Seasonality of Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part A
Abstract
1. Introduction
2. Conceptual Model of Study
3. Materials and Methods
3.1. Study Area
3.2. Water Samples
3.3. Precipitation Data
3.4. Chemicals, Reagents, and Materials
3.5. Sample Extraction and Analysis
3.5.1. Sample Extraction
3.5.2. Liquid Chromatography–Mass Spectrometry
3.5.3. Quantification Analysis
3.5.4. Quality Assurance and Quality Control
3.6. Statistical Analysis
4. Results
4.1. Onset of Wet Season
4.2. PPCPs in RL and NL
4.3. Influence of Precipitation on PPCP Concentrations
4.4. Water Quality
5. Discussion
5.1. PPCP Concentrations
5.2. PPCP Concentrations in the Dry and Wet Seasons
5.2.1. Complications at the Source
5.2.2. Contribution of Aquifer Water
5.3. PPCP Assemblages in the Dry and Wet Seasons
5.4. PPCPs in the Residential and the Natural Lakes
5.5. Implications for Management of Shallow Lakes
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.; O’Brien, J.; Du, P.; Li, X.; Ort, C.; Mueller, J.F.; Thai, P.K. Measuring Selected PPCPs in Wastewater to Estimate the Population in Different Cities in China. Sci. Total Environ. 2016, 568, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.; Wang, Y.; Hamid, N.; Deng, S.; Li, W. Prioritizing Selected PPCPs on the Basis of Environmental and Toxicogenetic Concerns: A Toxicity Estimation to Confirmation Approach. J. Hazard. Mater. 2019, 380, 120828. [Google Scholar] [CrossRef]
- Brausch, J.M.; Connors, K.; Brooks, B.W.; Rand, G.M. Human Pharmaceuticals in the Aquatic Environment: A Review of Recent Toxicological Studies and Considerations for Toxicity Testing. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: Boston, MA, USA, 2012; pp. 1–99. [Google Scholar]
- Duong, H.T.; Kadokami, K.; Nguyen, D.T.; Trinh, H.T.; Doan, N.H.; Mizukawa, H.; Takahashi, S. Occurrence, Potential Sources, and Risk Assessment of Pharmaceuticals and Personal Care Products in Atmospheric Particulate Matter in Hanoi, Vietnam. Environ. Sci. Pollut. Res. 2023, 30, 34814–34826. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhang, P.; Wu, Z.; Zhang, S.; Wei, L.; Mi, L.; Kuester, A.; Gandrass, J.; Ebinghaus, R.; Yang, R.; et al. Legacy and Emerging Organic Contaminants in the Polar Regions. Sci. Total Environ. 2022, 835, 155376. [Google Scholar] [CrossRef]
- Arpin-Pont, L.; Martínez-Bueno, M.J.; Gomez, E.; Fenet, H. Occurrence of PPCPs in the Marine Environment: A Review. Environ. Sci. Pollut. Res. 2016, 23, 4978–4991. [Google Scholar] [CrossRef] [PubMed]
- Keerthanan, S.; Jayasinghe, C.; Biswas, J.K.; Vithanage, M. Pharmaceutical and Personal Care Products (PPCPs) in the Environment: Plant Uptake, Translocation, Bioaccumulation, and Human Health Risks. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1221–1258. [Google Scholar] [CrossRef]
- Silori, R.; Shrivastava, V.; Singh, A.; Sharma, P.; Aouad, M.; Mahlknecht, J.; Kumar, M. Global Groundwater Vulnerability for Pharmaceutical and Personal Care Products (PPCPs): The Scenario of Second Decade of 21st Century. J. Environ. Manag. 2022, 320, 115703. [Google Scholar] [CrossRef]
- Xu, J.; Wu, L.; Chang, A.C. Degradation and Adsorption of Selected Pharmaceuticals and Personal Care Products (PPCPs) in Agricultural Soils. Chemosphere 2009, 77, 1299–1305. [Google Scholar] [CrossRef]
- Wu, X.; Ernst, F.; Conkle, J.L.; Gan, J. Comparative Uptake and Translocation of Pharmaceutical and Personal Care Products (PPCPs) by Common Vegetables. Environ. Int. 2013, 60, 15–22. [Google Scholar] [CrossRef]
- Center for Sustainable Systems. U.S. Wastewater Treatment Factsheet; Pub. No. CSS04-14; Center for Sustainable Systems: Ann Arbor, MI, USA, 2024. [Google Scholar]
- Karnjanapiboonwong, A.; Suski, J.G.; Shah, A.A.; Cai, Q.; Morse, A.N.; Anderson, T.A. Occurrence of PPCPs at a Wastewater Treatment Plant and in Soil and Groundwater at a Land Application Site. Water. Air. Soil Pollut. 2011, 216, 257–273. [Google Scholar] [CrossRef]
- Boxall, A.B.A. Fate and Transport of Veterinary Medicines in the Soil Environment. In Fate of Pharmaceuticals in the Environment and in Water Treatment Systems; Aga, D.S., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 123–137. [Google Scholar]
- Aga, D.S.; Samara, F.; Dronjak, L.; Kanan, S.; Mortula, M.; Vahapoglu, L. Rising Water, Rising Risks: The Hidden Dangers of Emerging Contaminants in Climate-Intensified Storms. ACS ES&T Water 2024, 4, 2785–2788. [Google Scholar]
- Perkins, R. Septic Tanks, Lot Size and Pollution of Water Table Aquifers. J. Environ. Health 1984, 46, 298–304. [Google Scholar]
- Gao, Q.; Blum, K.M.; Gago-Ferrero, P.; Wiberg, K.; Ahrens, L.; Andersson, P.L. Impact of On-Site Wastewater Infiltration Systems on Organic Contaminants in Groundwater and Recipient Waters. Sci. Total Environ. 2019, 651, 1670–1679. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Design Manual: Onsite Wastewater Treatment and Disposal Systems; U.S. Environmental Protection Agency: Washington, DC, USA, 1980.
- Meerhoff, M.; Beklioğlu, M. Shallow Lakes and Ponds. In Limnology; Academic Press: Cambridge, MA, USA, 2024; pp. 859–892. [Google Scholar]
- Beklioğlu, M.; Meerhoff, M.; Davidson, T.A.; Ger, K.A.; Havens, K.; Moss, B. Preface: Shallow Lakes in a Fast Changing World: The 8th International Shallow Lakes Conference. Hydrobiologia 2016, 778, 9–11. [Google Scholar] [CrossRef]
- Ng, A.; Weerakoon, D.; Lim, E.; Padhye, L.P. Fate of Environmental Pollutants. Water Environ. Res. 2019, 91, 1294–1325. [Google Scholar] [CrossRef]
- Ma, R.; Wang, B.; Yin, L.; Zhang, Y.; Deng, S.; Huang, J.; Wang, Y.; Yu, G. Characterization of Pharmaceutically Active Compounds in Beijing, China: Occurrence Pattern, Spatiotemporal Distribution and Its Environmental Implication. J. Hazard. Mater. 2017, 323, 147–155. [Google Scholar] [CrossRef]
- Corada-Fernández, C.; Candela, L.; Torres-Fuentes, N.; Pintado-Herrera, M.G.; Paniw, M.; González-Mazo, E. Effects of Extreme Rainfall Events on the Distribution of Selected Emerging Contaminants in Surface and Groundwater: The Guadalete River Basin (SW, Spain). Sci. Total Environ. 2017, 605–606, 770–783. [Google Scholar] [CrossRef]
- Yu, X.; Sui, Q.; Lyu, S.; Zhao, W.; Wu, D.; Yu, G.; Barcelo, D. Rainfall Influences Occurrence of Pharmaceutical and Personal Care Products in Landfill Leachates: Evidence from Seasonal Variations and Extreme Rainfall Episodes. Environ. Sci. Technol. 2021, 55, 4822–4830. [Google Scholar] [CrossRef]
- Upchurch, S.; Scott, T.M.; Alfieri, M.C. Hydrogeology of Florida. In The Karst Systems of Florida: Understanding Karst in Geologically Young Terrain; LaMoreaux, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 93–145. [Google Scholar]
- SWFWMD NexRad RADAR Rainfall Estimates. Available online: https://edis.ifas.ufl.edu/publication/AE517 (accessed on 2 February 2022).
- Yang, Y.Y.; Toor, G.S.; Wilson, P.C.; Williams, C.F. Micropollutants in Groundwater from Septic Systems: Transformations, Transport Mechanisms, and Human Health Risk Assessment. Water Res. 2017, 123, 258–267. [Google Scholar] [CrossRef]
- Schaider, L.A.; Ackerman, J.M.; Rudel, R.A. Septic Systems as Sources of Organic Wastewater Compounds in Domestic Drinking Water Wells in a Shallow Sand and Gravel Aquifer. Sci. Total Environ. 2016, 547, 470–481. [Google Scholar] [CrossRef]
- Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T. Fate of Trace Organic Compounds during Vadose Zone Soil Treatment in an Onsite Wastewater System. Environ. Toxicol. Chem. 2010, 29, 285–293. [Google Scholar] [CrossRef]
- Katz, B.G.; Griffin, D.W.; McMahon, P.B.; Harden, H.S.; Wade, E.; Hicks, R.W.; Chanton, J.P. Fate of Effluent-Borne Contaminants beneath Septic Tank Drainfields Overlying a Karst Aquifer. J. Environ. Qual. 2010, 39, 1181. [Google Scholar] [CrossRef]
- Del Rosario, K.L.; Mitra, S.; Humphrey, C.P.; O’Driscoll, M.A. Detection of Pharmaceuticals and Other Personal Care Products in Groundwater beneath and Adjacent to Onsite Wastewater Treatment Systems in a Coastal Plain Shallow Aquifer. Sci. Total Environ. 2014, 487, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, S.R.; Weick, R.J.; Johnson, J.M.; Cahill, J.D.; Smith, S.G.; Rich, B.J. Organic Wastewater Compounds, Pharmaceuticals, and Coliphage in Ground Water Receiving Discharge from Onsite Wastewater Treatment Systems near La Pine, Oregon: Occurrence and Implications for Transport; Usgs Sir 2005-5055; U.S. Geological Survey: Reston, VA, USA, 2005; 98p.
- Gilart, N.; Marcé, R.M.; Borrull, F.; Fontanals, N. Determination of Pharmaceuticals in Wastewaters Using Solid-Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry. J. Sep. Sci. 2012, 35, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Petrie, B.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. Multi-Residue Analysis of 90 Emerging Contaminants in Liquid and Solid Environmental Matrices by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1431, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Althakafy, J.T.; Kulsing, C.; Grace, M.R.; Marriott, P.J. Liquid Chromatography—Quadrupole Orbitrap Mass Spectrometry Method for Selected Pharmaceuticals in Water Samples. J. Chromatogr. A 2017, 1515, 164–171. [Google Scholar] [CrossRef]
- Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. The Fate of Pharmaceuticals and Personal Care Products (PPCPs), Endocrine Disrupting Contaminants (EDCs), Metabolites and Illicit Drugs in a WWTW and Environmental Waters. Chemosphere 2017, 174, 437–446. [Google Scholar] [CrossRef]
- Styszko, K.; Proctor, K.; Castrignanò, E.; Kasprzyk-Hordern, B. Occurrence of Pharmaceutical Residues, Personal Care Products, Lifestyle Chemicals, Illicit Drugs and Metabolites in Wastewater and Receiving Surface Waters of Krakow Agglomeration in South Poland. Sci. Total Environ. 2021, 768, 144360. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. Validation of Analytical Procedures; Center for Drug Evaluation and Research: Silver Spring, MD, USA, 2024.
- Battaglin, W.A.; Bradley, P.M.; Iwanowicz, L.; Journey, C.A.; Walsh, H.L.; Blazer, V.S. Pharmaceuticals, Hormones, Pesticides, and Other Bioactive Contaminants in Water, Sediment, and Tissue from Rocky Mountain National Park, 2012–2013. Sci. Total Environ. 2018, 643, 651–673. [Google Scholar] [CrossRef]
- Anumol, T.; Merel, S.; Clarke, B.O.; Snyder, S.A. Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry for Rapid Analysis of Trace Organic Contaminants in Water. Chem. Cent. J. 2013, 7, 104. [Google Scholar] [CrossRef]
- Ramage, S.; Camacho-Muñoz, D.; Petrie, B. Enantioselective LC-MS/MS for Anthropogenic Markers of Septic Tank Discharge. Chemosphere 2019, 219, 191–201. [Google Scholar] [CrossRef]
- Richards, S.; Paterson, E.; Withers, P.J.A.; Stutter, M. Septic Tank Discharges as Multi-Pollutant Hotspots in Catchments. Sci. Total Environ. 2016, 542, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Hu, J.; Ong, S.L. Simultaneous Determination of PPCPs, EDCs, and Artificial Sweeteners in Environmental Water Samples Using a Single-Step SPE Coupled with HPLC-MS/MS and Isotope Dilution. Talanta 2013, 113, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, A.; Aboulfadl, K.; Viglino, L.; Broséus, R.; Sauvé, S.; Madoux-humery, A.; Weyhenmeyer, G.A.; Prévost, M. Chemosphere Evaluating Pharmaceuticals and Caffeine as Indicators of Fecal Contamination in Drinking Water Sources of the Greater Montreal Region. Chemosphere 2012, 88, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Diwan, V.; Lundborg, C.; Tamhankar, A.J. Seasonal and Temporal Variation in Release of Antibiotics in Hospital Wastewater: Estimation Using Continuous and Grab Sampling. PLoS ONE 2013, 8, e68715. [Google Scholar] [CrossRef]
- Tran, N.H.; Li, J.; Hu, J.; Ong, S.L. Occurrence and Suitability of Pharmaceuticals and Personal Care Products as Molecular Markers for Raw Wastewater Contamination in Surface Water and Groundwater. Environ. Sci. Pollut. Res. 2014, 21, 4727–4740. [Google Scholar] [CrossRef]
- Lee, C.J.; Mau, D.P.; Rasmussen, T.J. Effects of Nonpoint and Selected Point Contaminant Sources on Stream-Water Quality and Relation to Land Use in Johnson County, Northeastern Kansas, October 2002 Through June 2004; U.S. Geological Survey: Reston, VA, USA, 2005.
- Focazio, M.J.; Kolpin, D.W.; Barnes, K.K.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Barber, L.B.; Thurman, M.E. A National Reconnaissance for Pharmaceuticals and Other Organic Wastewater Contaminants in the United States—II) Untreated Drinking Water Sources. Sci. Total Environ. 2008, 402, 201–216. [Google Scholar] [CrossRef]
- Phillips, P.J.; Schubert, C.; Argue, D.; Fisher, I.; Furlong, E.T.; Foreman, W.; Gray, J.; Chalmers, A. Concentrations of Hormones, Pharmaceuticals and Other Micropollutants in Groundwater Affected by Septic Systems in New England and New York. Sci. Total Environ. 2015, 512–513, 43–54. [Google Scholar] [CrossRef]
- Azuma, T.; Arima, N.; Tsukada, A.; Hirami, S.; Matsuoka, R.; Moriwake, R.; Ishiuchi, H.; Inoyama, T.; Teranishi, Y.; Yamaoka, M.; et al. Detection of Pharmaceuticals and Phytochemicals Together with Their Metabolites in Hospital Effluents in Japan, and Their Contribution to Sewage Treatment Plant Influents. Sci. Total Environ. 2016, 548–549, 189–197. [Google Scholar] [CrossRef]
- Kleywegt, S.; Payne, M.; Ng, F.; Fletcher, T. Environmental Loadings of Active Pharmaceutical Ingredients from Manufacturing Facilities in Canada. Sci. Total Environ. 2019, 646, 257–264. [Google Scholar] [CrossRef]
- Wilschnack, M.; Cartmell, E.; Yates, K.; Petrie, B. Septic Tanks as a Pathway for Emerging Contaminants to the Aquatic Environment–Need for Alternative Rural Wastewater Treatment? Environ. Pollut. 2024, 362, 124988. [Google Scholar] [CrossRef] [PubMed]
- Sodré, F.F.; Santana, J.S.; Sampaio, T.R.; Brandão, C.C.S. Seasonal and Spatial Distribution of Caffeine, Atrazine, Atenolol and Deet in Surface and Drinking Waters from the Brazilian Federal District. J. Braz. Chem. Soc. 2018, 29, 1854–1865. [Google Scholar] [CrossRef]
- Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Review of Organic Wastewater Compound Concentrations and Removal in Onsite Wastewater Treatment Systems. Environ. Sci. Technol. 2017, 51, 7304–7317. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Toor, G.S.; Wilson, P.C.; Williams, C.F. Septic Systems as Hot-Spots of Pollutants in the Environment: Fate and Mass Balance of Micropollutants in Septic Drainfields. Sci. Total Environ. 2016, 566–567, 1535–1544. [Google Scholar] [CrossRef]
- McEachran, A.D.; Shea, D.; Nichols, E.G. Pharmaceuticals in a Temperate Forest-Water Reuse System. Sci. Total Environ. 2017, 581–582, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Hrkal, Z.; Pastuszek, F. Behaviour of PPCP Substances in a Fluvial Aquifer after Infiltration of Treated Wastewater. Appl. Sci. 2023, 13, 9348. [Google Scholar] [CrossRef]
- Dodgen, L.K.; Kelly, W.R.; Panno, S.V.; Taylor, S.J.; Armstrong, D.L.; Wiles, K.N.; Zhang, Y.; Zheng, W. Characterizing Pharmaceutical, Personal Care Product, and Hormone Contamination in a Karst Aquifer of Southwestern Illinois, USA, Using Water Quality and Stream Flow Parameters. Sci. Total Environ. 2017, 578, 281–289. [Google Scholar] [CrossRef]
- Haber, J.D.; Mayfield, G.; Loper, J.E. Sinkhole Formation at Lake Grady, Florida. In Karst Studies in West Central Florida: USF Seminar in Karst Environments; The University of South Florida and the Southwest Florida Water Management District: Tampa, FL, USA, 2003; pp. 53–64. [Google Scholar]
- Üstün-Odabaşı, S.; Maryam, B.; Özdemir, N.; Büyükgüngör, H. Occurrence and Seasonal Variations of Pharmaceuticals and Personal Care Products in Drinking Water and Wastewater Treatment Plants in Samsun, Turkey. Environ. Earth Sci. 2020, 79, 311. [Google Scholar] [CrossRef]
- Bertin, S.; Yates, K.; Petrie, B. Enantiospecific Behaviour of Chiral Drugs in Soil. Environ. Pollut. 2020, 262, 114364. [Google Scholar] [CrossRef]
- Du, R.; Duan, L.; Zhang, Q.; Wang, B.; Huang, J.; Deng, S.; Yu, G. Analysis on the Attenuation Characteristics of PPCPs in Surface Water and Their Influencing Factors Based on a Compilation of Literature Data. Water Res. 2023, 242, 120203. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging Organic Contaminants in Groundwater: A Review of Sources, Fate and Occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef]
- Dai, Y.; Zhuang, J.; Chen, X. Synergistic Effects of Unsaturated Flow and Soil Organic Matter on Retention and Transport of PPCPs in Soils. Environ. Res. 2020, 191, 110135. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Y.; Xu, N.; Pan, B.; Ni, J. Pharmaceuticals and Personal Care Products (PPCPs) in Water, Sediment and Freshwater Mollusks of the Dongting Lake Downstream the Three Gorges Dam. Chemosphere 2022, 301, 134721. [Google Scholar] [CrossRef]
- Katsikaros, A.G.; Chrysikopoulos, C.V. Occurrence and Distribution of Pharmaceuticals and Personal Care Products (PPCPs) Detected in Lakes around the World—A Review. Environ. Adv. 2021, 6, 100131. [Google Scholar] [CrossRef]
- Gonzalez-Rey, M.; Tapie, N.; Le Menach, K.; Dévier, M.H.; Budzinski, H.; Bebianno, M.J. Occurrence of Pharmaceutical Compounds and Pesticides in Aquatic Systems. Mar. Pollut. Bull. 2015, 96, 384–400. [Google Scholar] [CrossRef]
- Picó, Y.; Alvarez-Ruiz, R.; Alfarhan, A.H.; El-Sheikh, M.A.; Alshahrani, H.O.; Barceló, D. Pharmaceuticals, Pesticides, Personal Care Products and Microplastics Contamination Assessment of Al-Hassa Irrigation Network (Saudi Arabia) and Its Shallow Lakes. Sci. Total Environ. 2020, 701, 135021. [Google Scholar] [CrossRef] [PubMed]
- Kallenborn, R.; Brorström-Lundén, E.; Reiersen, L.O.; Wilson, S. Pharmaceuticals and Personal Care Products (PPCPs) in Arctic Environments: Indicator Contaminants for Assessing Local and Remote Anthropogenic Sources in a Pristine Ecosystem in Change. Environ. Sci. Pollut. Res. 2018, 25, 33001–33013. [Google Scholar] [CrossRef] [PubMed]
- Conkle, J.L.; Gan, J.; Anderson, M.A. Degradation and Sorption of Commonly Detected PPCPs in Wetland Sediments under Aerobic and Anaerobic Conditions. J. Soils Sediments 2012, 12, 1164–1173. [Google Scholar] [CrossRef]
- Ng, B.; Quinete, N.; Maldonado, S.; Lugo, K.; Purrinos, J.; Briceño, H.; Gardinali, P. Understanding the Occurrence and Distribution of Emerging Pollutants and Endocrine Disruptors in Sensitive Coastal South Florida Ecosystems. Sci. Total Environ. 2021, 757, 143720. [Google Scholar] [CrossRef]
- Edwards, Q.A.; Kulikov, S.M.; Garner-O’Neale, L.D. Caffeine in Surface and Wastewaters in Barbados, West Indies. Springerplus 2015, 4, 57. [Google Scholar] [CrossRef]
- USDA. Soil Survey of Hillsborough County, Florida; USDA: Washington, DC, USA, 1989.
- Wang, J.; Wang, S. Removal of Pharmaceuticals and Personal Care Products ( PPCPs ) from Wastewater: A Review. J. Environ. Manag. 2016, 182, 620–640. [Google Scholar] [CrossRef] [PubMed]
- aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment-Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Tong, A.Y.C.; Peake, B.M.; Braund, R. Disposal Practices for Unused Medications around the World. Environ. Int. 2011, 37, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Boxall, A.B.A. Pharmaceuticals and Personal Care Products (PPCPs): What Are the Big Questions? Environ. Health Perspect. 2012, 120, 1221–1229. [Google Scholar] [CrossRef]
- Bagnis, S.; Fitzsimons, M.F.; Snape, J.; Tappin, A.; Comber, S. Processes of Distribution of Pharmaceuticals in Surface Freshwaters: Implications for Risk Assessment. Environ. Chem. Lett. 2018, 16, 1193–1216. [Google Scholar] [CrossRef]
Compound | Log Kow | Molar Mass (gmol−1) | CAS | Molecular Formula | PPCP Class |
---|---|---|---|---|---|
Octocrylene (OCT) | 6.88 | 361.48 | 61-97-30-4 | C24H27NO2 | Sunscreen component |
Atorvastatin (ATV) | 6.36 | 558.64 | 134523-00-5 | C33H35FN2O5 | Lipid regulator |
Fluoxetine (FLX) | 4.05 | 309.33 | 54910-89-3 | C17H18F3NO | Antidepressant |
Ibuprofen (IBU) | 3.97 | 206.3 | 15687-27-1 | C13H18O2 | NSAID |
Testosterone (TST) | 3.32 | 288.43 | 58-22-0 | C19H28O2 | Hormone |
Propylparaben (PPB) | 3.04 | 180.2 | 94-13-3 | C10H12O3 | Preservative |
Carbamazepine (CBZ) | 2.45 | 236.27 | 298-46-4 | C15H12N2O | Anti-convulsant |
DEET | 2.02 | 191.27 | 134-62-3 | C12H17NO | Insect repellant |
Methylparaben (MPB) | 1.96 | 152.15 | 99-76-3 | C8H8O3 | Preservative |
Sulfamethoxazole (SMX) | 0.89 | 253.28 | 723-46-6 | C10H11N3O3S | Antibiotic |
Acetaminophen (APAP) | 0.46 | 151.16 | 103-90-2 | C8H9NO2 | NSAID |
Cotinine (COT) | 0.07 | 176.22 | 486-56-6 | C10H12N2O | Metabolite of nicotine |
Caffeine (CAF) | −0.07 | 194.19 | 58-08-2 | C8H10N4O2 | Stimulant |
Theophylline (THE) | −0.02 | 180.6 | 58-55-9 | C7H8N4O2 | Bronchodilator |
pH-RL | TDS-RL | EC-RL | T-RL | pH-NL | TDS-NL | EC-NL | T-NL | |
---|---|---|---|---|---|---|---|---|
Pearson | −0.131 | 0.021 | 0.031 | 0.151 | ||||
Sig. | 0.605 | 0.934 | 0.904 | 0.549 | ||||
Pearson | 0.631 ** | 0.185 | 0.309 | −0.288 | ||||
Sig. | 0.005 | 0.461 | 0.212 | 0.247 | ||||
Pearson | −0.055 | −0.717 ** | −0.714 ** | 0.503 * | ||||
Sig. | 0.828 | 0.001 | 0.001 | 0.033 | ||||
Pearson | 0.127 | 0.756 ** | 0.767 ** | −0.462 | ||||
Sig. | 0.614 | 0.000 | 0.000 | 0.053 | ||||
Pearson | 0.236 | 0.143 | 0.184 | −0.088 | ||||
Sig. | 0.345 | 0.572 | 0.465 | 0.729 | ||||
Pearson | −0.229 | 0.114 | 0.055 | 0.277 | ||||
Sig. | 0.378 | 0.653 | 0.829 | 0.266 | ||||
Pearson | 0.484 * | −0.291 | −0.365 | 0.159 | ||||
Sig. | 0.049 | 0.241 | 0.136 | 0.530 | ||||
Pearson | −0.066 | 0.120 | 0.093 | −0.236 | ||||
Sig. | 0.800 | 0.635 | 0.715 | 0.346 | ||||
Pearson | 0.737 ** | 0.301 | 0.363 | 0.064 | ||||
Sig. | <0.001 | 0.224 | 0.138 | 0.800 | ||||
Pearson | −0.204 | 0.349 | 0.303 | 0.046 | ||||
Sig. | 0.432 | 0.156 | 0.221 | 0.855 |
Date | Location | PPCP Concentrations (μg/L) | ||||
---|---|---|---|---|---|---|
Theophylline | Testosterone | DEET | Cotinine | Caffeine | ||
30 April 2021 | Well | 0.28 | 2.80 | 4.51 | 5.73 | 4.91 |
RL-1 | 17.70 | 0.19 | 3.52 | 8.38 | 19.68 | |
RL-2 | 53.02 | 31.94 | 3.70 | 7.8 | 51.22 | |
RL-3 | 28.81 | 1.77 | 3.70 | 8.43 | 29.13 | |
30 June 2021 | Well | 0.17 | 0.72 | 0.62 | Not detected | 0.12 |
RL-1 | 24.44 | 0.38 | 8.22 | 7.54 | 56.78 | |
RL-2 | 1.12 | 0.35 | 7.32 | 7.25 | 3.76 | |
RL-3 | 3.30 | 0.19 | 7.38 | 7.35 | 7.65 | |
13 August 2021 | Well | 0.15 | 0.36 | 1.9 | Not detected | 2.2 |
RL-1 | 7.05 | 0.70 | 13.7 | 5.27 | 9.42 | |
RL-2 | ** | ** | ** | ** | ** | |
RL-3 | 6.47 | 0.50 | 15.7 | 5.57 | 7.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bialkowska-Jelinska, E.; van Beynen, P.; Calcul, L. Seasonality of Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part A. Environments 2025, 12, 219. https://doi.org/10.3390/environments12070219
Bialkowska-Jelinska E, van Beynen P, Calcul L. Seasonality of Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part A. Environments. 2025; 12(7):219. https://doi.org/10.3390/environments12070219
Chicago/Turabian StyleBialkowska-Jelinska, Elzbieta, Philip van Beynen, and Laurent Calcul. 2025. "Seasonality of Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part A" Environments 12, no. 7: 219. https://doi.org/10.3390/environments12070219
APA StyleBialkowska-Jelinska, E., van Beynen, P., & Calcul, L. (2025). Seasonality of Pharmaceuticals and Personal Care Products in Shallow Lakes, Florida, USA—Part A. Environments, 12(7), 219. https://doi.org/10.3390/environments12070219