Connectivity Between Ephemeral and Permanent Gullies and Its Impact on Gully Morphology: A Regional Study in the Northeast China Black Soil Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Unit Design
2.3. Base Data
2.4. Gully Interpretation, Parameter Extraction, and Validation
2.5. Hotspot Analysis
2.6. Geodetector Analysis
3. Results
3.1. Spatial Distribution of EG-PG Gully Connectivity
3.2. Influence of Connectivity on PG Morphology
3.3. Influencing Factors of EG-PG Connectivity
4. Discussion
4.1. Mechanistic Analysis of Gully Connectivity Effects on PG Morphology
4.2. Formation of Gully Connectivity
4.3. Limitation and Future Works
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change, importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Bastola, S.; Dialynas, Y.G.; Bras, R.L.; Noto, L.V.; Istanbulluoglu, E. The role of vegetation on gully erosion stabilization at a severely degraded landscape: A case study from Calhoun Experimental Critical Zone Observatory. Geomorphology 2018, 308, 25–39. [Google Scholar] [CrossRef]
- Borrelli, P.; Panagos, P.; Alewell, C.; Ballabio, C.; de Oliveira Fagundes, H.; Haregeweyn, N.; Lugato, E.; Maerker, M.; Poesen, J.; Vanmaercke, M.; et al. Policy implications of multiple concurrent soil erosion processes in European farmland. Nat. Sustain. 2023, 6, 103–112. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Panagos, P.; Vanwalleghem, T.; Hayas, A.; Foerster, S.; Borrelli, P.; Rossi, M.; Torri, D.; Casali, J.; Borselli, L.; et al. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Sci. Rev. 2021, 218, 103637. [Google Scholar] [CrossRef]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Foster, G.R. Modeling ephemeral gully erosion for conservation planning. Int. J. Sediment Res. 2005, 20, 157–175. [Google Scholar]
- SSSA. Glossary of Soil Science Terms; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2020; p. 92. [Google Scholar]
- Liu, B.; Yang, Y.; Lu, S. Discriminations on common soil erosion terms and their implications for soil and water conservation. Sci. Soil Water Conserv. 2018, 16, 9–16. [Google Scholar] [CrossRef]
- Vandaele, K.; Poesen, J.; Govers, G.; van Wesemael, B. Geomorphic threshold conditions for ephemeral gully incision. Geomorphology 1996, 16, 161–173. [Google Scholar] [CrossRef]
- Foster, G. Understanding ephemeral gully erosion. Soil Conserv. 1986, 2, 90–125. [Google Scholar]
- Tang, J.; Liu, G.; Xie, Y.; Duan, X.; Wang, D.; Zhang, S. Annual variation of ephemeral gully erosion in a cultivated catchment. Geoderma 2021, 401, 115166. [Google Scholar] [CrossRef]
- Wilson, G.; Wells, R.; Dabney, S.; Zhang, T. Filling an ephemeral gully channel: Impacts on physical soil quality. Catena 2019, 174, 164–173. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Xie, Y.; Duan, X.; Wang, D.; Zhang, S. Ephemeral gullies caused by snowmelt: A ten-year study in northeastern China. Soil Tillage Res. 2021, 212, 105048. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, F.; Wilson, G.V.; Xu, X.; Liu, C. Three decades of ephemeral gully erosion studies. Soil Tillage Res. 2021, 212, 105046. [Google Scholar] [CrossRef]
- Tang, J.; Xie, Y.; Liu, C.; Dong, H.; Liu, G. Effects of rainfall characteristics and contour tillage on ephemeral gully development in a field in Northeastern China. Soil Tillage Res. 2022, 218, 105312. [Google Scholar] [CrossRef]
- Tang, J.; Xie, Y.; Cheng, H.; Liu, G. Impact of farmland landscape characteristics on gully erosion in the black soil region of Northeast China. Catena 2025, 249, 108623. [Google Scholar] [CrossRef]
- Anderson, R.L.; Rowntree, K.M.; Le Roux, J.J. An interrogation of research on the influence of rainfall on gully erosion. Catena 2021, 206, 105482. [Google Scholar] [CrossRef]
- Yang, B.; Ma, X.; Jiao, J.; Zhao, W.; Ling, Q.; Li, J.; Zhang, X. Magnitude and hotspots of soil erosion types during heavy rainstorm events on the Loess Plateau: Implications for watershed management. Catena 2024, 246, 108365. [Google Scholar] [CrossRef]
- Dong, Y.; Cao, W.; Nie, Y.; Xiong, D.; Cheng, S.; Duan, X. Influence of soil geography on the occurrence and intensity of gully erosion in the Hengduan Mountain region. Catena 2023, 222, 106841. [Google Scholar] [CrossRef]
- He, Y.; Gao, Y.; Li, X.; Chen, J.; Yang, J.; Chen, J.; Cai, C. Influence of gully erosion on hydraulic properties of black soil-based farmland. Catena 2023, 232, 107372. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, J.; Xu, J.; Zhou, P.; Chen, Z.; Wang, L.; Guo, M. Root Distribution and Soil Properties of Gully Heads and Their Effects on Headcut Migration in the Mollisols Region of Northeast China. Land 2022, 11, 184. [Google Scholar] [CrossRef]
- Frankl, A.; Nyssen, J.; Vanmaercke, M.; Poesen, J. Gully prevention and control: Techniques, failures and effectiveness. Earth Surf. Process. Landf. 2021, 46, 220–238. [Google Scholar] [CrossRef]
- Rahmati, O.; Kalantari, Z.; Ferreira, C.S.; Chen, W.; Soleimanpour, S.M.; Kapović-Solomun, M.; Seifollahi-Aghmiuni, S.; Ghajarnia, N.; Kazemabady, N.K. Contribution of physical and anthropogenic factors to gully erosion initiation. Catena 2022, 210, 105925. [Google Scholar] [CrossRef]
- Baartman, J.E.; Nunes, J.P.; Masselink, R.; Darboux, F.; Bielders, C.; Degré, A.; Cantreul, V.; Cerdan, O.; Grangeon, T.; Fiener, P. What do models tell us about water and sediment connectivity? Geomorphology 2020, 367, 107300. [Google Scholar] [CrossRef]
- Lima Alencar, P.H.; de Araújo, J.C.; dos Santos Teixeira, A. Physically-based model for gully simulation: Application to the Brazilian Semiarid Region. Hydrol. Earth Syst. Sci. Discuss. 2019, 2019, 1–26. [Google Scholar]
- Breunig, F.M.; Mancuso, M.A.; Coimbra, A.C.A.; Santos, L.J.C.; Hempe, T.C.; Frick, E.d.C.d.L.; Nascimento, E.R.d.; Sampaio, T.V.M.; Gaida, W.; Berra, E.F.; et al. Multiscale Remote Sensing Data Integration for Gully Erosion Monitoring in Southern Brazil: Case Study. AgriEngineering 2025, 7, 212. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Billi, P.; Vanmaercke, M.; et al. Analysis of long-term gully dynamics in different agro-ecology settings. Catena 2019, 179, 160–174. [Google Scholar] [CrossRef]
- Astuti, A.J.D.; Annys, S.; Dessie, M.; Nyssen, J.; Dondeyne, S. To What Extent Is Hydrologic Connectivity Taken into Account in Catchment Studies in the Lake Tana Basin, Ethiopia? A Review. Land 2022, 11, 2165. [Google Scholar] [CrossRef]
- Shi, C.; Liang, Y.; Qin, W.; Ding, L.; Cao, W.; Zhang, M.; Zhang, Q. Review of sediment connectivity: Conceptual connotations, characterization indicators, and their relationships with soil erosion and sediment yield. Earth-Sci. Rev. 2025, 264, 105091. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Li, W.; Li, P.; Zhao, G.; Li, S.; Wang, L.; Li, Y.; Li, D.; Du, M. Investigating sediment connectivity of a small catchment on the Loess Plateau using an appropriate index at an optimal spatial resolution. J. Hydrol. 2025, 661, 133588. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G.; Zhu, P.; Wang, Z.; Xing, S. Sediment connectivity of small watershed affected by gully development and vegetation restoration on the loess plateau. Geoderma 2022, 410, 115663. [Google Scholar] [CrossRef]
- Xu, Q.; Jiao, J.; Yan, Z.; Liao, J.; Zhang, Z.; Li, M.; Yan, X.; Chen, Y.; Li, J.; Jian, J. Response of road erosion to hydrological connectivity under a heavy rainstorm in an agricultural watershed on the Loess Plateau. Catena 2024, 240, 107991. [Google Scholar] [CrossRef]
- Alfonso-Torreño, A.; Schnabel, S.; Gómez-Gutiérrez, Á.; Crema, S.; Cavalli, M. Effects of gully control measures on sediment yield and connectivity in wooded rangelands. Catena 2022, 214, 106259. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Saurette, D.D.; Mann, H.S.; Kadota, N.; Vasava, H.B.; Naeimi, M.; Daggupati, P.; Biswas, A. An Upscaling-Based Strategy to Improve the Ephemeral Gully Mapping Accuracy. Land 2025, 14, 1344. [Google Scholar] [CrossRef]
- Filho, J.d.P.M.; Guerra, A.J.T.; Cruz, C.B.M.; Jorge, M.d.C.O.; Booth, C.A. Machine Learning Models for the Spatial Prediction of Gully Erosion Susceptibility in the Piraí Drainage Basin, Paraíba Do Sul Middle Valley, Southeast Brazil. Land 2024, 13, 1665. [Google Scholar] [CrossRef]
- Ma, L.; Wang, C.; Zhong, Y.; Pang, G.; Wang, L.; Long, Y.; Yang, Q.; Tang, B. Factors Influencing Ephemeral Gullies at the Regional Scale: Formation and Density. Land 2024, 13, 553. [Google Scholar] [CrossRef]
- WRB; FAO. World Reference Base for Soil Resources; FAO: Rome, Italy; ISRIC: Valhongen, The Netherlands, 2022. [Google Scholar]
- Staff, S.S. Keys to Soil Taxonomy, United States Department of Agriculture, 13th ed.; Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- Wang, W.; Deng, X.; Yue, H. Black soil conservation will boost China’s grain supply and reduce agricultural greenhouse gas emissions in the future. Environ. Impact Assess. Rev. 2024, 106, 107482. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, M.; Liu, X.; Chen, Z.; Zhang, X.; Xu, J.; Han, X. Historical evolution of gully erosion and its response to land use change during 1968–2018 in the Mollisol region of Northeast China. Int. Soil Water Conserv. Res. 2024, 12, 388–402. [Google Scholar] [CrossRef]
- Zhang, S.; Han, X.; Cruse, R.M.; Zhang, X.; Hu, W.; Yan, Y.; Guo, M. Morphological characteristics and influencing factors of permanent gully and its contribution to regional soil loss based on a field investigation of 393 km2 in Mollisols region of northeast China. Catena 2022, 217, 106467. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, G.; Xie, Y.; Shen, B.; Gu, Z.; Ding, Y. Delineating the black soil region and typical black soil region of northeastern China. Chin. Sci. Bull. 2021, 66, 96–106. [Google Scholar] [CrossRef]
- Gu, Z.; Xie, Y.; Gao, Y.; Ren, X.; Cheng, C.; Wang, S. Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China. Sci. Total Environ. 2018, 637–638, 706–716. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, G.; Wang, C.; Chen, S.; Wan, Y. Variation in soil infiltration properties under different land use/cover in the black soil region of Northeast China. Int. Soil Water Conserv. Res. 2024, 12, 379–387. [Google Scholar] [CrossRef]
- Liu, S.; Wu, B.; Niu, B.; Xu, F.; Yin, L.; Wang, S. Regional suitability assessment for different tillage practices in Northeast China: A machine learning aided meta-analysis. Soil Tillage Res. 2024, 240, 106094. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xie, Y.; Li, Z.; Liang, Y.; Zhang, W.; Fu, S.; Yin, S.; Wei, X.; Zhang, K.; Wang, Z.; et al. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res. 2020, 8, 430–439. [Google Scholar] [CrossRef]
- Yin, S.; Zhu, Z.; Wang, L.; Liu, B.; Xie, Y.; Wang, G.; Li, Y. Regional soil erosion assessment based on a sample survey and geostatistics. Hydrol. Earth Syst. Sci. 2018, 22, 1695–1712. [Google Scholar] [CrossRef]
- Yang, Q. Soil Erodibility Factor (K) Dataset of Pan-Third Pole 65 Countries (2021); National Tibetan Plateau: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2023); National Tibetan Plateau: Beijing, China, 2024; Available online: https://www.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2 (accessed on 3 November 2023).
- Xu, X. Annual NDVI and EVI 1 km Dataset in China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China’s Multi-Period Land Use Land Cover Remote Sensing Monitoring Dataset (CNLUCC); Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Long, Y.; Pang, G.; Shen, H.; Wang, L.; Yang, Q. Comparative Analysis of Gully Morphology Extraction Suitability Using Unmanned Aerial Vehicle and Google Earth Imagery. Remote Sens. 2023, 15, 4302. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 2010, 27, 286–306. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Zhang, K. Study on the effects of ephemeral gully development on soil erosion. Soil Conserv. China 1991, 4, 19–21+65. [Google Scholar] [CrossRef]
- Kang, H.; Guo, M.; Wang, W. Ephemeral gully erosion in concentrated flow channels induced by rainfall and upslope inflow on steep loessial slopes. Land Degrad. Dev. 2021, 32, 5037–5051. [Google Scholar] [CrossRef]
- Zheng, F.; Wu, M.; Zhang, Y.; Ding, J. Ephemeral Gully Development Process at Loess Steep Hillslope. Sci. Geogr. Sin. 2006, 26, 4438–4442. [Google Scholar]
- Zhang, B.; Xiong, D.; Zhang, G.; Zhang, S.; Wu, H.; Yang, D.; Xiao, L.; Dong, Y.; Su, Z.; Lu, X. Impacts of headcut height on flow energy, sediment yield and surface landform during bank gully erosion processes in the Yuanmou Dry-hot Valley region, southwest China. Earth Surf. Process. Landf. 2018, 43, 2271–2282. [Google Scholar] [CrossRef]
- Stenfert Kroese, J.; Batista, P.V.G.; Jacobs, S.R.; Breuer, L.; Quinton, J.N.; Rufino, M.C. Agricultural land is the main source of stream sediments after conversion of an African montane forest. Sci. Rep. 2020, 10, 14827. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Xie, Y.; Wu, Y.; Wang, D.; Gao, Y.; Meng, L. Effect of topographic variations and tillage methods on gully erosion in the black soil region: A case-study from Northeast China. Land Degrad. Dev. 2022, 33, 3786–3800. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, Y.; Liu, H.; Liu, B. Effect of topography on ephemeral gully erosion in Northeast China with black soils. J. Soil Water Conserv. 2007, 21, 35–38+49. [Google Scholar] [CrossRef]
- Capra, A.; Porto, P.; Scicolone, B. Relationships between rainfall characteristics and ephemeral gully erosion in a cultivated catchment in Sicily (Italy). Soil Tillage Res. 2009, 105, 77–87. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
Dataset Name | Resolution | Data Source | Usage | Coverage in Study Area |
---|---|---|---|---|
UAV image | 2.9–6 cm | DJI Mavic 3M (100–200 m flight altitude) | Gully validation | 55 validation units |
Field investigation | - | GNSS RTK (Global Navigation Satellite System Real Time Kinematic) | Investigation of connectivity features and permanent gully parameters | 55 validation units |
Google Earth image | 0.11–0.43 m | Google Earth https://google.cn/earth/ (accessed on 10 February 2020) | Gully interpretation | 977 sample units |
SRTM DEM | 30 m | NASA/USGS https://earthexplorer.usgs.gov/ (accessed on 15 July 2023) | Extraction of topographic factors | Entire study area |
Precipitation | 1000 m | National Tibetan Plateau Data Center https://data.tpdc.ac.cn (accessed on 3 November 2023) | Annual precipitation factor | |
Soil erodibility (K) | 30 arc-seconds (≈1000 m) | Soil erodibility factor (K factor) | ||
Normal Difference Vegetation Index (NDVI) | 1000 m | Resource and Environment Science Data Platform http://www.resdc.cn (accessed on 3 November 2024) | Annual NDVI factor | Entire study area |
Land use | 30 m | Cultivated land-ratio factor | ||
Landform | 1000 m | Geographic Remote Sensing Ecological Network Platform http://www.gisrs.cn/ (accessed on 3 November 2024) | Zonal statistics |
Judgment Criterion | Interaction Type |
---|---|
Nonlinear weakening | |
Unilateral nonlinear weakening | |
Bilateral enhancement | |
Independence | |
Nonlinear enhancement |
Permanent Gully (Number = 3883) | Permanent Gully Connected to Ephemeral Gully (Number = 1358) | Permanent Gully Disconnected to Ephemeral Gully (Number = 2525) | ||||
---|---|---|---|---|---|---|
Length (m) | Width (m) | Length (m) | Width (m) | Length (m) | Width (m) | |
Average | 177.95 | 8.05 | 196.54 | 6.81 | 167.96 | 8.73 |
Median | 118.23 | 4.17 | 128.17 | 3.98 | 111.09 | 4.23 |
Max | 2373.47 | 189.31 | 2373.47 | 189.31 | 2147.93 | 161.52 |
Min | 7.42 | 0.57 | 7.42 | 0.62 | 8.17 | 0.57 |
Factor | NDVI | Mean Annual Precipitation | Soil Erodibility | Cropland Proportion | Slope Gradient | Slope Length | Elevation |
---|---|---|---|---|---|---|---|
q value | 0.039 | 0.124 | 0.029 | 0.034 | 0.046 | 0.121 | 0.056 |
q value ranking | 5 | 1 | 7 | 6 | 3 | 2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, C.; Wang, Q.; Li, S.; Long, Y.; Pang, G.; Wang, L.; Ma, L.; Yang, Q. Connectivity Between Ephemeral and Permanent Gullies and Its Impact on Gully Morphology: A Regional Study in the Northeast China Black Soil Region. Land 2025, 14, 1661. https://doi.org/10.3390/land14081661
Liu H, Wang C, Wang Q, Li S, Long Y, Pang G, Wang L, Ma L, Yang Q. Connectivity Between Ephemeral and Permanent Gullies and Its Impact on Gully Morphology: A Regional Study in the Northeast China Black Soil Region. Land. 2025; 14(8):1661. https://doi.org/10.3390/land14081661
Chicago/Turabian StyleLiu, Hong, Chunmei Wang, Qiang Wang, Shanshan Li, Yongqing Long, Guowei Pang, Lei Wang, Lei Ma, and Qinke Yang. 2025. "Connectivity Between Ephemeral and Permanent Gullies and Its Impact on Gully Morphology: A Regional Study in the Northeast China Black Soil Region" Land 14, no. 8: 1661. https://doi.org/10.3390/land14081661
APA StyleLiu, H., Wang, C., Wang, Q., Li, S., Long, Y., Pang, G., Wang, L., Ma, L., & Yang, Q. (2025). Connectivity Between Ephemeral and Permanent Gullies and Its Impact on Gully Morphology: A Regional Study in the Northeast China Black Soil Region. Land, 14(8), 1661. https://doi.org/10.3390/land14081661