Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (124)

Search Parameters:
Keywords = lake water level and volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 328
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

25 pages, 10132 KiB  
Article
Water and Salt Dynamics in Cultivated, Abandoned, and Lake Systems Under Irrigation Reduction in the Hetao Irrigation District
by Lina Hao, Guoshuai Wang, Vijay P. Singh and Tingxi Liu
Agronomy 2025, 15(7), 1650; https://doi.org/10.3390/agronomy15071650 - 7 Jul 2025
Viewed by 252
Abstract
The shifting irrigation reduction in the Hetao Irrigation District and the inability to effectively discharge salts from the system have led to significant changes in salt migration patterns. Based on the integration of long-term field observations (2017–2023) with soil hydrodynamics and solute transport [...] Read more.
The shifting irrigation reduction in the Hetao Irrigation District and the inability to effectively discharge salts from the system have led to significant changes in salt migration patterns. Based on the integration of long-term field observations (2017–2023) with soil hydrodynamics and solute transport models, this study explored the impact of irrigation reduction on water and salt migration in a cropland–wasteland–lake system. The results indicated that before and after the reduction in irrigation and decline in groundwater levels, the migration rates of groundwater from croplands to wastelands and from wastelands to lakes remained relatively stable, averaging 78% and 40%. During the crop growth period, after irrigation reduction and groundwater level decline, the volume of groundwater recharging lakes from wastelands decreased by 80–120 mm, causing a water deficit in the lakes of 679–789 mm. After irrigation reduction and groundwater level decline, during the crop growth period, 1402 kg/ha of salt remained in the wasteland groundwater, and 597–861 kg/ha of salt accumulated in the cropland groundwater, exceeding previous levels, leading to salinization in the cropland and wasteland groundwater. This study provides insights relevant to managing groundwater and soil salinity in irrigation areas. Full article
Show Figures

Figure 1

33 pages, 27778 KiB  
Article
Integrated Adaptive Water Allocation Scenarios for Wetland Restoration: A Case Study of Lake Marmara Under Climate Change
by Mert Can Gunacti and Cem Polat Cetinkaya
Water 2025, 17(13), 1930; https://doi.org/10.3390/w17131930 - 27 Jun 2025
Viewed by 279
Abstract
Wetlands, as critical ecological systems, face increasing threats from anthropogenic pressures and climate change. This study investigates dynamic water allocation strategies for the restoration of Lake Marmara, a nationally important wetland within the Gediz River Basin of Türkiye, which has experienced complete desiccation [...] Read more.
Wetlands, as critical ecological systems, face increasing threats from anthropogenic pressures and climate change. This study investigates dynamic water allocation strategies for the restoration of Lake Marmara, a nationally important wetland within the Gediz River Basin of Türkiye, which has experienced complete desiccation in recent years. Within the scope of the PRIMA-funded “Mara-Mediterra” project, an integrated modeling approach was employed to evaluate multiple restoration scenarios using the WEAP (Water Evaluation and Planning) platform. Scenarios varied based on the initial storage capacity of Gördes Dam, irrigation demands, environmental flow priorities, and a potential water diversion investment from the Tabaklı reach. Results indicate that under current conditions, Lake Marmara’s ecological water needs can be sustained without the Tabaklı investment. However, under 2050 climate projections, scenarios lacking the Tabaklı investment or deprioritizing ecological needs consistently failed to meet the lake’s minimum water thresholds. Conversely, scenarios combining moderate dam storage levels, environmental prioritization, and Tabaklı inflow succeeded in restoring lake volumes by over 90%. These findings highlight the need for adaptive water planning that aligns with projected hydro-climatic shifts to ensure long-term wetland sustainability. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Graphical abstract

22 pages, 2211 KiB  
Article
Seasonality of Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part A
by Elzbieta Bialkowska-Jelinska, Philip van Beynen and Laurent Calcul
Environments 2025, 12(7), 219; https://doi.org/10.3390/environments12070219 - 27 Jun 2025
Cited by 1 | Viewed by 973
Abstract
Shallow lakes are highly vulnerable to pollution due to their small water volume. Those that receive effluent from the drainfields of onsite wastewater treatment systems (septic tanks) may contain pharmaceuticals and personal care products (PPCPs) that escaped removal during treatment. This study examined [...] Read more.
Shallow lakes are highly vulnerable to pollution due to their small water volume. Those that receive effluent from the drainfields of onsite wastewater treatment systems (septic tanks) may contain pharmaceuticals and personal care products (PPCPs) that escaped removal during treatment. This study examined the effects of seasonal rainfall variability on the assemblages and concentrations of fourteen PPCPs in two shallow lakes in West–Central Florida, USA: one surrounded by residents equipped with septic tanks and the other located within a nature preserve. Water samples were collected weekly during an 18-week interval from April to August 2021. Liquid chromatography–mass spectrometry analyses revealed the omnipresence of five PPCPs: theophylline, caffeine, cotinine, DEET, and testosterone, although acetaminophen, ibuprofen, and sulfamethoxazole were also common. Of all the PPCPs detected, theophylline, DEET, and acetaminophen concentrations were higher during the wet season in the septic tank-influenced lake, while caffeine, cotinine, and testosterone concentrations decreased. In the lake located in the nature preserve, theophylline, caffeine, and acetaminophen levels increased in the wet season. In contrast, cotinine, DEET, and testosterone levels decreased. Overall, more compounds were detected during the wet season, with highly hydrophobic PPCPs (fluoxetine, atorvastatin, and octocrylene) only present during this period. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Figure 1

29 pages, 753 KiB  
Article
Sustainable Thermal Energy Storage Systems: A Mathematical Model of the “Waru-Waru” Agricultural Technique Used in Cold Environments
by Jorge Luis Mírez Tarrillo
Energies 2025, 18(12), 3116; https://doi.org/10.3390/en18123116 - 13 Jun 2025
Viewed by 3295
Abstract
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that [...] Read more.
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that are cultivated (a series of earth platforms surrounded by water canals) with water, using water as thermal energy storage to store energy during the day and to regulate the temperature of the soil and crop atmosphere at night. The problem is that these cultures left no evidence in written documents that have been preserved to this day indicating the mathematical models, the physics involved, and the experimental part they performed for the research, development, and innovation of the “Waru-Waru” technique. From a review of the existing literature, there is (1) bibliography that is devoted to descriptive research (about the geometry, dimensions, and shapes of the crop fields (and more based on archaeological remains that have survived to the present day) and (2) studies presenting complex mathematical models with many physical parameters measured only with recently developed instrumentation. The research objectives of this paper are as follows: (1) develop a mathematical model that uses finite differences in fluid mechanics, thermodynamics, and heat transfer to explain the experimental and theory principles of this pre-Inca/Inca technique; (2) the proposed mathematical model must be in accordance with the mathematical calculation tools available in pre-Inca/Inca cultures (yupana and quipu), which are mainly based on arithmetic operations such as addition, subtraction, and multiplication; (3) develop a mathematical model in a sequence of steps aimed at determining the best geometric form for thermal energy storage and plant cultivation and that has a simple design (easy to transmit between farmers); (4) consider the assumptions necessary for the development of the mathematical model from the point of view of research on the geometry of earth platforms and water channels and their implantation in each cultivation area; (5) transmit knowledge of the construction and maintenance of “Waru-Waru” agricultural technology to farmers who have cultivated these fields since pre-Hispanic times. The main conclusion is that, in the mathematical model developed, algebraic mathematical expressions based on addition and multiplication are obtained to predict and explain the evolution of soil and water temperatures in a specific crop field using crop field characterization parameters for which their values are experimentally determined in the crop area where a “Waru-Waru” is to be built. Therefore, the storage of thermal energy in water allows crops to survive nights with low temperatures, and indirectly, it allows the interpretation that the Inca culture possessed knowledge of mathematics (addition, subtraction, multiplication, finite differences, approximation methods, and the like), physics (fluids, thermodynamics, and heat transfer), and experimentation, with priority given to agricultural techniques (and in general, as observed in all archaeological evidence) that are in-depth, exact, practical, lasting, and easy to transmit. Understanding this sustainable energy storage technique can be useful in the current circumstances of global warming and climate change within the same growing areas and/or in similar climatic and environmental scenarios. This technique can help in reducing the use of fossil or traditional fuels and infrastructure (greenhouses) that generate heat, expanding the agricultural frontier. Full article
(This article belongs to the Special Issue Sustainable Energy, Environment and Low-Carbon Development)
Show Figures

Figure 1

22 pages, 112804 KiB  
Article
Lacustrine Gravity-Flow Deposits and Their Impact on Shale Pore Structure in Freshwater Lake Basins: A Case Study of Jurassic Dongyuemiao Member, Sichuan Basin, SW China
by Qingwu Yuan, Yuqiang Jiang, Zhujiang Liu, Xiangfeng Wei and Yifan Gu
Minerals 2025, 15(5), 473; https://doi.org/10.3390/min15050473 - 30 Apr 2025
Viewed by 366
Abstract
In recent years, the successful application of gravity-flow deposit theory in major petroliferous basins in China had attracted extensive attention in the field of sedimentology and had become a key research frontier. This study utilized core, drilling, logging, and microphotograph data, along with [...] Read more.
In recent years, the successful application of gravity-flow deposit theory in major petroliferous basins in China had attracted extensive attention in the field of sedimentology and had become a key research frontier. This study utilized core, drilling, logging, and microphotograph data, along with low-temperature nitrogen adsorption and high-pressure mercury injection experiments. It discussed the characteristics of gravity-flow deposits, sedimentary microfacies, sedimentary models, and the significance of gravity-flow deposits to pore heterogeneity in shale reservoirs, focusing on the first submember of the Dongyuemiao Member (referred to as the Dong 1 Member) in the Fuling area of the Sichuan Basin. The results indicated the development of four types of mudrock in the Dong 1 Member: massive to planar laminated shell mudrock (F1), planar laminated bioclastic mudrock (F2), planar laminated silty mudrock (F3), and massive mudrock (F4). These corresponded to debris flow deposits (F1, F2), turbidite deposits (F3), and suspension deposits (F4). According to the characteristics of lithofacies combinations and sedimentary features, four sedimentary microfacies were identified: gravity-flow channel, tongue-shaped, lobate, and semi-deep lake mud. The Shell Banks were disturbed by earthquakes, tides, storms, and other activities. Silt, clay, fossil fragments, plant debris, and other materials were deposited under the influence of gravity, mixing with surrounding water to form an unbalanced and unstable fluid. When pore pressure exceeded viscous resistance, the mixed fluid became unbalanced, and gravity flow began to migrate from the slope to the center of the lake basin. A sedimentary unit of gravity-flow channel-tongue-shaped-lobate was developed in the Fuling area. The Fuling area’s gravity-flow depositional system resulted in distinct microfacies within the Dongyuemiao Member, each exhibiting characteristic lithofacies associations. Notably, lobate deposits preferentially developed lithofacies F3, which is distinguished by significantly higher clay mineral content (60.8–69.1 wt%) and elevated TOC levels (1.53–2.45 wt%). These reservoir properties demonstrate statistically significant positive correlations, with clay mineral content strongly influencing total pore volume and TOC content specifically enhancing mesopore development (2–50 nm pores). Consequently, the F3 lithofacies within lobe deposits emerges as the most prospective shale gas reservoir unit in the study area, combining optimal geochemical characteristics with favorable pore-structure attributes. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

15 pages, 2236 KiB  
Article
Developing a Multi-Objective Optimization Scheduling Method for the Yangtze to Huaihe River Water Diversion Project Considering Lake Regulation and Storage
by Xiaoming Qi, Qiang Han, Bowen Li, Xuebao Chen, Zhiyang Guo, Yuanchao Ou and Dejian Wang
Water 2025, 17(9), 1286; https://doi.org/10.3390/w17091286 - 25 Apr 2025
Viewed by 523
Abstract
Inter-basin water diversion projects have emerged as a critical solution to address water scarcity crises stemming from the uneven spatial distribution of water resources. The economic feasibility of these projects is significantly influenced by multiple factors, including water source composition, target beneficiaries, and [...] Read more.
Inter-basin water diversion projects have emerged as a critical solution to address water scarcity crises stemming from the uneven spatial distribution of water resources. The economic feasibility of these projects is significantly influenced by multiple factors, including water source composition, target beneficiaries, and the specific characteristics of diversion routes and distances. This research developed a novel multi-objective optimization framework utilizing a simulation-based optimization methodology designed to formulate efficient joint operational strategies that maximize water supply reliability while reducing operational expenditures. The practicality of this framework is validated through its implementation in the Yangtze to Huaihe River Water Diversion Project (YHWDP) in China. The results revealed that the proposed joint operation rules achieve substantial improvements in both water supply efficiency and cost-effectiveness. Specifically, the model demonstrated the capability to maintain a 95.5% water supply rate while reducing the water pumping volume to only 1.84 × 109 m3. Furthermore, comparative analyses with conventional operation rules showed that the joint operation strategy effectively utilized the runoff regulation capacity of lakes while significantly mitigating water level fluctuations. During the water diversion period, the average variance of the time series of water volume in three lakes decreased by 54.5%, thereby contributing to the preservation of ecological stability for lake flora and fauna. The findings of this research not only provided practical insights for optimizing the operational performance of the YHWDP but also established a valuable framework for developing joint operation strategies in similar long-distance water diversion projects between basins. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

19 pages, 5381 KiB  
Article
Optimal Water Level Prediction and Control of Great Lakes Based on Multi-Objective Planning and Fuzzy Control Algorithm
by Ruizhi Ouyang, Yang Wang, Qin Gao, Xinlu Li, Qihang Li and Kaiye Gao
Sustainability 2025, 17(8), 3690; https://doi.org/10.3390/su17083690 - 18 Apr 2025
Viewed by 549
Abstract
The optimal water level prediction and control of the Great Lakes is critical for balancing ecological, economic, and societal demands. This study proposes a multi-objective planning model integrated with a fuzzy control algorithm to address the conflicting interests of stakeholders and dynamic hydrological [...] Read more.
The optimal water level prediction and control of the Great Lakes is critical for balancing ecological, economic, and societal demands. This study proposes a multi-objective planning model integrated with a fuzzy control algorithm to address the conflicting interests of stakeholders and dynamic hydrological complexities. First, a network flow model is established to capture the interconnected flow dynamics among the five Great Lakes, incorporating lake volume equations derived from paraboloid-shaped bed assumptions. Multi-objective optimization aims to maximize hydropower flow while minimizing water level fluctuations, solved via a hybrid Ford–Fulkerson and simulated annealing approach. A fuzzy controller is designed to regulate dam gate openings based on water level deviations and seasonal variations, ensuring stability within ±0.6096 m of target levels. Simulations demonstrate rapid convergence (T = 5 time units) and robustness under environmental disturbances, with sensitivity analysis confirming effectiveness in stable conditions (parameter ≥ 0.2). The results highlight the framework’s capability to harmonize stakeholder needs and ecological sustainability, offering a scalable solution for large-scale hydrological systems. Full article
Show Figures

Figure 1

18 pages, 11544 KiB  
Article
Spatio-Temporal Dynamics of the Lanalhue Lake Basin in South-Central Chile
by Lien Rodríguez-López, Patricio Fuentes-Aguilera, Lisandra Bravo Alvarez, Rebeca Martínez-Retureta, Iongel Duran-Llacer, Luc Bourrel, Frederic Frappart and Roberto Urrutia
Water 2025, 17(8), 1114; https://doi.org/10.3390/w17081114 - 8 Apr 2025
Viewed by 543
Abstract
Monitoring the evolution of freshwater lakes is critical for understanding and mitigating eutrophication, a major environmental issue driven by excessive nutrient inputs, primarily nitrogen and phosphorus. This study focuses on Lake Lanalhue, where rising frequencies and intensities of algal blooms highlight significant ecological [...] Read more.
Monitoring the evolution of freshwater lakes is critical for understanding and mitigating eutrophication, a major environmental issue driven by excessive nutrient inputs, primarily nitrogen and phosphorus. This study focuses on Lake Lanalhue, where rising frequencies and intensities of algal blooms highlight significant ecological imbalances. By evaluating spatio-temporal variations in water quality and quantity parameters, meteorological conditions, and land use changes, we aim to uncover the drivers of eutrophication and their complex interactions. Nutrient concentrations, dissolved oxygen levels, and phytoplankton biomass are analyzed alongside hydrological parameters such as water level, volume, and surface area. The influence of meteorological factors, including temperature, precipitation, and wind speed, is assessed to determine their role in stratification, mixing, and nutrient cycling. Additionally, land use changes in the watershed, such as urbanization and agricultural practices, are examined to understand external nutrient inputs. This integrative approach provides a comprehensive understanding of the mechanisms driving changes in Lake Lanalhue, offering critical insights into the development of sustainable management strategies to mitigate eutrophication and its ecological and socio-economic impacts. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 4750 KiB  
Article
Impact of Three Gorges Reservoir Operation on Water Level at Jiujiang Station and Poyang Lake in the Yangtze River
by Yun Wang, Shenglian Guo, Xin Xiang, Chenglong Li and Na Li
Hydrology 2025, 12(3), 52; https://doi.org/10.3390/hydrology12030052 - 7 Mar 2025
Viewed by 710
Abstract
The variation in water level at Jiujiang Station (JJS) directly affects flow exchange between the Yangtze River and the Poyang Lake. Quantitative research on the influencing factors of water level changes at JJS is of great importance for water supply and eco-environment protection [...] Read more.
The variation in water level at Jiujiang Station (JJS) directly affects flow exchange between the Yangtze River and the Poyang Lake. Quantitative research on the influencing factors of water level changes at JJS is of great importance for water supply and eco-environment protection in the Poyang Lake region. In this study, the Mann-Kendall method was used to test the trend of water level variation, and the impacts of riverbed incision and flow volume changes on water level at JJS were macroscopically analyzed using the observed monthly flow data series from 1981 to 2021. Furthermore, Long Short-Term Memory (LSTM) neural network model was used to simulate the impacts of outflow discharge of Three Gorges Reservoir (TGR) and flow discharge of the interval basin between TGR and JJS on water level at JJS; the partial dependence plot was adopted to analyze the impact of single feature variable variation on the simulation results. The results show that, after the TGR was put into operation in 2003, the water level changes at JJS mainly occurred during the impoundment period, the annual average storage of TGR was decreased 6.9 billion m3, and the annual average runoff volume at JJS was decreased 11.5 billion m3, which resulted in the average water levels at JJS being decreased 1.74 m and 2.11 m in September and October, respectively. The annual average runoff of JJS was increased 4.5 billion m3 with TGR replenishment of 1.8 billion m3 from December to March of the following year. Impacted by riverbed incision, the water levels at JJS were decreased 0.59 m and 0.99 m in September and October and increased 0.63 m from December to March. Every additional 5000 m3/s (1000 m3/s) of TGR outflow discharge could increase 1.0 m (0.16 m) the water level at JJS in September and October (from December to March of the following year). Full article
Show Figures

Figure 1

28 pages, 10870 KiB  
Article
Assessment of the Effects and Contributions of Natural and Human Factors on the Nutrient Status of Typical Lakes and Reservoirs in the Yangtze River Basin
by Yangbo Zeng, Ziteng Wang, Qianyu Zhao, Nannan Huang, Jiayue Li, Jie Wang and Fuhong Sun
Water 2025, 17(4), 559; https://doi.org/10.3390/w17040559 - 14 Feb 2025
Cited by 1 | Viewed by 912
Abstract
This study investigated the relative contributions of natural and anthropogenic factors to the nutrient status of 33 representative lakes and reservoirs in the Yangtze River Basin. Using national water quality monitoring data, remote sensing imagery, Geographic Information System, (GIS), Integrated Valuation of Ecosystem [...] Read more.
This study investigated the relative contributions of natural and anthropogenic factors to the nutrient status of 33 representative lakes and reservoirs in the Yangtze River Basin. Using national water quality monitoring data, remote sensing imagery, Geographic Information System, (GIS), Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, and Redundancy Analysis (RDA), we analyzed the Spatiotemporal differences of total nitrogen (TN), total phosphorus (TP), the ratio of TN to TP (TN/TP), trophic level index (TLI), and habitat quality (HQ). Results revealed significant spatial heterogeneity in lake nutrient status, with upstream reservoirs exhibiting better water quality than their midstream and downstream counterparts. Over time, there is a decreasing trend in nutrient loads in lakes and reservoirs, yet the risk of eutrophication remains high. The middle and lower reaches of lakes and reservoirs face more severe eutrophication pressure. The contribution rates of natural factors and human activities to TN and TP in lakes and reservoirs are 19.1% and 35.0%, respectively. The main driving factors are livestock and poultry breeding volume, habitat quality, and urbanization, with contribution rates of 13.0%, 9.8%, and 0.2%, respectively. The contribution rates of natural factors and human activities to TN/TP and TLI of lakes and reservoirs are 19.8% and 15.5%, respectively. Actual Evapotranspiration (7.8%), habitat quality (7.3%), and hydraulic retention time (3.1%) were key drivers for the shifts of TN/TP and TLI. Management strategies should therefore control agricultural nitrogen fertilizer inputs upstream, industrial and agricultural non-point source pollution in the midstream, and enhanced wastewater treatment alongside population density and economic development control in the downstream areas. This research provides a crucial scientific basis for the ecological environment protection and sustainable utilization of water resources in the Yangtze River Basin. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, Volume III)
Show Figures

Figure 1

30 pages, 19890 KiB  
Article
The Sedimentary Characteristics and Resource Potential of a Lacustrine Shallow-Water Delta on a Hanging-Wall Ramp in a Rift Basin: A Case Study from the Paleogene of the Raoyang Sag, Bohai Bay Basin, China
by Lei Ye, Xiaomin Zhu, Nigel P. Mountney, Shuanghui Xie, Renhao Zhang and Luca Colombera
Sustainability 2025, 17(1), 208; https://doi.org/10.3390/su17010208 - 30 Dec 2024
Viewed by 1487
Abstract
The hanging-wall ramps of rift basins are prone to the accumulation of large sedimentary bodies and are potential areas for the presence of large subsurface geological reservoir volumes. This paper comprehensively utilizes data from sedimentology, seismic reflection, geochemistry, and palynology to study the [...] Read more.
The hanging-wall ramps of rift basins are prone to the accumulation of large sedimentary bodies and are potential areas for the presence of large subsurface geological reservoir volumes. This paper comprehensively utilizes data from sedimentology, seismic reflection, geochemistry, and palynology to study the paleotopography, water conditions, paleoclimate, and sediment supply of the fourth member (Mbr 4) of the Shahejie Formation in the Raoyang Sag of the Bohai Bay Basin, China. The sedimentary characteristics, evolution, and preserved stratigraphic architectures of shallow-water deltaic successions are analyzed. Multiple indicators—such as sporopollen, ostracoda, fossil algae, major elements, and trace elements—suggest that when Mbr 4 was deposited, the climate became progressively more humid, and the lake underwent deepening followed by shallowing. During rift expansion, the lake level began to rise with supplied sediment progressively filling available accommodation; sand delivery to the inner delta front was higher than in other parts of the delta, and highly active distributary channels formed a reticular drainage network on the delta plain, which was conducive to the formation of sandstone up-dip pinch-out traps. In the post-rift period, the lake water level dropped, and the rate and volume of sediment supply decreased, leading to the formation of a stable dendritic network of distributary channels. At channel mouths, sediments were easily reworked into sandsheets. The distribution of sandstone and mudstone volumes is characterized by up-dip pinch-out traps and sandstone lens traps. The network of channel body elements of the shallow-water deltaic successions is expected to act as an effective carbon dioxide storage reservoir. This study reveals the influence of multiple factors on the sedimentary characteristics, evolution, and internal network of shallow-water deltas at different stages of rift basin evolution. This knowledge helps improve resource utilization and the sustainable development of comparable subsurface successions. Full article
Show Figures

Figure 1

18 pages, 3346 KiB  
Review
The Catastrophic Water Loss of Ancient Lake Prespa: A Chronicle of a Death Foretold
by Dejan Trajkovski and Nadezda Apostolova
Hydrology 2024, 11(12), 199; https://doi.org/10.3390/hydrology11120199 - 25 Nov 2024
Cited by 1 | Viewed by 5886
Abstract
The Prespa–Ohrid lake system in the southwest Balkan region is the oldest permanent lake system in Europe and a global hotspot of biodiversity and endemism. Its smaller component, Lake Macro Prespa (or simply called Prespa), shared by North Macedonia, Albania and Greece has [...] Read more.
The Prespa–Ohrid lake system in the southwest Balkan region is the oldest permanent lake system in Europe and a global hotspot of biodiversity and endemism. Its smaller component, Lake Macro Prespa (or simply called Prespa), shared by North Macedonia, Albania and Greece has suffered a dramatic water-level fall (nearly 10 m since the 1950s). It was greater in the periods 1987–1993 and 1998–2004 and has further accelerated in the last 5 years. Analysis of satellite images (remote sensing) revealed that over the period 1984–2020 Prespa Lake lost 18.87 km2 of its surface (6.9% of its size, dropping from 273.38 km2 to 254.51 km2), with a decline in the volume of water estimated as about 54%, even reaching 56.8% in 2022. The environmental status of the lake has also been compromised and the process of its eutrophication is enhanced. The aim of this study is to summarize the current understanding of the diminishing trend in the water level and the factors that have contributed to it. The lake is highly sensitive to external impacts, including climate change, mainly restricted precipitation and increased water abstraction for irrigation. Importantly, nearly half of its outflow is through karst aquifers that feed Ohrid Lake. Of note, the hydrology and especially hydrogeology of the catchment has not been studied in sufficient detail and accurate data for the present state are missing, largely due to a lack of coordinated investigations by the three neighboring countries. However, recent estimation of the water balance of Prespa Lake, elaborated with the consideration of only the natural sources of inflow (precipitation and river runoff) and outflow (evaporation and loss of water through the karst channels) suggested a negative balance of 53 × 106 m3 annually. Our study also offers an estimated projection for the water level in the future in different climate scenarios based on linear regression models that predict its complete loss before the end of the present century. Full article
Show Figures

Figure 1

30 pages, 5364 KiB  
Article
Characterizing Chromophoric Dissolved Organic Matter Spatio-Temporal Variability in North Andean Patagonian Lakes Using Remote Sensing Information and Environmental Analysis
by Ayelén Sánchez Valdivia, Lucia G. De Stefano, Gisela Ferraro, Diamela Gianello, Anabella Ferral, Ana I. Dogliotti, Mariana Reissig, Marina Gerea, Claudia Queimaliños and Gonzalo L. Pérez
Remote Sens. 2024, 16(21), 4063; https://doi.org/10.3390/rs16214063 - 31 Oct 2024
Cited by 2 | Viewed by 1693
Abstract
Chromophoric dissolved organic matter (CDOM) is crucial in aquatic ecosystems, influencing light penetration and biogeochemical processes. This study investigates the CDOM variability in seven oligotrophic lakes of North Andean Patagonia using Landsat 8 imagery. An empirical band ratio model was calibrated and validated [...] Read more.
Chromophoric dissolved organic matter (CDOM) is crucial in aquatic ecosystems, influencing light penetration and biogeochemical processes. This study investigates the CDOM variability in seven oligotrophic lakes of North Andean Patagonia using Landsat 8 imagery. An empirical band ratio model was calibrated and validated for the estimation of CDOM concentrations in surface lake water as the absorption coefficient at 440 nm (acdom440, m−1). Of the five atmospheric corrections evaluated, the QUAC (Quick Atmospheric Correction) method demonstrated the highest accuracy for the remote estimation of CDOM. The application of separate models for deep and shallow lakes yielded superior results compared to a combined model, with R2 values of 0.76 and 0.82 and mean absolute percentage errors (MAPEs) of 14% and 22% for deep and shallow lakes, respectively. The spatio-temporal variability of CDOM was characterized over a five-year period using satellite-derived acdom440 values. CDOM concentrations varied widely, with very low values in deep lakes and moderate values in shallow lakes. Additionally, significant seasonal fluctuations were evident. Lower CDOM concentrations were observed during the summer to early autumn period, while higher concentrations were observed in the winter to spring period. A gradient boosting regression tree analysis revealed that inter-lake differences were primarily influenced by the lake perimeter to lake area ratio, mean lake depth, and watershed area to lake volume ratio. However, seasonal CDOM variation was largely influenced by Lake Nahuel Huapi water storage (a proxy for water level variability at a regional scale), followed by precipitation, air temperature, and wind. This research presents a robust method for estimating low to moderate CDOM concentrations, improving environmental monitoring of North Andean Patagonian Lake ecosystems. The results deepen the understanding of CDOM dynamics in low-impact lakes and its main environmental drivers, enhance the ability to estimate lacustrine carbon stocks on a regional scale, and help to predict the effects of climate change on this important variable. Full article
(This article belongs to the Collection Feature Papers for Section Environmental Remote Sensing)
Show Figures

Graphical abstract

18 pages, 8882 KiB  
Article
Sources Affecting Microplastic Contamination in Mountain Lakes in Tatra National Park
by Piotr Kiełtyk, Kamil Karaban, Agnieszka Poniatowska, Angelika Bryska, Tomasz Runka, Zuzanna Sambor, Piotr Radomski, Tomasz Zwijacz-Kozica and Anita Kaliszewicz
Resources 2024, 13(11), 152; https://doi.org/10.3390/resources13110152 - 25 Oct 2024
Cited by 2 | Viewed by 1635
Abstract
The global atmospheric transport of microplastics (MPs) plays a crucial role in the contamination of remote, especially higher-elevation, environments. Precipitation is considered the main source of MP pollution. Meanwhile, plastic waste generated from, for example, tourism activities can be a local source of [...] Read more.
The global atmospheric transport of microplastics (MPs) plays a crucial role in the contamination of remote, especially higher-elevation, environments. Precipitation is considered the main source of MP pollution. Meanwhile, plastic waste generated from, for example, tourism activities can be a local source of MP pollution. In this study, we specify which of the mentioned sources of MP, global or local, have a higher impact on the pollution level in the high-elevation oligotrophic lakes of Tatra National Park in Poland. Due to its unique natural value, it is listed by UNESCO as an international biosphere reserve and meets the criteria for Natura 2000 areas. We comprehensively analyzed the morphometric and anthropogenic features of 11 lakes in terms of the contamination level, color, shape, and polymer type of the MPs found in the surface waters. MP fibers were found to be present in all studied lakes, with contamination ranging from 25 to 179 items/m3. Polypropylene, polyethylene terephthalate, and natural or semi-natural cellulose fibers—black or red in color with a length of 0.2–1.0 mm—predominated, which corresponds with other studies conducted on remote mountain ecosystems. We did not find any correlation of the number of MPs with local anthropogenic pressure characteristics. In turn, the significant correlation with lake area, coastline length, lake volume, and catchment area indicated airborne sources, including global transport of MPs to the lakes with reduced water outflow. Full article
Show Figures

Figure 1

Back to TopTop