Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,414)

Search Parameters:
Keywords = land change modeler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 22846 KB  
Article
Accelerated Glacier Area Loss and Extinction of Small Glaciers in the Bhutanese Himalaya over the Past Five Decades
by Thongley Thongley, Levan G. Tielidze, Weilin Yang, Andrew Gunn and Andrew N. Mackintosh
Remote Sens. 2026, 18(2), 323; https://doi.org/10.3390/rs18020323 (registering DOI) - 18 Jan 2026
Abstract
Glacier inventories are critical for monitoring glacier response to climate change, providing constraints for glacier modeling studies and for assessing the impacts of glacier retreat on ecosystems and human societies. In the Bhutanese Himalaya, an up-to-date glacier inventory and a systematic analysis of [...] Read more.
Glacier inventories are critical for monitoring glacier response to climate change, providing constraints for glacier modeling studies and for assessing the impacts of glacier retreat on ecosystems and human societies. In the Bhutanese Himalaya, an up-to-date glacier inventory and a systematic analysis of decadal-scale glacier changes is lacking. Here, we present three glacier inventories (1976, 1998, and 2024) for this region. Manual mapping of glacier outlines from multi-source satellite imagery and the Copernicus digital elevation model (DEM) are used to derive a glacier inventory with associated topographic attributes. We found that 1871 glaciers existed in this region in 1976, covering an area of 2297.07 ± 117.15 km2. By 1998 this number had reduced to 1803 glaciers, covering 2106.99 ± 90.60 km2. In 2024, only 1697 glaciers remained, covering 1584.18 ± 36.37 km2. A total of 89 (1976–1998) and 435 (1998–2024) glaciers became extinct in the Bhutanese Himalaya during these two time periods, and glacier area decrease accelerated from ~0.38% yr−1 to ~0.95% yr−1. Lake-terminating glaciers retreated almost three times faster (~32.2 m yr−1) than land-terminating (~10.4 m yr−1) glaciers during the observation period. Debris-covered glacier area increased from 112.79 ± 11.50 km2 in 1976 to 128.89 ± 10.50 km2 in 2024. Glaciers on the South Bhutanese Himalaya (draining into Bhutan) experienced faster glacier retreat than the glaciers of the North Bhutanese Himalaya (draining into the Tibetan Autonomous Region). ERA5-Land reanalysis data show that summer decadal average temperature in this region increased by 0.003 °C yr−1 between 1976 and 1998 and 0.020 °C yr−1 between 1998 and 2024, with the increase in warming rate coinciding with accelerated glacier retreat after 1998. Our updated glacier inventories will be useful for assessments of global sea level change, mountain hazards, and water resources. Full article
24 pages, 7451 KB  
Article
Spatiotemporal Assessment of Soil Erosion Under Historical and Projected Land-Use Scenarios in the Myjava Basin, Slovakia
by Aditya Nugraha Putra, Roman Výleta, Michaela Danáčová, Kamila Hlavčová and Silvia Kohnová
Water 2026, 18(2), 254; https://doi.org/10.3390/w18020254 (registering DOI) - 18 Jan 2026
Abstract
Soil erosion remains a critical global concern, yet long-term catchment-scale assessments that explicitly link historical land-use transitions with erosion responses remain limited. This study evaluates how ±240 years record of historical and projected land-use changes influence soil erosion in the Myjava Basin by [...] Read more.
Soil erosion remains a critical global concern, yet long-term catchment-scale assessments that explicitly link historical land-use transitions with erosion responses remain limited. This study evaluates how ±240 years record of historical and projected land-use changes influence soil erosion in the Myjava Basin by integrating parcel-level land-use reconstructions from 1787 to 2030 into a distributed USLE-2D framework. R, K, and parcel-based C and P factors were temporally standardized, and LS was derived using an ensemble of four widely applied algorithms. A PCA was applied to quantify the relative contribution of RUSLE factors across time, and all analyses were performed within a reproducible geospatial modelling environment. The results indicated a long-term decline in total erosion of ±78% at the landscape scale and ±60% within arable land from the 19th century to the present, driven mainly by a major reduction in arable land (from ±62% to ±37%) and expansion of forest and shrub vegetation. Despite this decline, persistent hotspots remain concentrated on steep upland slopes with high LS (>10%), while agricultural parcels experienced erosion rates 10–20 times higher than the basin-wide mean across all periods. PCA shows that LS and rainfall erosivity dominate erosion variability (PC loadings ±0.78–0.84), while C and P factors increase in influence in recent and projected periods, contributing up to ±40% of total explained variance. These findings demonstrate that long-term land-use transitions have substantially reduced basin-scale erosion risk. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

25 pages, 11789 KB  
Article
Impact of Climate and Land Cover Dynamics on River Discharge in the Klambu Dam Catchment, Indonesia
by Fahrudin Hanafi, Lina Adi Wijayanti, Muhammad Fauzan Ramadhan, Dwi Priakusuma and Katarzyna Kubiak-Wójcicka
Water 2026, 18(2), 250; https://doi.org/10.3390/w18020250 (registering DOI) - 17 Jan 2026
Abstract
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were [...] Read more.
This study examines the hydrological response of the Klambu Dam Catchment in Central Java, Indonesia, to climatic and land cover changes from 2000–2023, with simulations extending to 2040. Utilizing CHIRPS satellite data calibrated with six ground stations, monthly precipitation and temperature datasets were analyzed and projected via linear regression aligned with IPCC scenarios, revealing a marginal temperature decline of 0.21 °C (from 28.25 °C in 2005 to 28.04 °C in 2023) and a 17% increase in rainfall variability. Land cover assessments from Landsat imagery highlighted drastic changes: a 73.8% reduction in forest area and a 467.8% increase in mixed farming areas, alongside moderate fluctuations in paddy fields and settlements. The Thornthwaite-Mather water balance method simulated monthly discharge, validated against observed data with Pearson correlations ranging from 0.5729 (2020) to 0.9439 (2015). Future projections using Cellular Automata-Markov modeling indicated stable volumetric flow but a temporal shift, including a 28.1% decrease in April rainfall from 2000 to 2040, contracting the wet season and extending dry spells. These shifts pose significant threats to agricultural and aquaculture activities, potentially exacerbating water scarcity and economic losses. The findings emphasize integrating dynamic land cover data, climate projections, and empirical runoff corrections for climate-resilient watershed management. Full article
(This article belongs to the Special Issue Water Management and Geohazard Mitigation in a Changing Climate)
Show Figures

Figure 1

24 pages, 7504 KB  
Article
Historical Trajectories of the Evolved Cropland Features and Their Reshaped Influences on Agricultural Landscapes and Ecosystem Services in China’s Sanjiang Commodity Grain Base
by Tao Pan, Kun Liu, Zherui Yin, Zexian Li and Lin Shi
Land 2026, 15(1), 175; https://doi.org/10.3390/land15010175 (registering DOI) - 16 Jan 2026
Viewed by 40
Abstract
Drastic cropland expansion and its internal structural changes have had an obvious impact on agricultural landscapes and ecosystem services. However, a prolonged investigation of this effect is still lacking in China’s grain-producing bases, such as Sanjiang Plain. To address this issue, half a [...] Read more.
Drastic cropland expansion and its internal structural changes have had an obvious impact on agricultural landscapes and ecosystem services. However, a prolonged investigation of this effect is still lacking in China’s grain-producing bases, such as Sanjiang Plain. To address this issue, half a century of study on the ‘land trajectory migration–landscape evolution–ecological effect,’ covering the period 1970–2020, was elucidated using the synergistic methodology of spatial analysis technology, the reclamation rate algorithm, the landscape indicator, and the newly established ecosystem service improvement model. Satellite observation results indicate that the cropland area exhibited a substantial expansion trend from 23,672.69 km2 to 42,856.17 km2 from 1970 to 2020, representing a net change of +19,183.48 km2 and a huge growth rate of 81.04%, which led to an obvious improvement in the level of agricultural cultivation. Concurrently, the internal structure of the cropland underwent dramatic restructuring, with rice fields increasing from 6.46% to 53.54%, while upland fields decreased from 93.54% to 46.46%. In different regions, spatially heterogeneous improvements of 2.64–52.47% in agricultural cultivation levels across all cities were observed. From 1970 to 2020, the tracked cropland center of gravity trajectories exhibited a distinct biphasic pattern, initially shifting westward and then followed by a southward transition, accumulating a displacement of 19.39 km2. As for the evolved agricultural landscapes, their integrity has improved (SHDI = −0.08%), accompanied by increased connectivity (CON = +8.82%) and patch edge integrity (LSI = −15.71%) but also by reduced fragmentation (PD = −48.14%). Another important discovery was that the evaluated ecosystem services continuously decreased from 2337.84 × 108 CNY in 1970 to 1654.01 × 108 CNY in 2020, a net loss of −683.84 × 108 CNY and a huge loss rate of 33.65%, accompanied by a center–periphery gradient pattern whereby degradation propagated from the low-value central croplands to the high-value surrounding natural covers. These discoveries will play a significant role in guiding farmland structure reformation, landscape optimization, and ecosystem service improvement. Full article
(This article belongs to the Special Issue Monitoring Ecosystem Services and Biodiversity Under Land Use Change)
Show Figures

Figure 1

31 pages, 1400 KB  
Review
Application of Magnetorheological Damper in Aircraft Landing Gear: A Systematic Review
by Quoc-Viet Luong
Machines 2026, 14(1), 106; https://doi.org/10.3390/machines14010106 - 16 Jan 2026
Viewed by 24
Abstract
During takeoff and landing, aircraft operate in a variety of situations, posing significant challenges to landing gear systems. Passive hydraulic–pneumatic dampers are commonly used in conventional landing gear to absorb impact energy and reduce vibration. However, due to their fixed damping characteristics and [...] Read more.
During takeoff and landing, aircraft operate in a variety of situations, posing significant challenges to landing gear systems. Passive hydraulic–pneumatic dampers are commonly used in conventional landing gear to absorb impact energy and reduce vibration. However, due to their fixed damping characteristics and inability to adjust to changing operating conditions, these passive systems have several limitations. Recent research has focused on creating intelligent landing gear systems with magnetic dampers (MR) to overcome these limitations. By changing the magnetic field acting on the MR fluid, MR dampers provide semi-active control of the landing gear dynamics and adjust the damping force in real time. This flexibility reduces structural load during landing, increases riding comfort, and improves energy absorption efficiency. This study examines the current state of MR damper application for aircraft landing gear. The review categorizes current control techniques and highlights the structural integration of MR dampers in landing gear assemblies. Purpose: The magnetorheological (MR) damper has become a promising semiactive system to replace the conventional passive damper in aircraft landing gear. However, the mechanical structure and control strategy of the MR damper must be designed to be suitable for aircraft landing gear applications. Methods: Researchers have explored the potential structure designed, the mathematical model of the MR landing gear system, and the control algorithm that was developed for aircraft landing gear applications. Results: According to the mathematical model of the MR damper, three types of models, which are pseudo-static models, parametric models, and unparameterized models, are detailed with their application. Based on these mathematical models, many control algorithms were studied, from classical control, such as PID and skyhook control, to modern control, such as intelligent control and SMC control. Full article
(This article belongs to the Section Machine Design and Theory)
24 pages, 5886 KB  
Article
Bayesian Model Averaging Method for Merging Multiple Precipitation Products over the Arid Region of Northwest China
by Yong Yang, Rensheng Chen, Xinyu Lu, Weiyi Mao, Zhangwen Liu and Xueliang Wang
Atmosphere 2026, 17(1), 94; https://doi.org/10.3390/atmos17010094 - 16 Jan 2026
Viewed by 43
Abstract
Accurate precipitation estimation is essential for hydrological modeling and water resource management in arid regions; however, complex terrain and sparse meteorological station networks introduce substantial uncertainties into gridded precipitation datasets. This study evaluates the performance of nine widely used precipitation products in the [...] Read more.
Accurate precipitation estimation is essential for hydrological modeling and water resource management in arid regions; however, complex terrain and sparse meteorological station networks introduce substantial uncertainties into gridded precipitation datasets. This study evaluates the performance of nine widely used precipitation products in the arid region of Northwest China (ARNC) at both the meteorological station scale and the sub-basin scale, and applies the Bayesian Model Averaging (BMA) approach to merge multi-source precipitation estimates. The results reveal pronounced spatial heterogeneity and significant differences in performance among datasets, with the Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement mission performing best at the station scale and the Famine Early Warning Systems Network Land Data Assimilation System performing best at the sub-basin scale. Compared with individual products, the BMA-merged precipitation demonstrates substantial improvements at both scales, providing higher coefficients of determination and agreement indices, and lower relative mean absolute error and relative root mean square error, indicating enhanced accuracy and robustness. The BMA-merged precipitation product generally exhibits superior and more spatially consistent performance than the individual datasets across the ARNC, thereby providing a more reliable basis for regional hydrological and climate-related applications. The merged dataset shows that the mean annual precipitation in the ARNC during 2000–2024 is approximately 230.4 mm, exhibiting a statistically significant increasing trend of 1.4 mm per year, with the strongest increases occurring in the Tianshan and Qilian Mountains. This study provides a reliable foundation for hydrological modeling and climate-change assessments in data-limited arid environments. Full article
(This article belongs to the Section Meteorology)
29 pages, 6496 KB  
Article
Construction and Optimization of Ecological Network Based on SOM and XGBoost-SHAP: A Case Study of the Zhengzhou–Kaifeng–Luoyang Region
by Yunuo Chen, Pingyang Han, Pengfei Wang, Baoguo Liu and Yang Liu
Land 2026, 15(1), 173; https://doi.org/10.3390/land15010173 - 16 Jan 2026
Viewed by 52
Abstract
The ecological network serves as a vital spatial strategy for addressing climate change, biodiversity loss, and habitat fragmentation. Addressing limitations in existing ecological network studies—such as strong subjectivity and insufficient accuracy in structural element identification, cross-regional integration, and resistance surface weighting—this research uses [...] Read more.
The ecological network serves as a vital spatial strategy for addressing climate change, biodiversity loss, and habitat fragmentation. Addressing limitations in existing ecological network studies—such as strong subjectivity and insufficient accuracy in structural element identification, cross-regional integration, and resistance surface weighting—this research uses the Zhengzhou–Kaifeng–Luoyang region (ZKLR) as a case study. It introduces the self-organizing map (SOM) model to identify ecological sources and employs the XGBoost-SHAP model to optimize resistance surface weights, thereby reducing subjective weighting biases. Subsequently, the Linkage Mapper tool is utilized to construct the regional ecological network. The superiority of the SOM model for identifying ecological sources was confirmed by comparison with a traditional network based on morphological spatial pattern analysis (MSPA). Further integrating complex network topology theory, nodes attack the simulations-assessed network resilience and proposed optimization strategies. The results indicate the following: (1) The area of ecological sources identified by the SOM model is three times that of the MSPA model; (2) SHAP feature importance analysis revealed that elevation (DEM) exerted the greatest influence on the composite resistance surface, contributing over 40%, followed by land use and slope, with each contributing approximately 15%. High-resistance areas were primarily distributed in western and central mountainous regions and built-up urban areas, while low-resistance areas were concentrated in the central and eastern plains; (3) topological analysis indicates that the integrated ecological network (IEN) exhibits superior robustness compared to the structural ecological network (SEN). The edge-adding strategy generated 22 additional ecological corridors, significantly enhancing the overall resilience of the integrated ecological network; and (4) based on ecological network construction and optimization results, a territorial spatial protection strategy of “one belt, two cores, two zones, and three corridors” is proposed. This study provides a novel methodological framework for ecological network construction, with findings offering reference for ecological conservation and spatial planning in the ZKLR and similar areas. Full article
Show Figures

Figure 1

26 pages, 8634 KB  
Article
Using Satellite-Based Evapotranspiration (ESTIMET) in SWAT to Quantify Sediment Yield in Scarce Data in a Desertified Watershed
by Raul Gomes da Silva, Aline Maria Soares das Chagas, Monaliza Araújo de Santana, Cinthia Maria de Abreu Claudino, Victor Hugo Rabelo Coelho, Thayná Alice Brito Almeida, Abelardo Antônio de Assunção Montenegro, Yuri Jacques Agra Bezerra da Silva and Carolyne Wanessa Lins de Andrade Farias
Sustainability 2026, 18(2), 917; https://doi.org/10.3390/su18020917 - 16 Jan 2026
Viewed by 80
Abstract
The ESTIMET (Enhanced and Spatial-Temporal Improvement of MODIS EvapoTranspiration algorithm) model provides continuous, spatially distributed daily ET, essential for model calibration in data-scarce environments where conventional hydrological monitoring is unavailable. The challenge of applying SWAT in arid regions without ground observations, this study [...] Read more.
The ESTIMET (Enhanced and Spatial-Temporal Improvement of MODIS EvapoTranspiration algorithm) model provides continuous, spatially distributed daily ET, essential for model calibration in data-scarce environments where conventional hydrological monitoring is unavailable. The challenge of applying SWAT in arid regions without ground observations, this study proposes a remote-sensing-based calibration approach using ESTIMET to overcome data scarcity. Daily satellite-derived evapotranspiration (ET) data to assess the performance of the Soil and Water Assessment Tool (SWAT) was used to evaluate the performance of the SWAT in a desertified watershed in Brazil, aiming to assess ESTIMET’s effectiveness in supporting SWAT calibration, quantify sediment yield, and examine the influence of land-use changes on environmental quality over 21-years period. The results highlight a distinct hydrological response in SWAT initially underestimated ET, contrasting with patterns typically observed in other semi-arid applications and demonstrating that desertified environments require distinct calibration strategies. Performance indicators showed strong agreement between observed and simulated ET (R2 = 0.94; NSE = 0.76), supporting satellite-based ET as a valuable source for improving SWAT performance in watersheds where empirical hydrometeorological data are sparse or unevenly distributed. Sediment yield was generally low to moderate, with degradation concentrated in bare-soil areas associated with deforestation. Full article
(This article belongs to the Special Issue Watershed Hydrology and Sustainable Water Environments)
Show Figures

Figure 1

20 pages, 8754 KB  
Article
Landscape Pattern Evolution in the Source Region of the Chishui River
by Yanzhao Gong, Xiaotao Huang, Jiaojiao Li, Ju Zhao, Dianji Fu and Geping Luo
Sustainability 2026, 18(2), 914; https://doi.org/10.3390/su18020914 - 15 Jan 2026
Viewed by 124
Abstract
Recognizing the evolution of landscape patterns in the Chishui River source region is essential for protecting ecosystems and sustainable growth in the Yangtze River Basin and other similar areas. However, knowledge of landscape pattern evolution within the primary channel zone remains insufficient. To [...] Read more.
Recognizing the evolution of landscape patterns in the Chishui River source region is essential for protecting ecosystems and sustainable growth in the Yangtze River Basin and other similar areas. However, knowledge of landscape pattern evolution within the primary channel zone remains insufficient. To address this gap, the current study used 2000–2020 land-use, geography, and socio-economic data, integrating landscape pattern indices, land-use transfer matrices, dynamic degree, the GeoDetector model, and the PLUS model. Results revealed that forest and cropland remained the prevailing land-use types throughout 2000–2020, comprising over 85% of the landscape. Grassland had the highest dynamic degree (1.58%), and landscape evolution during the study period was characterized by increased fragmentation, enhanced diversity, and stable dominance of major forms of land use. Anthropogenic influence on different landscape types followed the order: construction land > cropland > grassland > forest > water bodies. Land-use change in this region is a complex process governed by the interrelationships among various factors. Scenario-based predictions demonstrate pronounced variability in various land types. These findings provided a more comprehensive understanding of landscape patterns in karst river source regions, provided evidence-based support for regional planning, and offered guidance for ecological management of similar global river sources. Full article
(This article belongs to the Special Issue Global Hydrological Studies and Ecological Sustainability)
Show Figures

Figure 1

14 pages, 32961 KB  
Article
Bioclimatic and Land Use/Land Cover Factors as Determinants of Crabronidae (Hymenoptera) Community Structure in Yunnan, China
by Nawaz Haider Bashir, Muhammad Naeem, Qiang Li and Huanhuan Chen
Insects 2026, 17(1), 100; https://doi.org/10.3390/insects17010100 - 15 Jan 2026
Viewed by 131
Abstract
Crabronid wasps (Hymenoptera: Crabronidae) are ecologically important predators that provide various ecological services by regulating the arthropod populations, enhancing soil processes through nesting, serving as sensitive indicators of habitat condition, and providing pollen transfer for plants. However, as other invertebrates face biodiversity threats, [...] Read more.
Crabronid wasps (Hymenoptera: Crabronidae) are ecologically important predators that provide various ecological services by regulating the arthropod populations, enhancing soil processes through nesting, serving as sensitive indicators of habitat condition, and providing pollen transfer for plants. However, as other invertebrates face biodiversity threats, these wasps might be under threat from environmental changes, and we need to assess the biodiversity patterns of these wasps in Yunnan Province. Unfortunately, no information is currently available about the pattern and factors responsible for the assemblages of these wasps within our study region. This study provides the first province-level assessment of habitat suitability, species richness, assemblage structure, and environmental determinants for Crabronidae in Yunnan by integrating species distribution modeling (SDM), multivariate clustering, and ordination analyses. More than 50 species were studied to assess habitat suitability in Yunnan using MaxEnt. Model performance was robust (AUC > 0.7). Suitability patterns varied distinctly among regions. Species richness peaked in southern Yunnan, particularly in the counties of Jinghong, Mengla, Menghai, and Jiangcheng Hani & Yi. Land use/land cover (LULC) variables were the dominant predictors for 90% of species, whereas precipitation-related variables contributed most strongly to the remaining 10%. Ward’s hierarchical clustering grouped the 125 counties into three community assemblage zones, with Zone III comprising the most significant area. A unique species composition was found within a particular zone, and clear separation among zones based on environmental variation was supported by Principal Component Analysis (PCA), which explained more than 70% variability among zones. Furthermore, Canonical Correspondence Analysis (CCA) indicated that both LULC and climatic factors shaped community structure assemblages, with axes 1 and 2 explaining 70% of variance (p = 0.001). The most relevant key factors in each zone were precipitation variables (bio12, bio14, bio17), which were dominant in Zone I; for Zone II, temperature and vegetation variables were most important; and urban, wetland, and water variables were most important in Zone III. Full article
Show Figures

Figure 1

26 pages, 5222 KB  
Article
Identification of Potential Supplementary Cultivated Land Based on a Markov-FLUS Model and Cultivation Suitability Evaluation Under the New Occupation and Compensation Balance Policy: A Case Study of Jiangsu Province
by Yanan Liu, Kening Wu, Wei Zou, Hao Su, Xiaoliang Li, Xiao Li and Rui Shi
Land 2026, 15(1), 169; https://doi.org/10.3390/land15010169 - 15 Jan 2026
Viewed by 124
Abstract
The identification of supplementary cultivated land as a reserve resource is of great significance for ensuring implementation of the new mechanism of land occupation and compensation balance in China. Using Jiangsu Province as a case study, here, we use a “multi-period land use [...] Read more.
The identification of supplementary cultivated land as a reserve resource is of great significance for ensuring implementation of the new mechanism of land occupation and compensation balance in China. Using Jiangsu Province as a case study, here, we use a “multi-period land use change patterns–multi-scenario land use simulation–cultivation suitability evaluation–identification of supplementary cultivated land” framework to explore identification of supplementary cultivated land. A single land use dynamic index and a land use transfer matrix were used to analyze land use pattern changes in Jiangsu Province and showed that the area of cultivated land in Jiangsu Province decreased significantly, mainly by being converted into land used for buildings, and waters and conservancy facilities. A Markov-FLUS model was used to simulate and predict land use quantity and spatial distribution under four scenarios: an inertial development scenario, a cultivated land protection scenario, an economic development priority scenario, and an ecological protection priority scenario. Sixteen factor indicators were selected from the four dimensions of natural land quality, social economy, management, and the ecological condition of the land, and the degree of suitability of cultivated land in Jiangsu was evaluated by multi-factor stepwise correction. The southern and central parts of Jiangsu had higher suitability, while the northern part had lower suitability. By superimposing these data on current land use data from 2023, the plots of land that were converted to or from cultivated land were identified. Combined with the suitability degree, the potential three major categories and eight types of sources for supplementary cultivated land, totaling 29,015.92 km2, were identified, along with their distribution. A time sequence arrangement for these sources was initially set up. Corresponding management suggestions were proposed based on the adaptability of different supplementary cultivated land sources, with the aim of providing scientific references for the acquisition of supplementary cultivated land sources in the implementation of the national and local government’s farmland balance management. Full article
Show Figures

Figure 1

28 pages, 2385 KB  
Viewpoint
Conscious Food Systems: Supporting Farmers’ Well-Being and Psychological Resilience
by Julia Wright, Janus Bojesen Jensen, Charlotte Dufour, Noemi Altobelli, Dan McTiernan, Hannah Gosnell, Susan L. Prescott and Thomas Legrand
Challenges 2026, 17(1), 3; https://doi.org/10.3390/challe17010003 - 15 Jan 2026
Viewed by 160
Abstract
Amid escalating ecological degradation, social fragmentation, and rising mental health challenges—especially in rural and agricultural communities—there is an urgent need to reimagine systems that support both planetary and human flourishing. This viewpoint examines an emerging paradigm in agriculture that emphasizes the role of [...] Read more.
Amid escalating ecological degradation, social fragmentation, and rising mental health challenges—especially in rural and agricultural communities—there is an urgent need to reimagine systems that support both planetary and human flourishing. This viewpoint examines an emerging paradigm in agriculture that emphasizes the role of farmers’ inner development in fostering practices that enhance ecological health, community well-being, and a resilient food system. A key goal is to draw more academic attention to growing community calls for more holistic, relational, and spiritually grounded approaches to food systems as an important focus for ongoing research. Drawing on diverse case studies from Japan, India, and Europe, we examine how small-scale and natural farming initiatives are integrating inner development, universal human values, and ecological consciousness. These case studies were developed and/or refined through a program led by the Conscious Food Systems Alliance (CoFSA), an initiative of the United Nations Development Programme (UNDP) that seeks to integrate inner transformation with sustainable food systems change. The initiatives are intended as illustrative examples of how agriculture can transcend its conventional, anthropocentric role as a food production system to become a site for cultivating deeper self-awareness, spiritual connection, and regenerative relationships with nature. Participants in these cases reported significant shifts in mindset—from materialistic and extractive worldviews to more relational and value-driven orientations rooted in care, cooperation, and sustainability. Core practices such as mindfulness, experiential learning, and spiritual ecology helped reframe farming as a holistic process that nurtures both land and life. These exploratory case studies suggest that when farmers are supported in aligning with inner values and natural systems, they become empowered as agents of systemic change. By linking personal growth with planetary stewardship, these models offer pathways toward more integrated, life-affirming approaches to agriculture and future academic research. Full article
Show Figures

Figure 1

26 pages, 10014 KB  
Article
Dynamic Monitoring and Analysis of Mountain Excavation and Land Creation Projects in Lanzhou Using Multi-Source Remote Sensing and Machine Learning
by Quanfu Niu, Jiaojiao Lei, Qiong Fang and Lifeng Zhang
Remote Sens. 2026, 18(2), 273; https://doi.org/10.3390/rs18020273 - 14 Jan 2026
Viewed by 119
Abstract
Mountain Excavation and Land Creation Projects (MELCPs) have emerged as a critical strategy for expanding urban development space in mountainous regions facing land scarcity. Dynamic monitoring and risk management of these projects are essential for promoting sustainable urban development. This study develops an [...] Read more.
Mountain Excavation and Land Creation Projects (MELCPs) have emerged as a critical strategy for expanding urban development space in mountainous regions facing land scarcity. Dynamic monitoring and risk management of these projects are essential for promoting sustainable urban development. This study develops an integrated monitoring framework for MELCPs by combining ascending and descending Sentinel-1 SAR data, Sentinel-2 optical imagery, SRTM digital elevation models (DEM), and field survey data. The framework incorporates multi-temporal change detection, random forest classification, and time-series InSAR analysis to systematically capture the spatiotemporal evolution and subsidence mechanisms associated with MELCPs. Key findings include: (1) The use of dual-orbit SAR data significantly improves the detection accuracy of excavation areas, achieving an overall accuracy of 87.1% (Kappa = 0.85) and effectively overcoming observation limitations imposed by complex terrain. (2) By optimizing the combination of spectral, texture, topographic, and polarimetric features using a random forest algorithm, the classification accuracy of MELCPs is enhanced to 91.2% (Kappa = 0.889). This enables precise annual identification of MELCP progression from 2017 to 2022, revealing a three-stage evolution pattern: concentrated expansion, peak activity, and restricted slowdown. Specifically, the reclaimed area increased from 2.66 km2 (pre-2018) to a peak of 12.61 km2 in 2021, accounting for 34.56% of the total area of the study region, before decreasing to 2.69 km2 in 2022. (3) InSAR monitoring from 2017 to 2023 indicates that areas with only filling experience minor shallow subsidence (<50 mm), whereas subsequent building loads and underground engineering activities lead to continuous deep soil consolidation, with maximum cumulative subsidence reaching 333.8 mm. This study demonstrates that subsidence in MELCPs follows distinct spatiotemporal patterns and is predictable, offering important theoretical insights and practical tools for engineering safety management and territorial spatial optimization in mountainous cities. Full article
Show Figures

Figure 1

29 pages, 1608 KB  
Article
Geospatial Assessment of Agricultural Sustainability Using Multi-Criteria Analysis: A Case Study of the Grocka Municipality, Serbia
by Ljiljana Mihajlović, Dragan Petrović, Danijela Vukoičić, Miroljub Milinčić and Nikola Milentijević
World 2026, 7(1), 10; https://doi.org/10.3390/world7010010 - 14 Jan 2026
Viewed by 255
Abstract
Agricultural land represents a fundamental production resource and one of the key factors of ecological and economic stability in rural and peri-urban areas. In the municipality of Grocka, the impacts of urbanization, demographic decline, and changes in the agrarian production structure have led [...] Read more.
Agricultural land represents a fundamental production resource and one of the key factors of ecological and economic stability in rural and peri-urban areas. In the municipality of Grocka, the impacts of urbanization, demographic decline, and changes in the agrarian production structure have led to spatial degradation and reduced economic sustainability. To assess the current state and potential of agriculture at the settlement level, a multi-criteria analysis (MCA) integrated with Geographic Information Systems (GIS) was applied. The analysis encompassed demographic, production, environmental, and spatial indicators, normalized using the min–max scaling method and aggregated through a weighted sum. Criteria weights were defined based on a combination of literature review and expert judgment. The results reveal spatial variations in the level of sustainability and enable the identification of priority zones for agro-economic improvement, areas of moderate stability, and spaces suitable for developing sustainable agricultural models. Sensitivity testing (±20% variation in weights) confirmed the robustness of the results. The identified zones and proposed measures aim to revitalize degraded areas, preserve permanent crops, and strengthen production and institutional capacities. The applied methodological framework can serve as a tool for planning and policymaking in sustainable agricultural development, particularly in peri-urban contexts. Full article
Show Figures

Figure 1

17 pages, 2108 KB  
Article
Dynamic Monitoring of High-Rise Building Areas in Xiong’an New Area Using Temporal Change-Aware U-Net
by Junye Lv, Liwei Li and Gang Cheng
Remote Sens. 2026, 18(2), 253; https://doi.org/10.3390/rs18020253 - 13 Jan 2026
Viewed by 109
Abstract
High-rise building areas (HRBs), a key urban land-cover type defined by distinct morphological and functional characteristics, play a critical role in urban development. Their spatial distribution and temporal dynamics serve as essential indicators for quantifying urbanization and analyzing the evolution of urban spatial [...] Read more.
High-rise building areas (HRBs), a key urban land-cover type defined by distinct morphological and functional characteristics, play a critical role in urban development. Their spatial distribution and temporal dynamics serve as essential indicators for quantifying urbanization and analyzing the evolution of urban spatial structure. This study addresses the dynamic monitoring needs of HRBs by developing a temporal change detection model, TCA-Unet (Temporal Change-Aware U-Net), based on a temporal change-aware attention module. The model adopts a dual-path design, combining a temporal attention encoder and a change-aware encoder. By explicitly modeling temporal difference features, it captures change information in temporal remote sensing images. It incorporates a multi-level weight generation mechanism that dynamically balances temporal features and change-aware features through an adaptive fusion strategy. This mechanism effectively integrates temporal context and enhances the model’s ability to capture long-term temporal dependencies. Using the Xiong’an New Area and its surrounding regions as the study area, experiments were conducted using Sentinel-2 time-series imagery from 2017 to 2024. The results demonstrate that the proposed model outperforms existing approaches, achieving an overall accuracy (OA) of 90.98%, an F1 score of 82.63%, and a mean intersection over union (mIoU) of 72.22%. Overall, this study provides an effective tool for extracting HRBs for dynamic monitoring and offers valuable guidance for urban development and regulation. Full article
Show Figures

Figure 1

Back to TopTop