UAV-based soil erosion research to explore [...] Read more.
Soil erosion affects land productivity, water quality, and ecosystem resilience. Traditional monitoring methods are often time-consuming, labor-intensive, and resource-demanding, while unmanned aerial vehicles (UAVs) provide high-resolution, near-real-time data, improving accuracy. This study conducts a bibliometric analysis of UAV-based soil erosion research to explore trends, technologies, and challenges. A systematic review of Web of Science and Scopus articles identified 473 relevant studies after filtering for terms that refer to types of soil erosion. Analysis using R’s bibliometrix package shows research is concentrated in Asia, Europe, and the Americas, with 304 publications following a surge. Multi-rotor UAVs with RGB sensors are the most common. Gully erosion is the most studied form of the issue, followed by landslides, rills, and interrill and piping erosion. Significant gaps remain in rill and interrill erosion research. The integration of UAVs with satellite data, laser surveys, and soil properties is limited but crucial. While challenges such as data accuracy and integration persist, UAVs offer cost-effective, near-real-time monitoring capabilities, enabling rapid responses to erosion changes. Future work should focus on multi-source data fusion to enhance conservation strategies. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture—2nd Edition)
Show Figures

Graphical abstract

18 pages, 19341 KiB  
Article
Landslide at the River’s Edge: Alum Bluff, Apalachicola River, Florida
by Joann Mossa and Yin-Hsuen Chen
Geosciences 2025, 15(4), 130; https://doi.org/10.3390/geosciences15040130 - 1 Apr 2025
Cited by 1 | Viewed by 1043
Abstract
When rivers impinge on the steep bluffs of valley walls, dynamic changes stem from a combination of fluvial and mass wasting processes. This study identifies the geomorphic changes, drivers, and timing of a landslide adjacent to the Apalachicola River at Alum Bluff, the [...] Read more.
When rivers impinge on the steep bluffs of valley walls, dynamic changes stem from a combination of fluvial and mass wasting processes. This study identifies the geomorphic changes, drivers, and timing of a landslide adjacent to the Apalachicola River at Alum Bluff, the tallest natural geological exposure in Florida at ~40 m, comprising horizontal sediments of mixed lithology. We used hydrographic surveys from 1960 and 2010, two sets of LiDAR from 2007 and 2018, historical aerial, drone, and ground photography, and satellite imagery to interpret changes at this bluff and river bottom. Evidence of slope failure includes a recessed upper section with concave scarps and debris fans in the lower section with subaqueous features including two occlusions and a small island exposed from the channel bottom at lower water levels. Aerial photos and satellite images indicate that the failure occurred in at least two phases in early 2013 and 2015. The loss in volume in the 11-year interval, dominantly from the upper portion of the bluff, was ~72,750 m3 and was offset by gains of ~14,760 m3 at the lower portion of the bluff, suggesting that nearly 80% of the material traveled into the river, causing changes in riverbed morphology from the runout. Despite being along a cutbank and next to the scour pool of a large meandering river, this failure was not driven by floods and the associated lateral erosion, but instead by rainfall in noncohesive sediments at the upper portion of the bluff. This medium-magnitude landslide is now the second documented landslide in Florida. Full article
(This article belongs to the Special Issue Landslides Runout: Recent Perspectives and Advances)
Show Figures

Figure 1

20 pages, 15944 KiB  
Article
Discrete Element Method Simulation of Loess Tunnel Erosion
by Haoyang Dong, Xian Li, Weiping Wang and Mingzhu An
Water 2025, 17(7), 1020; https://doi.org/10.3390/w17071020 - 31 Mar 2025
Viewed by 546
Abstract
The phenomenon of tunnel erosion is quite common in the Loess Plateau. Tunnel erosion can cause disasters such as landslides, mudslides, and ground collapses, resulting in significant economic losses and posing a threat to people’s safety. Therefore, understanding the evolution mechanism of tunnel [...] Read more.
The phenomenon of tunnel erosion is quite common in the Loess Plateau. Tunnel erosion can cause disasters such as landslides, mudslides, and ground collapses, resulting in significant economic losses and posing a threat to people’s safety. Therefore, understanding the evolution mechanism of tunnel erosion not only helps to analyze and predict the development law of erosion but also has a certain guiding role in engineering activities. Many scholars (including our team) have conducted field investigations and statistical analysis on the phenomenon of tunnel erosion in loess; however, these studies still have shortcomings in visual quantitative analysis. The combination of the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) has significant advantages in studying soil seepage and erosion. Based on existing experimental research, this article combines the Discrete Element Method (DEM) with Computational Fluid Dynamics (CFD) to establish a CFD-DEM coupled model that can simulate tunnel erosion processes. In this model, by changing the working conditions (vertical cracks, horizontal cracks, and circular holes) and erosion water pressure conditions (200 Pa, 400 Pa, 600 Pa), the development process of tunnel erosion and changes in erosion rate are explored. The results indicate that during the process of fluid erosion, the original vertical crack, horizontal crack, and circular hole-shaped tunnels all become a circular cave. The increase in erosion water pressure accelerates the erosion rate of the model, and the attenuation rate of the particle contact force chain also increases, resulting in a decrease in the total erosion time. During the erosion process, the curve of the calculated erosion rate shows a pattern of slow growth at first, then rapid growth, before finally stabilizing. The variation law of the erosion rate curve combined with the process of tunnel erosion can roughly divide the process of tunnel erosion into three stages: the slow erosion stage, the rapid erosion stage, and the uniform erosion stage. Full article
Show Figures

Figure 1

Back to TopTop