Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,372)

Search Parameters:
Keywords = land database

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8278 KB  
Article
Radiative Forcing and Albedo Dynamics in the Yellow River Basin: Trends, Variability, and Land-Cover Effects
by Long He, Qianrui Xi, Mei Sun, Hu Zhang, Junqin Xie and Lei Cui
Remote Sens. 2025, 17(17), 3009; https://doi.org/10.3390/rs17173009 - 29 Aug 2025
Abstract
Climate change results from disruptions in Earth’s radiation energy balance. Radiative forcing is the dominant factor of climate change. Yet, most studies have focused on radiative effects within the calculated actual albedo, usually overlooking the angle effect of regions with large-scale and highly [...] Read more.
Climate change results from disruptions in Earth’s radiation energy balance. Radiative forcing is the dominant factor of climate change. Yet, most studies have focused on radiative effects within the calculated actual albedo, usually overlooking the angle effect of regions with large-scale and highly varied terrain. This study produced the actual albedo databases by using albedo retrieval look-up tables. And then we investigated the spatiotemporal variations in land surface albedo and its corresponding radiative effects in the Yellow River Basin from 2000 to 2022 using MODIS-derived reflectance data. We employed time-series, trend, and anomaly detection analyses alongside surface downward shortwave radiation measurements to quantify the radiative forcing induced by land-cover changes. Our key findings reveal that (i) the basin’s average surface albedo was 0.171, with observed values ranging from 0.058 to 0.289; the highest variability was noted in the Loess Plateau during winter—primarily due to snowfall and low temperatures; (ii) a notable declining trend in the annual average albedo was observed in conjunction with rising temperatures, with annual values fluctuating between 0.165 and 0.184 and monthly averages spanning 0.1595 to 0.1853; (iii) land-cover transitions exerted distinct radiative forcing effects: conversions from grassland, shrubland, and wetland to water bodies produced forcings of 2.657, 2.280, and 2.007 W/m2, respectively, while shifts between barren land and cropland generated forcings of 4.315 and 2.696 W/m2. In contrast, transitions from cropland to shrubland and from grassland to shrubland resulted in minimal forcing, and changes from impervious surfaces and forested areas to other cover types yielded negative forcing, thereby exerting a net cooling effect. These findings not only deepen our understanding of the interplay between land-cover transitions and radiative forcing within the Yellow River Basin but also offer robust scientific support for regional climate adaptation, ecological planning, and sustainable land use management. Full article
Show Figures

Figure 1

19 pages, 1537 KB  
Article
Diversity and Community Structure of Rhizosphere Arbuscular Mycorrhizal Fungi in Songnen Grassland Saline–Alkali-Tolerant Plants: Roles of Environmental Salinity and Plant Species Identity
by Linlin Mei, Yingbin Liu, Zixian Wang, Zixuan Xiong, Yuze Wang, Tianqi Jin and Xuechen Yang
Agronomy 2025, 15(9), 2070; https://doi.org/10.3390/agronomy15092070 - 28 Aug 2025
Abstract
The Songnen Grassland, a typical saline–alkali ecosystem in Northeast China, is increasingly degraded by soil salinization. Arbuscular mycorrhizal fungi (AMF) are critical for enhancing plant tolerance to saline–alkali stress via root symbiosis. To investigate the species diversity and community structure of AMF in [...] Read more.
The Songnen Grassland, a typical saline–alkali ecosystem in Northeast China, is increasingly degraded by soil salinization. Arbuscular mycorrhizal fungi (AMF) are critical for enhancing plant tolerance to saline–alkali stress via root symbiosis. To investigate the species diversity and community structure of AMF in the rhizosphere of salt-tolerant plants in the Songnen Grassland, this study combined morphological identification with high-throughput sequencing (based on virtual taxa, VTs, from the MaarjAM database) to analyze the composition and distribution characteristics of AMF in the rhizosphere of eight salt-tolerant plant species, including Arundinella anomala, Leymus chinensis, Taraxacum mongolicum and others. Morphological identification revealed a total of 22 AMF species belonging to 7 genera. Among these, the genus Glomus was the dominant genus, comprising eight species (accounting for 36.4% of the total species), followed by the genus Acaulospora (five species, 22.7%), the genus Rhizophagus (four species, 18.2%), the genus Ambispora (two species, 9.1%), and the remaining genera each represented by one species (4.5%). High-throughput sequencing analysis identified a total of 40 virtual taxa (VTs) with clear taxonomic assignments belonging to six genera. The genus Glomus accounted for the highest proportion (34 VTs, 85%) with a relative abundance of 89.33%, representing the overwhelmingly dominant group. Rhizosphere soil electrical conductivity (EC) of the eight plant species indicated a significant gradient (high EC group: A–D and G, 2.07–2.61 mS/cm; low EC group: E, F, H, 0.20–0.48 mS/cm). The AMF diversity in the high EC group was significantly higher than that in the low EC group, indicating that AMF in the rhizosphere of salt-tolerant plants enhanced plant tolerance to high-salt environments, and their diversity did not decrease with increasing salinity but instead remained at a high level. Plant-specific AMF community characteristics were evident. Hierarchical clustering analysis further confirmed that the AMF community composition in the rhizosphere of Taraxacum mongolicum and Vicia amoena differed significantly from that of the other plant species, indicating that plant species have a key driving role in AMF community structure. These findings provide critical insights into the plant–AMF symbiotic mechanisms underlying saline–alkali adaptation and offer a theoretical basis for selecting efficient AMF strains to support ecological restoration of saline–alkali lands. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

22 pages, 7818 KB  
Article
Representation of 3D Land Cover Data in Semantic City Models
by Per-Ola Olsson, Axel Andersson, Matthew Calvert, Axel Loreman, Erik Lökholm, Emma Martinsson, Karolina Pantazatou, Björn Svensson, Alex Spielhaupter, Maria Uggla and Lars Harrie
ISPRS Int. J. Geo-Inf. 2025, 14(9), 328; https://doi.org/10.3390/ijgi14090328 - 26 Aug 2025
Viewed by 459
Abstract
A large number of cities have created semantic 3D city models, but these models are rarely used as input data for simulations, such as noise and flooding, in the urban planning process. Reasons for this are that many simulations require detailed land cover [...] Read more.
A large number of cities have created semantic 3D city models, but these models are rarely used as input data for simulations, such as noise and flooding, in the urban planning process. Reasons for this are that many simulations require detailed land cover (LC) and elevation data that are often not included in the 3D city models, and that there is no linkage between the elevation and land cover data. In this study, we design, implement and evaluate methods to handle LC and elevation data in a 3D city model. The LC data is stored in 2.5D or 3D in the CityGML modules Transportation, Vegetation, WaterBody, CityFurniture and LandUse, and a complete 3D LC partition is created by combining data from these modules. The entire workflow is demonstrated in the paper: creating 2D LC data, extending CityGML, creating 2.5D/3D data from the 2D LC data, dividing the LC data into CityGML modules, storing it in a database (3DCityDB) and finally visualizing the data in Unreal Engine. The study is part of the 3CIM project where a national profile of CityGML for Sweden is created as an Application Domain Extension (ADE), but the result is generally applicable for CityGML implementations. Full article
Show Figures

Figure 1

17 pages, 1705 KB  
Article
Gap Analysis of Priority Medicinal Plant Species in the Kingdom of Saudi Arabia
by Ibrahim Jamaan Alzahrani, Joana Magos Brehm and Nigel Maxted
Plants 2025, 14(17), 2629; https://doi.org/10.3390/plants14172629 - 23 Aug 2025
Viewed by 404
Abstract
Medicinal plant species are crucial biological resources, and yet their conservation in the Kingdom of Saudi Arabia remains insufficiently studied. This study conducts a comprehensive gap analysis of 74 priority medicinal plant species in the Kingdom of Saudi Arabia to assess their spatial [...] Read more.
Medicinal plant species are crucial biological resources, and yet their conservation in the Kingdom of Saudi Arabia remains insufficiently studied. This study conducts a comprehensive gap analysis of 74 priority medicinal plant species in the Kingdom of Saudi Arabia to assess their spatial distribution, identify conservation gaps and propose strategic recommendations. Occurrence records were collected from field surveys and global biodiversity databases, followed by ecogeographical land characterization and conservation gap analyses using the CAPFITOGEN3 tools. The results reveal significant disparities in in situ and ex situ conservation efforts, with two biodiversity hotspots, Asir and Jazan, containing the highest species diversity. While 66 species occur within protected areas, seven species are currently only recorded outside protected areas, indicating opportunities for expanding conservation efforts. Complementarity analysis identified 13 optimal protected areas for priority medicinal plants’ conservation, alongside 20 potential sites outside protected areas that could serve as other effective area-based conservation measures. Ex situ conservation remains critically limited for many species, with only 10 represented in genebanks and all accessions currently stored internationally, although some medicinal plant species may have broader global distributions. To bring about improved outcomes of conservation, the expansion of in situ conservation coverage, integration of other effective area-based conservation measures, strengthening of national genebanks and leverage of biotechnology and geospatial tools is recommended by this study. The findings of this study can be used to develop a more systematic and sustainable approach to the conservation of medicinal plants in the Kingdom of Saudi Arabia. Full article
(This article belongs to the Special Issue Sustainable Conservation and Management of Medicinal Plants)
Show Figures

Figure 1

21 pages, 1096 KB  
Article
Integrating Linear Programming and CLUE-S Modeling for Scenario-Based Land Use Optimization Under Eco-Economic Trade-Offs in Rapidly Urbanizing Regions
by Mufeng Zhang, Qinghua Gong, Bowen Liu, Shengli Yu, Linyuan Yan, Yanqiao Chen and Jianping Wu
Land 2025, 14(8), 1690; https://doi.org/10.3390/land14081690 - 21 Aug 2025
Viewed by 326
Abstract
Rapid urbanization has intensified eco-economic trade-offs, necessitating integrated optimization frameworks that balance development with environmental conservation in land use planning. Traditional methods often fail to optimize both objectives simultaneously, highlighting the need for systematic approaches addressing competing demands. This study develops an integrated [...] Read more.
Rapid urbanization has intensified eco-economic trade-offs, necessitating integrated optimization frameworks that balance development with environmental conservation in land use planning. Traditional methods often fail to optimize both objectives simultaneously, highlighting the need for systematic approaches addressing competing demands. This study develops an integrated linear programming (LP) and CLUE-S modeling framework using Guangzhou, a rapidly urbanizing megacity in China, as a case study. The methodology combines LP quantitative optimization with CLUE-S spatial allocation under dual objectives: maximizing ecosystem service value and economic benefits across four policy scenarios: ecological protection, cultivated protection, economic development, and balanced development. Data inputs include the 2020 land-use database, 12 socio-economic and biophysical driving factors, and territorial planning constraints. Results show that the coupled framework effectively balances urban expansion with ecological protection, reducing habitat fragmentation and preserving key ecological corridors compared with business-as-usual scenarios. Accuracy assessments further confirm the robustness and reliability of the framework. The integrated LP-CLUE-S framework captures land use dynamics and spatial constraints, providing a robust tool for territorial spatial planning. This approach offers actionable insights for reconciling development pressures with environmental conservation, contributing a replicable methodology for sustainable land resource management with strong transferability potential for other rapidly urbanizing regions facing similar eco-economic challenges. Full article
Show Figures

Figure 1

22 pages, 10627 KB  
Article
The Impact of Climate and Land Use Change on Greek Centipede Biodiversity and Conservation
by Elisavet Georgopoulou, Konstantinos Kougioumoutzis and Stylianos M. Simaiakis
Land 2025, 14(8), 1685; https://doi.org/10.3390/land14081685 - 20 Aug 2025
Viewed by 873
Abstract
Centipedes (Chilopoda, Myriapoda) are crucial soil predators, yet their vulnerability to climate and land use change remains unexplored. We assess the impact of these drivers on Greek centipedes, identify current and future biodiversity hotspots, and evaluate the effectiveness of the Natura 2000 Network [...] Read more.
Centipedes (Chilopoda, Myriapoda) are crucial soil predators, yet their vulnerability to climate and land use change remains unexplored. We assess the impact of these drivers on Greek centipedes, identify current and future biodiversity hotspots, and evaluate the effectiveness of the Natura 2000 Network of protected areas for their conservation. We used an updated species occurrence database of Greek centipedes, derived from literature reviews and museum collections, and evaluated database completeness and geographic sampling biases. Species Distribution Models were employed to predict future distribution shifts under climate and land use change scenarios. Biodiversity hotspots were identified based on species richness (SR) and corrected-weighted endemism (CWE) metrics. We overlapped SR and CWE metrics against the Natura 2000 Network to assess its effectiveness. We found that sampling effort is highly heterogeneous across Greece. All species are projected to experience range contractions, particularly in the 2080s, with variation across scenarios and taxa. Current biodiversity hotspots are concentrated in the south Aegean islands and mainland mountain ranges, where areas of persistent high biodiversity are also projected to occur. The Natura 2000 Network currently covers 52% of SR and 44% of CWE hotspots, with projected decreases in SR coverage but increases in CWE coverage. Our work highlights the vulnerability of Greek centipedes to climate and land use change and reveals conservation shortfalls within protected areas. We identify priority areas for future field surveys, based on sampling bias and survey completeness assessments, and highlight the need for further research into mechanisms driving centipede responses to global change. Full article
(This article belongs to the Special Issue Species Vulnerability and Habitat Loss (Third Edition))
Show Figures

Figure 1

26 pages, 6649 KB  
Article
Assessing Kernel-Driven Models’ Efficacy in Urban Thermal Radiation Directionality Modeling Using DART-Simulated Scenarios
by Xiaolin Zhu, Zhao-Liang Li and Franҫoise Nerry
Remote Sens. 2025, 17(16), 2884; https://doi.org/10.3390/rs17162884 - 19 Aug 2025
Viewed by 481
Abstract
The intensification of the urban thermal environment has brought attention to urban land surface temperature (ULST). Complex building geometry and manmade material lead to significant thermal radiation directionality (TRD) of the urban canopy, and the TRD effect directly influences the accuracy of ULST [...] Read more.
The intensification of the urban thermal environment has brought attention to urban land surface temperature (ULST). Complex building geometry and manmade material lead to significant thermal radiation directionality (TRD) of the urban canopy, and the TRD effect directly influences the accuracy of ULST retrieval algorithms. Therefore, it is essential to understand and eliminate the TRD effect to achieve high-accuracy ULST. In this context, the hemispherical brightness temperature maximum–minimum discrepancy (BTD) was quantitatively analyzed via different spectral bands, component temperature thresholds, urban geometries, and component temperature differences. Meanwhile, the DART simulations database was used to systematically evaluate 1 single-kernel- and 30 dual-kernel-driven models (KDMs), which were combined from 5 base-shape kernels (RossThick, Vinnikov, uea, RossThin, and LSF) and 6 hotspot kernels (RL, Roujean, Vinnikov, LiSparseR, LiDense, and Chen). Results show that the BTD discrepancy (ΔBTD) can reach up to 0.91 K with different band emissivities, whereas the ΔBTD is over 10 K with different component temperature differences. The building density and ratio between building heights and road widths (H/W) also exhibit their importance over urban regions. In addition, the RossThick–/Vinnikov–Roujean dual-kernel KDMs demonstrate better performance with an overall RMSE of 1.12 K. The RL-series KDMs can describe the hotspot distribution well, but the uea-series KDMs outperform at the solar principal plane (SPP) and cross-solar principal plane (CSPP). Specifically, the performance of all KDMs is sensitive to the H/W and component temperature thresholds, and urban geometry can affect the TRD RMSE with increasing H/W and a depletion of high building density. The quantitative TRD analysis and comparison provide a comprehensive reference for understanding the distribution of thermal radiation, which is also a reliable basis for developing the new TRD model over urban regions. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

17 pages, 11092 KB  
Article
Connectivity Between Ephemeral and Permanent Gullies and Its Impact on Gully Morphology: A Regional Study in the Northeast China Black Soil Region
by Hong Liu, Chunmei Wang, Qiang Wang, Shanshan Li, Yongqing Long, Guowei Pang, Lei Wang, Lei Ma and Qinke Yang
Land 2025, 14(8), 1661; https://doi.org/10.3390/land14081661 - 17 Aug 2025
Viewed by 362
Abstract
Gully development is a significant geomorphological and environmental process that affects land degradation worldwide, with ephemeral gullies (EGs) and permanent gullies (PGs) being the two most common types. These two gully types are often spatially connected, and with such EG-PG connectivity can accelerate [...] Read more.
Gully development is a significant geomorphological and environmental process that affects land degradation worldwide, with ephemeral gullies (EGs) and permanent gullies (PGs) being the two most common types. These two gully types are often spatially connected, and with such EG-PG connectivity can accelerate erosion. However, systematic research on this phenomenon remains limited, particularly at the regional scale. This study focuses on the spatial connectivity between EGs and PGs in the Songnen black soil region of northeast China. An unequal probability stratified sampling was used to establish 977 small watershed units, and a database of gullies and their connectivity was constructed based on sub-meter imagery. Among them, 55 representative units were randomly selected within geomorphic zones for field surveys and UAV validation to ensure data accuracy. Spatial patterns of gully connectivity were analyzed, and dominant controlling factors were identified using the Geodetector, which quantifies spatial stratified heterogeneity and evaluates the explanatory power of potential driving factors. The results are as follows: (1) Gully connectivity varies significantly across the region, with hotspot areas where more than 50% of permanent gullies are connected to ephemeral gullies, and cold spot clusters elsewhere. (2) Permanent gullies connected to ephemeral gullies differ significantly from unconnected ones in both length and width, with the former exhibiting a more elongated morphology. (3) Slope length and mean annual precipitation are the primary drivers of gully connectivity, both showing significant positive effects. Moreover, the interaction between mean annual precipitation and slope length shows the strongest explanatory power, indicating that precipitation, in combination with topographic features, plays a dominant role in shaping gully connectivity. By examining the spatial patterns of gully connectivity, this study contributes to a more refined understanding of gully morphological evolution and offers empirical insights for enhancing gully erosion models and optimizing regional soil and water conservation strategies. Full article
Show Figures

Figure 1

45 pages, 2285 KB  
Review
Urban Land Use and Value in the Digital Economy: A Scoping Review of Disrupted Activities, Behaviours, and Mobility
by Ilman Harun and Tan Yigitcanlar
Land 2025, 14(8), 1647; https://doi.org/10.3390/land14081647 - 14 Aug 2025
Viewed by 488
Abstract
The digital economy is fundamentally transforming urban landscapes by disrupting traditional relationships between land use and land value. This scoping review aims to examine how digital transformations alter urban activities, human behaviours, and mobility patterns, and to assess the subsequent impacts on land [...] Read more.
The digital economy is fundamentally transforming urban landscapes by disrupting traditional relationships between land use and land value. This scoping review aims to examine how digital transformations alter urban activities, human behaviours, and mobility patterns, and to assess the subsequent impacts on land use planning and land valuation frameworks. Following PRISMA guidelines, Scopus, Web of Science, Google Scholar, and ProQuest databases were systematically searched for peer-reviewed articles published between 2019 and 2024. Inclusion criteria comprised empirical studies, theoretical papers, and case studies examining digital economy impacts on urban land use or land value. Grey literature, non-English publications, and studies without clear urban spatial implications were excluded. The data were synthesised using bibliometric analysis and thematic analysis to identify patterns of disruption across three domains: urban activities, behaviours, and mobility. Of the 512 initially identified articles, 66 studies met the inclusion criteria. The evidence demonstrates significant geographic bias and methodological limitations, including the scarcity of longitudinal studies tracking actual land value changes and inconsistent metrics for measuring disruption intensity. Despite these limitations, findings indicate that the digital economy is decoupling land value from traditional determinants, such as physical proximity to services and employment centres. These transformations necessitate fundamental revisions to urban planning frameworks, land valuation models, and regulatory approaches to ensure equitable and sustainable urban development in the digital age. Full article
Show Figures

Figure 1

22 pages, 5768 KB  
Article
Modernizing Romanian Forest Management by Integrating Geographic Information System (GIS) for Smarter, Data-Informed Decision-Making
by Florica Matei, Ioana Pop, Tudor Sălăgean, Jutka Deak, Horia-Dan Vlasin, Luisa Andronie, Lucia Adina Truță, Mircea Nap, Silvia Chiorean, Sorin T. Șchiop and Ioana Buia
Forests 2025, 16(8), 1326; https://doi.org/10.3390/f16081326 - 14 Aug 2025
Viewed by 321
Abstract
Traditional Forest Management Plans (FMPs), which often span hundreds of pages on paper, present significant challenges due to their extensive length and lack of clear spatiotemporal context. This study aimed to integrate complex data from FMPs into an interactive, spatially referenced database. Using [...] Read more.
Traditional Forest Management Plans (FMPs), which often span hundreds of pages on paper, present significant challenges due to their extensive length and lack of clear spatiotemporal context. This study aimed to integrate complex data from FMPs into an interactive, spatially referenced database. Using Gârda Forest in Romania’s Apuseni Mountains as a case study, we gathered raw data, developed the geodatabase’s spatial and alphanumerical components, and conducted spatial analyses related to ecological and production factors. Our GIS was designed to accommodate multiple attributes within the compartment layer’s attribute table. Unlike previous studies, we incorporated the full range of information from the Compartment Description, not just isolated management aspects. This comprehensive approach enabled spatial analysis to highlight, in maps, key features across the 50 compartments (totaling 752.5 ha) including dominant species (Norway spruce, silver fir, beech), target species composition (Norway spruce as the predominant target), land protection needs (required for 4% of the area), median forest volume (1565 m3 per compartment), elevation range (1020–1420 m), compartments with production functions, and silvicultural treatments. These thematic maps provide a tool for further analyses and clear spatial visualization. Our GIS-based methodology supports rapid condition assessments and aids forest professionals and decision-makers in promoting sustainable forest management. Full article
Show Figures

Figure 1

16 pages, 6127 KB  
Article
Endemic and Endangered Vascular Flora of Kazakhstan’s Altai Mountains: A Baseline for Sustainable Biodiversity Conservation
by Aidar A. Sumbembayev, Yuriy A. Kotukhov, Alevtina N. Danilova and Meruyert Aitzhan
Sustainability 2025, 17(16), 7283; https://doi.org/10.3390/su17167283 - 12 Aug 2025
Viewed by 474
Abstract
The Altai Mountains of Kazakhstan form a critical part of the Altai-Sayan Ecoregion, one of Central Asia’s most important centers of plant endemism and biodiversity. However, this fragile mountain ecosystem is increasingly threatened by climate change, unsustainable land use, and habitat degradation. This [...] Read more.
The Altai Mountains of Kazakhstan form a critical part of the Altai-Sayan Ecoregion, one of Central Asia’s most important centers of plant endemism and biodiversity. However, this fragile mountain ecosystem is increasingly threatened by climate change, unsustainable land use, and habitat degradation. This study provides the first comprehensive checklist of rare, endemic, and endangered vascular plant species of Kazakhstan’s Altai, integrating herbarium data and spatial analyses to support regional conservation and sustainability goals. A total of 65,540 herbarium specimens from eight major collections were reviewed, and species identifications were verified using national and international databases. In total, 230 rare and endangered species were recorded, including 73 strict endemics. Species were assessed using IUCN Red List categories, and their distributions analyzed with GIS and hierarchical clustering tools. The results revealed a high concentration of threatened species in the Ivanovskiy, Narym, and Azutau ridges. Notably, 127 species were assessed for rarity status for the first time, with families such as Poaceae and Orchidaceae disproportionately represented. The study highlights substantial gaps in current conservation frameworks, as many species remain in the “Data Deficient” category, and some highly threatened taxa occur outside protected areas. These findings provide essential baseline data to inform the expansion of protected zones, guide national Red Book updates, and support targeted ex situ conservation. By prioritizing biodiversity-rich areas and incorporating plant rarity data into spatial planning, this research contributes directly to long-term sustainability and ecosystem resilience strategies in Kazakhstan’s mountainous regions. Full article
Show Figures

Figure 1

13 pages, 2517 KB  
Article
A Framework for the Dynamic Mapping of Precipitations Using Open-Source 3D WebGIS Technology
by Marcello La Guardia, Antonio Angrisano and Giuseppe Mussumeci
Geographies 2025, 5(3), 40; https://doi.org/10.3390/geographies5030040 - 4 Aug 2025
Viewed by 399
Abstract
Climate change represents one of the main challenges of this century. The hazards generated by this process are various and involve territorial assets all over the globe. Hydrogeological risk represents one of these aspects, and the violence of rain precipitations has led experts [...] Read more.
Climate change represents one of the main challenges of this century. The hazards generated by this process are various and involve territorial assets all over the globe. Hydrogeological risk represents one of these aspects, and the violence of rain precipitations has led experts to focus their interest on the study of geotechnical assets in relation to these dangerous weather events. At the same time, geospatial representation in 3D WebGIS based on open-source solutions led specialists to employ this kind of technology to remotely analyze and monitor territorial events considering different sources of information. This study considers the construction of a 3D WebGIS framework for the real-time management of geospatial information developed with open-source technologies applied to the dynamic mapping of precipitation in the metropolitan area of Palermo (Italy) based on real-time weather station acquisitions. The structure considered is a WebGIS platform developed with Cesium.js JavaScript libraries, the Postgres database, Geoserver and Mapserver geospatial servers, and the Anaconda Python platform for activating real-time data connections using Python scripts. This framework represents a basic geospatial digital twin structure useful to municipalities, civil protection services, and firefighters for land management and for activating any preventive operations to ensure territorial safety. Furthermore, the open-source nature of the platform favors the free diffusion of this solution, avoiding expensive applications based on property software. The components of the framework are available and shared using GitHub. Full article
Show Figures

Figure 1

23 pages, 28189 KB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 1219
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

35 pages, 8044 KB  
Article
Transboundary Water–Energy–Food Nexus Management in Major Rivers of the Aral Sea Basin Through System Dynamics Modelling
by Sara Pérez Pérez, Iván Ramos-Diez and Raquel López Fernández
Water 2025, 17(15), 2270; https://doi.org/10.3390/w17152270 - 30 Jul 2025
Viewed by 657
Abstract
Central Asia (CA) faces growing Water–Energy–Food (WEF) Nexus challenges, due to its complex transboundary water management, legacy Soviet-era water infrastructure, and increasing climate and socio-economic pressures. This study presents the development of a System Dynamics Model (SDM) to evaluate WEF interdependencies across the [...] Read more.
Central Asia (CA) faces growing Water–Energy–Food (WEF) Nexus challenges, due to its complex transboundary water management, legacy Soviet-era water infrastructure, and increasing climate and socio-economic pressures. This study presents the development of a System Dynamics Model (SDM) to evaluate WEF interdependencies across the Aral Sea Basin (ASB), including the Amu Darya and Syr Darya river basins and their sub-basins. Different downscaling strategies based on the area, population, or land use have been applied to process open-access databases at the national level in order to match the scope of the study. Climate and socio-economic assumptions were introduced through the integration of already defined Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs). The resulting SDM incorporates more than 500 variables interacting through mathematical relationships to generate comprehensive outputs to understand the WEF Nexus concerns. The SDM was successfully calibrated and validated across three key dimensions of the WEF Nexus: final water discharge to the Aral Sea (Mean Absolute Error, MAE, <5%), energy balance (MAE = 4.6%), and agricultural water demand (basin-wide MAE = 1.2%). The results underscore the human-driven variability of inflows to the Aral Sea and highlight the critical importance of transboundary coordination to enhance future resilience. Full article
Show Figures

Figure 1

15 pages, 1776 KB  
Article
Do Metropolitan Zoning Asymmetries Influence the Geography of Suburban Growth and Gentrification?
by Hyojung Lee and Kfir Mordechay
Land 2025, 14(8), 1555; https://doi.org/10.3390/land14081555 - 29 Jul 2025
Viewed by 459
Abstract
Zoning policies play a critical role in shaping the geography of urban and suburban development in the United States. Using data from the National Zoning and Land-Use Database and tract-level census data from 42 Metropolitan Statistical Areas, we classify metros into four zoning [...] Read more.
Zoning policies play a critical role in shaping the geography of urban and suburban development in the United States. Using data from the National Zoning and Land-Use Database and tract-level census data from 42 Metropolitan Statistical Areas, we classify metros into four zoning regime types based on the relative restrictiveness of urban and suburban land-use policies and compare trends in population growth and neighborhood change across these regimes. Our findings show that suburban areas have outpaced urban cores in population growth across all zoning configurations, with the most pronounced growth occurring in metros where restrictive urban zoning coexists with permissive suburban regulation. This growth is disproportionately concentrated in affluent suburban neighborhoods, suggesting a spatial sorting of access to resources and amenities. We also find that urban–suburban gentrification gaps are the smallest in these asymmetrical zoning regimes, suggesting that permissive suburban land use may facilitate spillover effects from constrained cores. These findings suggest that zoning asymmetries shape not only the geography of growth but also the spatial dynamics of gentrification. We argue for a metropolitan perspective on land-use governance to better understand the interconnected nature of suburbanization and the spatial expansion of gentrification. Full article
Show Figures

Figure 1

Back to TopTop