Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (265)

Search Parameters:
Keywords = lake water storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4589 KiB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 - 5 Aug 2025
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 336
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

23 pages, 5120 KiB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 229
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

25 pages, 7522 KiB  
Article
Quantitative Estimation of Vegetation Carbon Source/Sink and Its Response to Climate Variability and Anthropogenic Activities in Dongting Lake Wetland, China
by Mengshen Guo, Nianqing Zhou, Yi Cai, Xihua Wang, Xun Zhang, Shuaishuai Lu, Kehao Liu and Wengang Zhao
Remote Sens. 2025, 17(14), 2475; https://doi.org/10.3390/rs17142475 - 16 Jul 2025
Viewed by 308
Abstract
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the [...] Read more.
Wetlands are critical components of the global carbon cycle, yet their carbon sink dynamics under hydrological fluctuations remain insufficiently understood. This study employed the Carnegie-Ames-Stanford Approach (CASA) model to estimate the net ecosystem productivity (NEP) of the Dongting Lake wetland and explored the spatiotemporal dynamics and driving mechanisms of carbon sinks from 2000 to 2022, utilizing the Theil-Sen median trend, Mann-Kendall test, and attribution based on the differentiating equation (ADE). Results showed that (1) the annual mean spatial NEP was 50.24 g C/m2/a, which first increased and then decreased, with an overall trend of −1.5 g C/m2/a. The carbon sink was strongest in spring, declined in summer, and shifted to a carbon source in autumn and winter. (2) Climate variability and human activities contributed +2.17 and −3.73 g C/m2/a to NEP, respectively. Human activities were the primary driver of carbon sink degradation (74.30%), whereas climate change mainly promoted carbon sequestration (25.70%). However, from 2000–2011 to 2011–2022, climate change shifted from enhancing to limiting carbon sequestration, mainly due to the transition from water storage and lake reclamation to ecological restoration policies and intensified climate anomalies. (3) NEP was negatively correlated with precipitation and water level. Land use adjustments, such as forest expansion and conversion of cropland and reed to sedge, alongside maintaining growing season water levels between 24.06~26.44 m, are recommended to sustain and enhance wetland carbon sinks. Despite inherent uncertainties in model parameterization and the lack of sufficient in situ flux validation, these findings could provide valuable scientific insights for wetland carbon management and policy-making. Full article
Show Figures

Graphical abstract

20 pages, 5847 KiB  
Article
Quantifying Ecosystem Service Trade-Offs/Synergies and Their Drivers in Dongting Lake Region Using the InVEST Model
by Zheng Li, Jingfeng Hu, Silong Hou, Wenfei Zhao and Jianjun Li
Sustainability 2025, 17(13), 6072; https://doi.org/10.3390/su17136072 - 2 Jul 2025
Viewed by 334
Abstract
[Objective] To quantify key ecosystem services within the Dongting Lake region, clarify the trade-off/synergy relationships, and detect the driving factors in order to support the ecological sustainable development of the Dongting Lake region. [Methods] Using the InVEST model, taking the area around Dongting [...] Read more.
[Objective] To quantify key ecosystem services within the Dongting Lake region, clarify the trade-off/synergy relationships, and detect the driving factors in order to support the ecological sustainable development of the Dongting Lake region. [Methods] Using the InVEST model, taking the area around Dongting Lake as the study area, four ecosystem services including water yield, carbon storage, soil conservation, and habitat quality were quantitatively assessed. Interdependencies between ecosystem services were assessed using correlation analysis to quantify trade-offs/synergies, and the geodetector model was used to detect their driving factors. [Results] (1) From 2000 to 2020, the soil retention service and water yield service in the Dongting Lake area showed an increasing trend over time. The total water yield increased from 4.93 × 1010 m3 to 6.71 × 1010 m3, while the total soil retention increased from 4.46 × 109 t to 5.77 × 109 t; habitat quality and total carbon storage continued to decline, with habitat quality decreasing from 0.6906 to 0.6785 and carbon storage decreasing from 1.480 × 109 t to 1.476 × 109 t. (2) In the study area, significant synergistic effects existed between carbon storage and habitat quality, carbon storage and soil retention, carbon storage and water yield, habitat quality and soil retention, and soil retention and water yield. However, there was a significant trade-off relationship between habitat quality and water yield. (3) During the study period, ecosystem service trade-offs and synergy relationships in the Dongting Lake area were jointly influenced by natural factors and human activities. Ranked by the magnitude of driving factor influence, they were land use type, land use intensity, vegetation coverage, temperature, and nighttime light. [Conclusions] Synergies dominated the ecosystem services in the research region, and the influence of natural factors behind them was greater than that of human activities. These research conclusions offer a scientific foundation for the institutional construction of the ecological compensation mechanism in the Dongting Lake basin. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

33 pages, 27778 KiB  
Article
Integrated Adaptive Water Allocation Scenarios for Wetland Restoration: A Case Study of Lake Marmara Under Climate Change
by Mert Can Gunacti and Cem Polat Cetinkaya
Water 2025, 17(13), 1930; https://doi.org/10.3390/w17131930 - 27 Jun 2025
Viewed by 282
Abstract
Wetlands, as critical ecological systems, face increasing threats from anthropogenic pressures and climate change. This study investigates dynamic water allocation strategies for the restoration of Lake Marmara, a nationally important wetland within the Gediz River Basin of Türkiye, which has experienced complete desiccation [...] Read more.
Wetlands, as critical ecological systems, face increasing threats from anthropogenic pressures and climate change. This study investigates dynamic water allocation strategies for the restoration of Lake Marmara, a nationally important wetland within the Gediz River Basin of Türkiye, which has experienced complete desiccation in recent years. Within the scope of the PRIMA-funded “Mara-Mediterra” project, an integrated modeling approach was employed to evaluate multiple restoration scenarios using the WEAP (Water Evaluation and Planning) platform. Scenarios varied based on the initial storage capacity of Gördes Dam, irrigation demands, environmental flow priorities, and a potential water diversion investment from the Tabaklı reach. Results indicate that under current conditions, Lake Marmara’s ecological water needs can be sustained without the Tabaklı investment. However, under 2050 climate projections, scenarios lacking the Tabaklı investment or deprioritizing ecological needs consistently failed to meet the lake’s minimum water thresholds. Conversely, scenarios combining moderate dam storage levels, environmental prioritization, and Tabaklı inflow succeeded in restoring lake volumes by over 90%. These findings highlight the need for adaptive water planning that aligns with projected hydro-climatic shifts to ensure long-term wetland sustainability. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Graphical abstract

17 pages, 6551 KiB  
Article
Monitoring the Impacts of Human Activities on Groundwater Storage Changes Using an Integrated Approach of Remote Sensing and Google Earth Engine
by Sepide Aghaei Chaleshtori, Omid Ghaffari Aliabad, Ahmad Fallatah, Kamil Faisal, Masoud Shirali, Mousa Saei and Teodosio Lacava
Hydrology 2025, 12(7), 165; https://doi.org/10.3390/hydrology12070165 - 26 Jun 2025
Viewed by 561
Abstract
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. [...] Read more.
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. Although the influence of natural factors on groundwater is well-recognized, the impact of human activities, despite being a major contributor to its change, has been less explored due to the challenges in measuring such effects. To address this gap, our study employed an integrated approach using remote sensing and the Google Earth Engine (GEE) cloud-free platform to analyze the effects of various anthropogenic factors such as built-up areas, cropland, and surface water on groundwater storage in the Lake Urmia Basin (LUB), Iran. Key anthropogenic variables and groundwater data were pre-processed and analyzed in GEE for the period from 2000 to 2022. The processes linking these variables to groundwater storage were considered. Built-up area expansion often increases groundwater extraction and reduces recharge due to impervious surfaces. Cropland growth raises irrigation demand, especially in semi-arid areas like the LUB, leading to higher groundwater use. In contrast, surface water bodies can supplement water supply or enhance recharge. The results were then exported to XLSTAT software2019, and statistical analysis was conducted using the Mann–Kendall (MK) non-parametric trend test on the variables to investigate their potential relationships with groundwater storage. In this study, groundwater storage refers to variations in groundwater storage anomalies, estimated using outputs from the Global Land Data Assimilation System (GLDAS) model. Specifically, these anomalies are derived as the residual component of the terrestrial water budget, after accounting for soil moisture, snow water equivalent, and canopy water storage. The results revealed a strong negative correlation between built-up areas and groundwater storage, with a correlation coefficient of −1.00. Similarly, a notable negative correlation was found between the cropland area and groundwater storage (correlation coefficient: −0.85). Conversely, surface water availability showed a strong positive correlation with groundwater storage, with a correlation coefficient of 0.87, highlighting the direct impact of surface water reduction on groundwater storage. Furthermore, our findings demonstrated a reduction of 168.21 mm (millimeters) in groundwater storage from 2003 to 2022. GLDAS represents storage components, including groundwater storage, in units of water depth (mm) over each grid cell, employing a unit-area, mass balance approach. Although storage is conceptually a volumetric quantity, expressing it as depth allows for spatial comparison and enables conversion to volume by multiplying by the corresponding surface area. Full article
Show Figures

Figure 1

29 pages, 753 KiB  
Article
Sustainable Thermal Energy Storage Systems: A Mathematical Model of the “Waru-Waru” Agricultural Technique Used in Cold Environments
by Jorge Luis Mírez Tarrillo
Energies 2025, 18(12), 3116; https://doi.org/10.3390/en18123116 - 13 Jun 2025
Viewed by 3302
Abstract
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that [...] Read more.
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that are cultivated (a series of earth platforms surrounded by water canals) with water, using water as thermal energy storage to store energy during the day and to regulate the temperature of the soil and crop atmosphere at night. The problem is that these cultures left no evidence in written documents that have been preserved to this day indicating the mathematical models, the physics involved, and the experimental part they performed for the research, development, and innovation of the “Waru-Waru” technique. From a review of the existing literature, there is (1) bibliography that is devoted to descriptive research (about the geometry, dimensions, and shapes of the crop fields (and more based on archaeological remains that have survived to the present day) and (2) studies presenting complex mathematical models with many physical parameters measured only with recently developed instrumentation. The research objectives of this paper are as follows: (1) develop a mathematical model that uses finite differences in fluid mechanics, thermodynamics, and heat transfer to explain the experimental and theory principles of this pre-Inca/Inca technique; (2) the proposed mathematical model must be in accordance with the mathematical calculation tools available in pre-Inca/Inca cultures (yupana and quipu), which are mainly based on arithmetic operations such as addition, subtraction, and multiplication; (3) develop a mathematical model in a sequence of steps aimed at determining the best geometric form for thermal energy storage and plant cultivation and that has a simple design (easy to transmit between farmers); (4) consider the assumptions necessary for the development of the mathematical model from the point of view of research on the geometry of earth platforms and water channels and their implantation in each cultivation area; (5) transmit knowledge of the construction and maintenance of “Waru-Waru” agricultural technology to farmers who have cultivated these fields since pre-Hispanic times. The main conclusion is that, in the mathematical model developed, algebraic mathematical expressions based on addition and multiplication are obtained to predict and explain the evolution of soil and water temperatures in a specific crop field using crop field characterization parameters for which their values are experimentally determined in the crop area where a “Waru-Waru” is to be built. Therefore, the storage of thermal energy in water allows crops to survive nights with low temperatures, and indirectly, it allows the interpretation that the Inca culture possessed knowledge of mathematics (addition, subtraction, multiplication, finite differences, approximation methods, and the like), physics (fluids, thermodynamics, and heat transfer), and experimentation, with priority given to agricultural techniques (and in general, as observed in all archaeological evidence) that are in-depth, exact, practical, lasting, and easy to transmit. Understanding this sustainable energy storage technique can be useful in the current circumstances of global warming and climate change within the same growing areas and/or in similar climatic and environmental scenarios. This technique can help in reducing the use of fossil or traditional fuels and infrastructure (greenhouses) that generate heat, expanding the agricultural frontier. Full article
(This article belongs to the Special Issue Sustainable Energy, Environment and Low-Carbon Development)
Show Figures

Figure 1

24 pages, 4005 KiB  
Article
Trade-Offs and Synergies of Ecosystem Services in Terminal Lake Basins of Arid Regions Under Environmental Change: A Case Study of the Ebinur Lake Basin
by Guoqing Lv, Yonghui Wang, Xiaofei Ma, Yonglong Han, Chun Luo, Wei Yu, Jian Liu and Zhiyang Du
Land 2025, 14(6), 1240; https://doi.org/10.3390/land14061240 - 9 Jun 2025
Cited by 1 | Viewed by 462
Abstract
As essential components of arid region ecosystems, terminal lakes play a critical role in enhancing the functions of ecosystem services (ESs) and improving ecological structure. Despite the increasing degradation of ESs and landscape stability due to climate and human pressures, comprehensive assessments of [...] Read more.
As essential components of arid region ecosystems, terminal lakes play a critical role in enhancing the functions of ecosystem services (ESs) and improving ecological structure. Despite the increasing degradation of ESs and landscape stability due to climate and human pressures, comprehensive assessments of water provision, carbon storage, soil conservation, and habitat integrity in arid terminal lake regions are still lacking. Focusing on the Ebinur Lake Basin (ELB), this study employed the InVEST model to quantify ES changes from 2000 to 2020, combined with univariate regression, Pearson, and Spearman correlation analyses to explore their dynamic evolution. Landscape pattern indices calculated via Fragstats 4.2 further revealed trends in fragmentation, boundary complexity, and diversity. Results show that most ESs exhibited synergistic relationships, particularly between carbon sequestration and habitat quality (r = 0.45), observed clear trade-offs, such as between water yield and carbon sequestration (r = −0.47), underscoring the complexity of ecosystem interactions. Enhanced ES functions were associated with increased patch number, density, and shape complexity, while landscape diversity fluctuated. NDVI growth improved ES performance and reduced fragmentation, though changes in landscape metrics were largely driven by climate variability and socio-economic pressures, exacerbating fragmentation and weakening ecological stability. Overall, understanding the trade-offs and synergies among ESs in the ELB is crucial for informing sustainable development strategies. Full article
Show Figures

Figure 1

20 pages, 3135 KiB  
Article
Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland
by Lihoun Teang, Kim N. Irvine, Lloyd H. C. Chua and Muhammad Usman
Hydrology 2025, 12(6), 141; https://doi.org/10.3390/hydrology12060141 - 6 Jun 2025
Viewed by 1045
Abstract
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved [...] Read more.
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved urban resilience, sustainability, and community well-being. However, the implementation of NbS can be hindered by gaps in performance assessment. This paper introduces a physically based dynamic modeling approach to assess the performance of a nature-based storage facility designed to capture excess runoff from an urbanizing catchment (Armstrong Creek catchment) in Geelong, Australia. The study adopts a numerical modelling approach, supported by extensive field monitoring of water levels over a 2.5-year period. The model provides a decision support tool for Geelong local government in managing stormwater runoff to protect Lake Connewarre, a Ramsar-listed wetland under the Port Phillip Bay (Western Shoreline) and Bellarine Peninsula. Runoff is currently managed via a set of operating rules governing gate operations that prevents flows into the ecological sensitive downstream waterbody from December to April (drier periods in summer and most of autumn). Comparison with observed water level data at three monitoring stations for a continuous simulation period of May 2022 to October 2024 demonstrates satisfactory to excellent model performance (NSE: 0.55–0.79, R2: 0.80–0.89, ISE rating: excellent). Between 1670 × 103 m3 and 2770 × 103 m3 of runoff was intercepted by the nature-based storage facility, representing a 56–70% reduction in stormwater discharge into Lake Connewarre. Our model development underscores the importance of understanding and incorporating user interventions (gate operations and emergency pumping) from the standard operation plan to better manage catchment runoff. As revealed by the seasonal flow analysis for consecutive years, adaptive runoff management practices, capable of responding to rainfall variability, should be incorporated. Full article
Show Figures

Figure 1

27 pages, 24251 KiB  
Article
Anthropogenic and Climate-Induced Water Storage Dynamics over the Past Two Decades in the China–Mongolia Arid Region Adjacent to Altai Mountain
by Yingjie Yan, Yuan Su, Hongfei Zhou, Siyu Wang, Linlin Yao and Dashlkham Batmunkh
Remote Sens. 2025, 17(11), 1949; https://doi.org/10.3390/rs17111949 - 4 Jun 2025
Cited by 1 | Viewed by 584
Abstract
The China–Mongolia arid region adjacent to the Altai Mountain (CMA) has a sensitive ecosystem that relies heavily on both terrestrial water (TWS) and groundwater storage (GWS). However, during the 2003–2016 period, the CMA experienced significant glacier retreat, lake shrinkage, and grassland degradation. To [...] Read more.
The China–Mongolia arid region adjacent to the Altai Mountain (CMA) has a sensitive ecosystem that relies heavily on both terrestrial water (TWS) and groundwater storage (GWS). However, during the 2003–2016 period, the CMA experienced significant glacier retreat, lake shrinkage, and grassland degradation. To illuminate the TWS and GWS dynamics in the CMA and the dominant driving factors, we employed high-resolution (0.1°) GRACE (Gravity Recovery and Climate Experiment) data generated through random forest (RF) combined with residual correction. The downscaled data at a 0.1° resolution illustrate the spatial heterogeneity of TWS and GWS depletion. The highest TWS and GWS decline rates were both on the north slope of the Tianshan River Basin (NTRB) of the Junggar Basin of Northwestern China (JBNWC) (27.96 mm/yr and −32.98 mm/yr, respectively). Human impact played a primary role in TWS decreases in the JBNWC, with a relative contribution rate of 62.22% compared to the climatic contribution (37.78%). A notable shift—from climatic (2002–2010) to anthropogenic factors (2011–2020)—was observed as the primary driver of TWS decline in the Great Lakes Depression region of western Mongolia (GLDWM). To maintain ecological stability and promote sustainable regional development, effective action is urgently required to save essential TWS from further depletion. Full article
Show Figures

Figure 1

13 pages, 3247 KiB  
Article
Multiscale Water Cycle Mechanisms and Return Flow Utilization in Paddy Fields of Plain Irrigation Districts
by Jie Zhang, Yujiang Xiong, Peihua Jiang, Niannian Yuan and Fengli Liu
Agriculture 2025, 15(11), 1178; https://doi.org/10.3390/agriculture15111178 - 29 May 2025
Viewed by 349
Abstract
This study aimed to reveal the characteristics of returned water in paddy fields at different scales and the rules of its reuse in China’s Ganfu Plain Irrigation District through multiscale (field, lateral canal, main canal, small watershed) observations, thereby optimizing water resource management [...] Read more.
This study aimed to reveal the characteristics of returned water in paddy fields at different scales and the rules of its reuse in China’s Ganfu Plain Irrigation District through multiscale (field, lateral canal, main canal, small watershed) observations, thereby optimizing water resource management and improving water use efficiency. Subsequent investigations during the 2021–2022 double-cropping rice seasons revealed that the tillering stage emerged as a critical drainage period, with 49.5% and 52.2% of total drainage occurring during this phase in early and late rice, respectively. Multiscale drainage heterogeneity displayed distinct patterns, with early rice following a “decrease-increase” trend while late rice exhibited “decrease-peak-decline” dynamics. Smaller scales (field and lateral canal) produced 37.1% higher drainage than larger scales (main canal and small watershed) during the reviving stage. In contrast, post-jointing-booting stages showed 103.6% higher drainage at larger scales. Return flow utilization peaked at the field-lateral canal scales, while dynamic regulation of Fangxi Lake’s storage capacity achieved 60% reuse efficiency at the watershed scale. We propose an integrated optimization strategy combining tillering-stage irrigation/drainage control, multiscale hydraulic interception (control gates and pond weirs), and dynamic watershed storage scheduling. This framework provides theoretical and practical insights for enhancing water use efficiency and mitigating non-point source pollution in plain irrigation districts. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

17 pages, 2554 KiB  
Article
Retrieval of Dissolved Organic Carbon Storage in Plateau Lakes Based on Remote Sensing and Analysis of Driving Factors: A Case Study of Lake Dianchi
by Yufeng Yang, Wei Gao and Yuan Zhang
Remote Sens. 2025, 17(10), 1791; https://doi.org/10.3390/rs17101791 - 21 May 2025
Viewed by 408
Abstract
Dissolved organic carbon (DOC) is an essential form of carbon in lakes and has significant impact on thermal structure and carbon source-supporting food webs. Current remote sensing studies on DOC mainly focus on the retrieval of surface concentration of lakes, with limited understanding [...] Read more.
Dissolved organic carbon (DOC) is an essential form of carbon in lakes and has significant impact on thermal structure and carbon source-supporting food webs. Current remote sensing studies on DOC mainly focus on the retrieval of surface concentration of lakes, with limited understanding of three-dimensional carbon storage. This study proposes a novel vertical retrieval methodology for plateau lakes by integrating remote sensing and vertical profile analysis. Specifically, a Gaussian function-based vertical fitting model was developed to characterize DOC concentration distribution along water columns, where parameters (μ and σ) were calibrated against surface DOC concentrations retrieved from MODIS reflectance. A result-oriented storage algorithm was established by linking surface DOC concentration to DOC storage through linear relationships (R2 > 0.9), with slope and intercept functions optimized as depth-dependent equations. The mixed-layer depth (2 m) was determined through error minimization analysis of 16 vertical profiles. Applied to the eutrophic Lake Dianchi, results show significant vertical DOC variations (CV up to 101.4%) but consistent distribution patterns across profiles. Spatially, higher DOC storage occurred in central regions (80–120 g·m−2) with seasonal peaks in summer and autumn. Interannual analysis reveals wind speed and forest coverage as dominant drivers, while monthly variations correlate strongly with water temperature. This methodology advances real-time monitoring of carbon storage in deep plateau lakes, providing critical insights into lacustrine carbon cycling. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

27 pages, 2493 KiB  
Article
An Explainable Machine Learning Framework for Forecasting Lake Water Equivalent Using Satellite Data: A 20-Year Analysis of the Urmia Lake Basin
by Sara Habibi and Saeed Tasouji Hassanpour
Water 2025, 17(10), 1431; https://doi.org/10.3390/w17101431 - 9 May 2025
Viewed by 1092
Abstract
This study presents an explainable machine learning framework to forecast groundwater storage dynamics, quantified as the Lake Water Equivalent (LWE), in the Urmia Lake Basin from 2003 to 2023. Satellite-based observations (GRACE, GLDAS) and climatic variables were integrated to model LWE variability. An [...] Read more.
This study presents an explainable machine learning framework to forecast groundwater storage dynamics, quantified as the Lake Water Equivalent (LWE), in the Urmia Lake Basin from 2003 to 2023. Satellite-based observations (GRACE, GLDAS) and climatic variables were integrated to model LWE variability. An ensemble learning approach was employed, combining Ridge Regression and Random Forest enhanced through feature re-weighting based on XGBoost-derived importance scores. Model interpretability was addressed using SHapley Additive exPlanations (SHAP), offering transparent insights into the contributions of climatic drivers. Results demonstrated that the Random Forest model achieved superior performance (RMSE = 3.27; R2 = 0.89), with SHAP analysis highlighting the dominant influence of recent LWE values, temperature, and soil moisture. The proposed framework outperformed baseline models including Persistence, Standard Ridge Regression, and XGBoost in terms of both accuracy and explainability. The objectives of this study are (i) to forecast the LWE in the Urmia Lake Basin using an ensemble-based machine learning framework, (ii) to enhance predictive modeling through XGBoost-guided feature weighting, and (iii) to improve model transparency and interpretation using SHAP-based explainability techniques. By integrating ensemble learning with explainable AI, this work advances the transparent data-driven forecasting essential for sustainable groundwater management under climatic uncertainty. Full article
Show Figures

Figure 1

19 pages, 22717 KiB  
Article
Modeling Dynamics of Water Balance for Lakes in the Northwest Tibetan Plateau with Satellite-Based Observations
by Jiaheng Yan, Yanhong Wu, Yongkang Ren, Siqi Zheng, Hao Chen and Xuankai Teng
Remote Sens. 2025, 17(9), 1618; https://doi.org/10.3390/rs17091618 - 2 May 2025
Cited by 3 | Viewed by 602
Abstract
The hydrological cycle in the Tibetan Plateau is experiencing notable changes in recent decades under a changing climate. The hydrological changes, however, are not well investigated due to the limitations in the availability of ground-based observations. In this study, by incorporating satellite-based observations [...] Read more.
The hydrological cycle in the Tibetan Plateau is experiencing notable changes in recent decades under a changing climate. The hydrological changes, however, are not well investigated due to the limitations in the availability of ground-based observations. In this study, by incorporating satellite-based observations into a hydrological modeling framework, seasonal and inter-annual dynamics of water balance for lakes in the northwest Tibetan Plateau are examined systematically for the period of 1990 to 2022. Satellite-based observations, including lake water area and water level, have been used to calibrate the hydrological model and to estimate lake water storage. The hydrological model performs satisfactorily, with the Nash–Sutcliffe efficiency coefficient (NSE) exceeding 0.5 for all 15 studied lakes. It is found that inflow contributes over 70% of annual water gain for most lakes, while percolation accounts for a larger portion (>60%) of total water loss than evaporation. The studied lakes have expanded substantially, with regional average increasing rates in lake level and water storage of 0.38 m/a and 3.12 × 108 m3/a, respectively. Some lakes transitioned from shrinking to expanding around 1999, and expansion in most lakes has further accelerated since around 2012, primarily because of increased precipitation over the lake catchments, leading to greater inflow to the lakes. These findings provide important insights into understanding and predicting responses of lake water balance to climate change as well as for developing adaptative strategies. Full article
(This article belongs to the Special Issue Hydrological Modelling Based on Satellite Observations)
Show Figures

Figure 1

Back to TopTop