Himalayan Mushrooms as a Natural Source of Ergosterol and Vitamin D2: A Review of Nutraceutical and Functional Food Perspectives
Abstract
1. Introduction
2. Literature Search Methodology
3. Study of Mushrooms in the Himalayas
3.1. Importance of Himalayan Mushrooms
3.2. Ecological Significance
3.3. Diversity of Wild Edible Macrofungi from the Himalayas
4. Ergosterol Biosynthesis in Mushrooms
4.1. Egrostrol Structure and Function
4.2. Biosynthesis of Ergosterol
4.3. Physiological Role of Ergosterol in Fungal Cell Membranes
4.4. Influence of Environmental Factors on Ergosterol Production
5. Ergosterol and Vitamin D2 Conversion
5.1. Ergosterol and Vitamin D2 Contents of the Mushrooms
Mushroom Species | Mode of Production | Ergosterol (mg/g) | Vitamin-D2 (µg/g) | Reference |
---|---|---|---|---|
Agaricus bisporus | Cultivated | 0.532–0.598 | 0.07–0.23 | [127] |
Flammulina veluptipes | Cultivated | 0.299–0.446 | 0.04–0.40 | |
Lentinus edodes | Cultivated | 0.744–1.07 | 0.03–1.15 | |
Grifola frondosa | Cultivated | 0.281–1.06 | 0.08–0.12 | |
Pleurotus ostreatus | Cultivated | 0.567–0.773 | 0.07–2.59 | |
Agaricus bisporus | Cultivated | 0.533–0.685 | 0.03–0.08 | |
Agaricus bisporus | Cultivated | 0.539–0.681 | 0.05–0.77 | |
Agaricus bisporus | Cultivated, UV-treated | 0.422–0.606 | 3.36–20.9 | |
Cantharellus sp. | Cultivated | 0.463–0.677 | 2.18–8.41 | |
Morchella sp. | Cultivated | 0.207–0.326 | 4.39–6.26 | |
Agaricus subrufescens | Cultivated | 1.66 | 11.43 | [123] |
Agrocybe aegirit | Cultivated | 3.49 | 13.75 | |
Armillaria mellea | Cultivated | 1.92 | 14.78 | |
Auricularia auricula | Cultivated | 3.01 | 11.06 | |
Boletus aereus | Cultivated | 0.64 | 15.46 | |
Boletus aereus | Wild growing | 4.69 | 14.94 | |
Boletus luridus | Cultivated | 4.15 | 15.91 | |
Boletus pinophilus | Cultivated | 2.17 | 23.68 | |
Cantharellus cibarius | Wild growing | 3.03 | 20.61 | |
Chroogomphis rutillus | Wild growing | 1.55 | 10.34 | |
Collybia albuminosa | Wild growing | 3.06 | 21.92 | |
Coprinus comatus | Cultivated | 1.13 | 15.79 | |
Cordyceps militaris | Cultivated | 1.43 | 7.67 | |
Ganoderma lucidum | Cultivated | 1.93 | 14.43 | |
Griflola frondosa | Cultivated | 1.64 | 15.95 | |
Hellinus igniarius | Wild growing | 1.03 | 15.69 | |
Hericium erinaceus | Cultivated | 0.023 | 11.32 | |
Hohenbuehelia serotina | Cultivated | 2.77 | 24.1 | |
Hypsizygus marmoreus | Cultivated | 1.58 | 25.02 | |
Pleurotus citrinopileatus | Wild growing | 2.17 | 12.67 | |
Lentinus edodes | Cultivated, processed | 3.06 | 24.73 | |
Lentinus edodes | Cultivated | 0.93 | 17.16 | |
Morehella esculenta | Wild growing | 0.27 | 12.7 | |
Phallus indusiatus | Cultivated | 1.5 | 15.43 | |
Pholiota namek | Cultivated | 2.3 | 19.52 | |
Poria cocos | Cultivated | 2.24 | 14.51 | |
Ramaria botrytoides | Wild growing | 1.38 | 24.05 | |
Russula Virescens | Cultivated | 1.1 | 15.08 | |
Suillus bovinus | Cultivated | 2 | 24.63 | |
Tremella fuciformis | Cultivated | 0.81 | 12.55 | |
Tremella mesentarica | Wild growing | 1.13 | 17.71 | |
Tricholoma matsutake | Wild growing | 3.16 | 21.6 | |
Tricholoma mongolicum | Cultivated | 2.75 | 24.37 | |
Tuber melanosporum | Wild growing | 1.08 | 15.35 | |
Volvariella volvacea | Cultivated | 2.03 | 2.03 | |
Pleurotus ostreatus | Cultivated, UV-C treated | 1.41 | 67 | |
Shaggy ink cap | Cultivated, UV-C treated | 2.29 | 229.7 | |
Shiitake | Cultivated | 0.0605 | - | [128] |
Enoki | Cultivated | 0.0068 | - | |
Button | Cultivated | 0.078 | - | |
Oyster | Cultivated | 0.044 | - | |
Abalone | Cultivated | 0.0435 | - | |
A. arvensis (Mycelia M7400) | Cultivated | 0.0268 | - | [129] |
A. bisporus (white) (Amycel 2600) | Cultivated | 0.217 | - | |
A. bisporus (brown) (Hollander Spawn C9) | Cultivated | 0.264 | - | |
A. bisporus (white) (Sylvan 767) | Cultivated | 0.095 | - | |
A. bisporus (white) (Italspawn F599) | Cultivated | 0.04 | - | |
A. bisporus (white) (Kanmycel 3-1) | Cultivated | 0.361 | - | |
A. bisporus (white) (Kanmycel K2) | Cultivated | 0.184 | - | |
A. bisporus (white) (Sylvan A15) | Cultivated | 0.011 | - | |
A. brasiliensis | Cultivated | 0.06 | - | |
A. bitorquis | Wild growing | 0.355 | - | |
A. silvaticus | Wild growing | 0.458 | - | |
A. campestris | Wild growing | 0.424 | - | |
A. bisporus | Soil growing | 0.246 | - | |
C. cibarius | Soil growing | 0.017 | - | |
C. gigantea | Soil growing | 0.159 | - | [130] |
L. fumosum | Soil growing | 0.15 | - | |
L. gilva | Soil growing | 0.145 | - | |
L. scabrum | Soil growing | 0.133 | - | |
M. esculenta | Soil growing | 0.122 | - | |
M. procera | Soil growing | 0.168 | - | |
S. crispa | Soil growing | 0.007 | - | |
S. bovinus | Soil growing | 0.082 | - | |
T. equestre | Wood growing | 0.107 | - | |
A. mellea | Wood growing | 0.113 | - | |
A. auricula-judae | Wood growing | 0.11 | - | |
F. hepatica | Wood growing | 0.237 | - | |
G. frondosa | Wood growing | 0.079 | - | |
L. sulphureus | Wood growing | 0.54 | - | |
P. squamosus | Wood growing | 0.211 | - | |
Lentinula edodes (Shiitake) | Cultivated | 5.158 | - | |
Lentinula edodes (chuje 2) | Cultivated | 4.718 | - | |
Pleurotus pulmonarius (Santali) | Cultivated | 4.337 | - | [131] |
Flammulina velutipes (Megumi’ Enoki) | Cultivated | 2.656 | - | |
Hericium erinaceus (Nolu) | Cultivated | 3.86 | - | |
Auricularia polytricha (Wood ear) | Cultivated | 0.82 | - | |
Agaricus bisporus | Cultivated | 7.762 | - | |
Pleurotus eryngii | Cultivated | 3.052 | - | |
Pleurotus eryngii var. ferulae | Cultivated | 2.29 | - | |
Hypsizigus marmoreus (Haemi) | Cultivated | 4.27 | - | |
Hypsizigus marmoreus (Baegman 1) | Cultivated | 1.51 | - | |
Pleurotus ostratus (Jacq.) Kummer (Konji 7) | Cultivated | 6.26 | - | |
Pleurotus ostratus (Jacq.) Kummer (Sunjung) | Cultivated | 5.37 | - | |
Pleurotus ostratus (Jacq.) Kummer (Baekseon) | Cultivated | 7.624 | - | |
Agaricus bisporus (white) | Cultivated | 6.54 | - | |
A. bisporus (brown) | Cultivated | 6.02 | - | |
Pleurotus ostreatus | Cultivated | 6.74 | - | [132] |
Lentinus edodes | Cultivated | 6.79 | - | |
Chantarellus cibarius | Wild growing | 3.04 | 0.84 | |
Chantarellus tubaeformis | Wild growing | 3.77 | 1.94 | |
Boletus edulis | Wild growing | 4.89 | 0.047 | |
Lactarius trivialis | Wild growing | 2.96 | 0.29 | |
Cantharellus tubaeformis | Wild growing | 0.168 | 0.211 | |
Cantharellus cibarius | Wild growing | 0.24 | 0.1 | |
Boletus edulis | Wild growing | 1.922 | 0.58 | [133] |
Agaricus bisporus (white) | Dark cultivated | 0.44 | 0.006 | |
Agaricus bisporus (brown) | Dark cultivated | 0.39 | 0.003 | |
Agaricus bisporus (Portabella) | Dark cultivated | 0.56 | 0.008 | |
Lentinus edodes | Dark cultivated | 1.07 | 0.012 | |
Pleurotus ostreatus | Dark cultivated | 0.607 | 0.007 | |
Cantharellus cibarius | Canned mushrooms | 0.1 | 0.12 | |
Agaricus bisporus (white) | Canned mushrooms | 0.13 | 0.006 | |
Cantharellus tubaeformis | Dark cultivated, UV-C treated | 0.57 | 14.03 | |
Agaricus bisporus (white) | Wild growing, UV-C treated | 4.53 | 10.14 |
5.2. Factors Affecting Ergosterol and Vitamin D2 Contents
6. Impact of Himalayan Environmental Factors on Ergosterol Content
6.1. Role of Altitude, UV Exposure, and Soil Composition in Ergosterol Biosynthesis
6.2. Comparison of Ergosterol Levels in High-Altitude vs. Low-Altitude Mushrooms
7. Nutraceutical and Health Benefits of Ergosterol
7.1. Nutraceutical Properties
7.2. Antioxidant and Anti-Inflammatory Properties of Ergosterol
7.3. Potential Pharmacological Applications
7.4. Safety, Dosage, and Bioavailability Considerations of Ergosterol and Vitamin D2
8. Sustainable Cultivation of Himalayan Mushrooms
8.1. Current Status of Mushroom Cultivation in the Himalayan Region
8.2. Progress in Cultivation Methodologies for High Ergosterol-Yielding Mushrooms
8.3. Economic and Ecological Benefits of Sustainable Practices
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, D.; Pandey, M. Altitudinal gradient and Himalayan vegetation in changing climate: A short overview. Dev. Environ. Sci. 2024, 16, 539–557. [Google Scholar]
- Yadav, R.R.; Negi, P.S.; Singh, J. Climate change and plant biodiversity in Himalaya, India. Proc. Indian Natl. Sci. Acad. 2021, 87, 234–259. [Google Scholar] [CrossRef]
- Kaul, S.; Choudhary, M.; Gupta, S.; Agrawal, D.C.; Dhar, M.K. Diversity and Medicinal Value of Mushrooms from the Himalayan Region, India; Agrawal, D., Dhanasekaran, M., Eds.; Springer: Singapore, 2019; pp. 371–389. [Google Scholar]
- Hussain, S.; Sher, H.; Ullah, Z.; Elshikh, M.S.; Al Farraj, D.A.; Ali, A.; Abbasi, A.M. Traditional uses of wild edible mushrooms among the local communities of Swat, Pakistan. Foods 2023, 12, 1705. [Google Scholar] [CrossRef]
- Kumari, B.; Kamal, S.; Singh, R.; Sharma, V.P.; Sanspal, V.; Chand, G. Traditional knowledge of the wild edible mushrooms of Himachal Pradesh. Stud. Fungi 2022, 7, 1–5. [Google Scholar] [CrossRef]
- Ullah, T.S.; Firdous, S.S.; Shier, W.T.; Hussain, J.; Shaheen, H.; Usman, M.; Akram, M.; Khalid, A.N. Diversity and ethnomycological importance of mushrooms from Western Himalayas, Kashmir. J. Ethnobiol. Ethnomed. 2022, 18, 32. [Google Scholar] [CrossRef]
- Lu, H.; Lou, H.; Hu, J.; Liu, Z.; Chen, Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2333–2356. [Google Scholar] [CrossRef]
- Mueller, G.M.; Schmit, J.P.; Leacock, P.R.; Buyck, B.; Cifuentes, J.; Desjardin, D.E.; Halling, R.E.; Hjortstam, K.; Iturriaga, T.; Larsson, K.-H. Global diversity and distribution of macrofungi. Biodivers. Conserv. 2007, 16, 37–48. [Google Scholar] [CrossRef]
- Li, H.; Tian, Y.; Menolli, N., Jr.; Ye, L.; Karunarathna, S.C.; Perez-Moreno, J.; Rahman, M.M.; Rashid, M.H.; Phengsintham, P.; Rizal, L.; et al. Reviewing the world’s edible mushroom species: A new evidence-based classification system. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1982–2014. [Google Scholar] [CrossRef]
- Niego, A.G.; Rapior, S.; Thongklang, N.; Raspé, O.; Jaidee, W.; Lumyong, S.; Hyde, K.D. Macrofungi as a nutraceutical source: Promising bioactive compounds and market value. J. Fungi 2021, 7, 397. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abdalla, N.; Badgar, K.; Llanaj, X.; Törős, G.; Hajdú, P.; Eid, Y.; Prokisch, J. Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. Sustainability 2022, 14, 30. [Google Scholar] [CrossRef]
- Fongnzossie, E.F.; Nyangono, C.F.B.; Biwole, A.B.; Ebai, P.N.B.; Ndifongwa, N.B.; Motove, J.; Dibong, S.D. Wild edible plants and mushrooms of the Bamenda Highlands in Cameroon: Ethnobotanical assessment and potentials for enhancing food security. J. Ethnobiol. Ethnomedicine 2020, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Atri, N.S.; Sharma, Y.P.; Kumar, S.; Mridu. Wild Edible Mushrooms of North West Himalaya: Their Nutritional, Nutraceutical, and Sociobiological Aspects. In Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications: Volume 2. Soil & Agroecosystems; Satyanarayana, T., Das, S.K., Johri, B.N., Eds.; Springer: Singapore, 2019; pp. 533–563. [Google Scholar]
- Valverde, M.E.; Hernandez-Perez, T.; Paredes-Lopez, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.M.H.; Kubra, K.; Ahmed, S.R. Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, R.W.; Macharia, J.M.; Wagara, I.N.; Bence, R.L. The antioxidant potential of different edible and medicinal mushrooms. Biomed. Pharmacother. 2022, 147, 112621. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Martins, A.; Morales, P.; Fernandez-Ruiz, V.; Glamoclija, J.; Sokovic, M.; Ferreira, I.C. Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT-Food Sci. Technol. 2015, 63, 799–806. [Google Scholar] [CrossRef]
- Wong, K.-H.; Lai, C.K.; Cheung, P.C. Immunomodulatory activities of mushroom sclerotial polysaccharides. Food Hydrocoll. 2011, 25, 150–158. [Google Scholar] [CrossRef]
- Elhusseiny, S.M.; El-Mahdy, T.S.; Elleboudy, N.S.; Farag, M.M.S.; Aboshanab, K.M.; Yassien, M.A. Immunomodulatory activity of extracts from five edible basidiomycetes mushrooms in Wistar albino rats. Sci. Rep. 2022, 12, 12423. [Google Scholar] [CrossRef]
- Dixon, A.; Elyaguov, J.; Choudhury, M.; Konno, S. Anticancer Effect of Medicinal Mushroom Extract on Renal Cell Carcinoma: Alternative Therapeutic Implication. World J. Nephrol. Urol. 2022, 11, 1–9. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, J.; Zeng, Y.; Zhu, J.; Wang, S.; Huang, D.; Cao, C. Polysaccharide NAP-3 Synergistically Enhances the Efficiency of Metformin in Type 2 Diabetes via Bile Acid/GLP-1 Axis through Gut Microbiota Remodeling. J. Agric. Food Chem. 2024, 72, 21077–21088. [Google Scholar] [CrossRef]
- Kumar, K.; Mehra, R.; Guine, R.P.F.; Lima, M.J.; Kumar, N.; Kaushik, R.; Ahmed, N.; Yadav, A.N.; Kumar, H. Edible Mushrooms: A Comprehensive Review on Bioactive Compounds with Health Benefits and Processing Aspects. Foods 2021, 10, 2996. [Google Scholar] [CrossRef]
- Elkhateeb, W.A.; Daba, G.M.; Thomas, P.W.; Wen, T.-C. Medicinal mushrooms as a new source of natural therapeutic bioactive compounds. Egypt. Pharm. J. 2019, 18, 88–101. [Google Scholar]
- Singh, A.; Saini, R.K.; Kumar, A.; Chawla, P.; Kaushik, R. Mushrooms as Nutritional Powerhouses: A Review of Their Bioactive Compounds, Health Benefits, and Value-Added Products. Foods 2025, 14, 741. [Google Scholar] [CrossRef] [PubMed]
- Choy, H.L.; Gaylord, E.A.; Doering, T.L.J.M. Ergosterol distribution controls surface structure formation and fungal pathogenicity. mBio 2023, 14, e01353-23. [Google Scholar] [CrossRef] [PubMed]
- Eliaš, D.; Tóth Hervay, N.; Gbelská, Y. Ergosterol Biosynthesis and Regulation Impact the Antifungal Resistance and Virulence of Candida spp. Stresses 2024, 4, 641–662. [Google Scholar] [CrossRef]
- Dupont, S.; Fleurat-Lessard, P.; Cruz, R.G.; Lafarge, C.; Grangeteau, C.; Yahou, F.; Gerbeau-Pissot, P.; Abrahao Junior, O.; Gervais, P.; Simon-Plas, F.; et al. Antioxidant Properties of Ergosterol and Its Role in Yeast Resistance to Oxidation. Antioxidants 2021, 10, 1024. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Li, Y.; Zhou, T.; Xu, D.-P.; Zhang, P.; Li, S.; Li, H.-B. Bioactivities and health benefits of mushrooms mainly from China. Molecules 2016, 21, 938. [Google Scholar] [CrossRef]
- Sommer, K.; Krauß, S.; Vetter, W. Differentiation of European and Chinese Truffle (Tuber sp.) Species by Means of Sterol Fingerprints. J. Agric. Food Chem. 2020, 68, 14393–14401. [Google Scholar] [CrossRef]
- Bhambri, A.; Srivastava, M.; Mahale, V.G.; Mahale, S.; Karn, S.K. Mushrooms as potential sources of active metabolites and medicines. Front. Microbiol. 2022, 13, 837266. [Google Scholar] [CrossRef]
- Hammann, S.; Lehnert, K.; Vetter, W. Esterified sterols and their contribution to the total sterols in edible mushrooms. J. Food Compos. Anal. 2016, 54, 48–54. [Google Scholar] [CrossRef]
- Sommer, K.; Hillinger, M.; Eigenmann, A.; Vetter, W. Characterization of various isomeric photoproducts of ergosterol and vitamin D2 generated by UV irradiation. Eur. Food Res. Technol. 2023, 249, 713–726. [Google Scholar] [CrossRef]
- Sun, Y.; Nzekoue, F.K.; Vittori, S.; Sagratini, G.; Caprioli, G. Conversion of ergosterol into vitamin D2 and other photoisomers in Agaricus bisporus mushrooms under UV-C irradiation. Food Biosci. 2022, 50, 102143. [Google Scholar] [CrossRef]
- Xu, Z.; Meenu, M.; Xu, B. Effects of UV-C treatment and ultrafine-grinding on the biotransformation of ergosterol to vitamin D2, physiochemical properties, and antioxidant properties of shiitake and Jew’s ear. Food Chem. 2020, 309, 125738. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Cell Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef]
- Kumar, S.S.; Wani, O.A.; Mir, S.A.; Babu, S.; Sharma, V.; Chesti, M.U.H.; Baba, Z.A.; Sofi, P.A.; Wani, F.J.; Dar, S.R. Soil carbon dynamics in the temperate Himalayas: Impact of land use management. Front. Environ. Sci. 2022, 10, 1009660. [Google Scholar] [CrossRef]
- Barnes, P.W.; Robson, T.M.; Zepp, R.G.; Bornman, J.F.; Jansen, M.A.K.; Ossola, R.; Wang, Q.W.; Robinson, S.A.; Foereid, B.; Klekociuk, A.R.; et al. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem. Photobiol. Sci. 2023, 22, 1049–1091. [Google Scholar] [CrossRef] [PubMed]
- Karan, P.P. Geographic Regions of the Himalayas; Namgyal Institute of Tibetology: Gangtok, India, 1966; Volume 3, pp. 5–25. [Google Scholar]
- Wani, S.A.; Mugal, M.A.; Dar, F.A.; Reddy, C.S.; Rashid, I.; Khuroo, A.A. Biodiversity data synthesis on trees of Indian Himalayan Region: Policy and management implications. Glob. Ecol. Conserv. 2023, 48, e02698. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Richard, G.; Izah, S.C.; Alimba, C.G.; Wangboje, O.M. Environmental Roles of Edible Mushrooms. In Bioactive Compounds in Edible Mushrooms: Sustainability and Health Applications; Izah, S.C., Ogwu, M.C., Akram, M., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 1–24. [Google Scholar]
- Sharma, R. Ectomycorrhizal mushrooms: Their diversity, ecology and practical applications. In Mycorrhiza-Function, Diversity, State of the Art; Varma, A., Prasad, R., Tuteja, N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 99–131. [Google Scholar]
- Sevanto, S.; Gehring, C.A.; Ryan, M.G.; Patterson, A.; Losko, A.S.; Vogel, S.C.; Carter, K.R.; Dickman, L.T.; Espy, M.A.; Kuske, C.R. Benefits of symbiotic ectomycorrhizal fungi to plant water relations depend on plant genotype in pinyon pine. Sci. Rep. 2023, 13, 14424. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Gui, H.; Yang, S.; Yang, X.; Shi, L. Fungal Interactions Matter: Tricholoma matsutake Domination Affect Fungal Diversity and Function in Mountain Forest Soils. Biology 2021, 10, 1051. [Google Scholar] [CrossRef]
- Sharma, A.; Bhardwaj, G.; Nayik, G.A. Edible and Medicinal Mushrooms of the Himalayas: Climate Change, Critically Endangered Species, and the Call for Sustainable Development; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Chang, S.T.; Wasser, S.P. The Cultivation and Environmental Impact of Mushrooms. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Pradhan, P.; Dutta, A.K.; Paloi, S.; Roy, A.; Acharya, K. Diversity and distribution of macrofungi in the Eastern Himalayan ecosystem. EurAsian J. Biosci. 2016, 10, 1–12. [Google Scholar]
- Sinha, S.; Badola, H.K.; Chhetri, B.; Gaira, K.S.; Lepcha, J.; Dhyani, P.P. Effect of altitude and climate in shaping the forest compositions of Singalila National Park in Khangchendzonga Landscape, Eastern Himalaya, India. J. Asia-Pac. Biodivers. 2018, 11, 267–275. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Zhang, X. Cultivation, nutritional value, bioactive compounds of morels, and their health benefits: A systematic review. Front. Nutr. 2023, 10, 1159029. [Google Scholar] [CrossRef]
- Wurtz, T.; Wiita, A.L. The Morel Mushroom Industry in Alaska: Current Status and Potential; Institute of Social and Economic Research, University of Alaska Anchorage: Anchorage, AK, USA, 2004. [Google Scholar]
- Winkler, D. Caterpillar fungus (Ophiocordyceps sinensis) production and sustainability on the Tibetan Plateau and in the Himalayas. Asian Med. 2009, 5, 291–316. [Google Scholar] [CrossRef]
- Shresthaa, U.B.; Bawa, K.S. Trade, harvest, and conservation of caterpillar fungus (Ophiocordyceps sinensis) in the Himalayas. Biol. Conserv. 2013, 159, 514–520. [Google Scholar] [CrossRef]
- Agboola, O.O.; Sithole, S.C.; Mugivhisa, L.L.; Amoo, S.O.; Olowoyo, J.O. Growth, nutritional and antioxidant properties of Agaricus bisporus (crimini and white) mushrooms harvested from soils collected around mining areas in South Africa. Meas. Food 2023, 9, 100078. [Google Scholar] [CrossRef]
- Kumar, A.; Devi, R.; Dhalaria, R.; Tapwal, A.; Verma, R.; Rashid, S.; Elossaily, G.M.; Khan, K.A.; Chen, K.T.; Verma, T. Nutritional, Nutraceutical, and Medicinal Potential of Cantharellus cibarius Fr.: A Comprehensive Review. Food Sci. Nutr. 2025, 13, e4641. [Google Scholar] [CrossRef]
- Aoki, W.; Bergius, N.; Kozlan, S.; Fukuzawa, F.; Okuda, H.; Murata, H.; Ishida, T.A.; Vaario, L.M.; Kobayashi, H.; Kalmis, E.; et al. New findings on the fungal species Tricholoma matsutake from Ukraine, and revision of its taxonomy and biogeography based on multilocus phylogenetic analyses. Mycoscience 2022, 63, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, F.; Zhang, C.; Li, S. Tricholoma matsutake: An edible mycorrhizal mushroom of high socioeconomic relevance in China. Rev. Mex. Micol. 2017, 46, 55–61. [Google Scholar]
- Sujata, W.; Devi, S.N.; Mandal, S.C. Phytochemicals and Investigations on Traditionally Used Medicinal Mushrooms; Springer: Singapore; Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University: Kolkata, India, 2021; pp. 965–984. [Google Scholar]
- Wu, Z.-W.; Zhao, X.-F.; Quan, C.-X.; Liu, X.-C.; Tao, X.-Y.; Li, Y.-J.; Peng, X.-R.; Qiu, M.-H. Structure–function insights of natural Ganoderma polysaccharides: Advances in biosynthesis and functional food applications. Nat. Prod. Bioprospecting 2025, 15, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Krishnendu, A.; Kanad, D.; Soumitra, P.; Arun Kumar, D.; Manoj Emanuel, H.; Somanjana, K.; Arvind, P. Exploring a novel edible mushroom Ramaria subalpina: Chemical characterization and Antioxidant activity. Pharmacogn. J. 2017, 9, 30–34. [Google Scholar]
- Roy Das, A.; Saha, A.; Das, P. Proximate composition and antimicrobial activity of three wild edible mushrooms consumed by ethnic inhabitants of Tripura in northeast India. Stud. Fungi 2017, 2, 17–25. [Google Scholar] [CrossRef]
- Vishwakarma, M.; Bhatt, R.; Joshi, S. Macrofungal diversity in moist temperate forests of Garhwal Himalaya. Indian J. Sci. Technol. 2012, 5, 1928–1932. [Google Scholar] [CrossRef]
- Vishwakarma, M.; Bhatt, R. Macrofungal diversity in Khirsu forest of Garhwal Himalaya, Uttarakhand, India. J. Mycol. Plant Pathol. 2013, 43, 216–228. [Google Scholar]
- Ali, F.; Alom, S.; Guha, N.; Paul, A.; Zaman, M.K. Introduction, Geographical Region, Mushrooms Diversity, Climate, Sustainability: An Overview of Mushrooms, 1st ed.; Taylor and Francis: Boca Raton, FL, USA, 2024; pp. 1–17. [Google Scholar]
- Singh, U.; Bhatt, R.; Stephenson, S.; Uniyal, P.; Mehmood, T. Wild edible mushrooms from high elevations in the Garhwal Himalaya—II. Curr. Res. Environ. Appl. Mycol. 2017, 7, 208–226. [Google Scholar] [CrossRef]
- Bhatt, R.P.; Singh, U.; SL, S. Wild edible mushrooms from high elevations in the Garhwal Himalaya—I. Curr. Res. Environ. Appl. Mycol. 2016, 6, 118–131. [Google Scholar] [CrossRef]
- Semwal, K.C.; Bhatt, V.K.; Stephenson, S.L. A survey of macrofungal diversity in the Bharsar region, Uttarakhand Himalaya, India. J. Asia-Pac. Biodivers. 2018, 11, 560–565. [Google Scholar] [CrossRef]
- Chauhan, P.P. An ethnobotanical survey of wild edible mushrooms- A potential resource of food and income generation in Pabbar valley, Himanchal Pradesh, India. Plant Arch. 2021, 21, 267. [Google Scholar] [CrossRef]
- Rai, M. Edible mushrooms from forests of Sikkim himalaya. J. Mycopathol. Res. 2022, 60, 197–205. [Google Scholar]
- Paul, C.; Das, N. Comparative study of biochemicals and antioxidant activities of two wild edible mushrooms Russula gnathangensis and Ramaria thindii from Sikkim Himalayas, India. Mushroom Res. 2021, 30, 41–48. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gautam, N. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species. BioMed Res. Int. 2015, 2015, 346508. [Google Scholar] [CrossRef]
- Semwal, K.; Stephenson, S.; Bhatt, V.; Bhatt, R. Edible mushrooms of the Northwestern Himalaya, India: A study of indigenous knowledge, distribution and diversity. Mycosphere 2014, 5, 440–461. [Google Scholar] [CrossRef]
- Pala, S.A.; Wani, A.H.; Bhat, M.Y. Ethnomycological studies of some wild medicinal and edible mushrooms in the Kashmir Himalayas (India). Int. J. Med. Mushrooms 2013, 15, 211–220. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, Y.P.; Hashmi, S.A.J.; Kumar, S.; Manhas, R.K. Ethnomycological study of wild edible and medicinal mushrooms in district Jammu, J&K (UT), India. J. Ethnobiol. Ethnomed. 2022, 18, 23. [Google Scholar] [CrossRef]
- Shameem, N.; Kamili, A.N.; Ahmad, M.; Masoodi, F.A.; Parray, J.A. Antimicrobial activity of crude fractions and morel compounds from wild edible mushrooms of North western Himalaya. Microb. Pathog. 2017, 105, 356–360. [Google Scholar] [CrossRef]
- Pala, S.A.; Wani, A.H.; Mir, R.A. Diversity of macrofungal genus Russula and Amanita in Hirpora Wildlife Sanctuary, Southern Kashmir Himalayas. Biodiversitas 2012, 13, 65–71. [Google Scholar] [CrossRef]
- Mayirnao, H.-S.; Gupta, S.; Thokchom, S.D.; Sharma, K.; Mehmood, T.; Kaur, S.; Sharma, Y.P.; Kapoor, R. Nutritional assessment of Lactarius drassinus and L. controversus from the cold desert region of the Northwest Himalayas for their potential as food supplements. J. Fungi 2023, 9, 763. [Google Scholar] [CrossRef]
- Mehmood, T.; Verma, K.; Singh, U.; Kapoor, R.; Sharma, Y.P. Pleurotus shentelii (Pleurotaceae): A new edible mushroom from Trans-Himalayan region of Ladakh, India. Taiwania 2023, 68, 90–96. [Google Scholar]
- Yangdol, R.; Kumar, S.; Sharma, Y. A new edible variety of Laetiporus sulphureus from the cold desert of Ladakh. Mycol. Plant Pathol. 2014, 44, 463–465. [Google Scholar]
- Dorjey, K.; Kumar, S.; Sharma, Y.P. High altitude morels from Ladakh trans-Himalaya (J&K), India. J. Non-Timber For. Prod. 2019, 26, 123–129. [Google Scholar]
- Deb, S.; Singh, R.K. Ethnomycological Studies of Wild Mushrooms in Arunachal Pradesh; Mizo Post Graduate Science Society (MIPOGRASS), Manipur University: Imphal, India, 2013; pp. 35–39. [Google Scholar]
- Palni, L.M.S.; Rawal, R.S. Conservation of Himalayan Bioresources: An Ecological, Economical and Evolutionary Perspective; Springer: New Delhi, India, 2010; pp. 369–402. [Google Scholar]
- Bhattarai, A.P.; Adhikari, H.S.; Aryal, H.P.; Usha, B. Ecology and Ethnomycological Study of Some Wild Mushrooms in Tropical Riverine Forest, Lumbini Province, West Nepal. Amrit Res. J. 2024, 5, 1–9. [Google Scholar] [CrossRef]
- Hopping, K.A.; Chignell, S.M.; Lambin, E.F. The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. Proc. Natl. Acad. Sci. USA 2018, 115, 11489–11494. [Google Scholar] [CrossRef]
- Sharma, S. Trade of Cordyceps sinensis from high altitudes of the Indian Himalaya: Conservation and biotechnological priorities. Curr. Sci. 2004, 86, 1614–1618. [Google Scholar]
- Cannon, P.F.; Hywel-Jones, N.L.; Maczey, N.; Norbu, L.; Tshitila; Samdup, T.; Lhendup, P. Steps towards sustainable harvest of Ophiocordyceps sinensis in Bhutan. Biodivers. Conserv. 2009, 18, 2263–2281. [Google Scholar] [CrossRef]
- Olano, J.M.; Martínez-Rodrigo, R.; Altelarrea, J.M.; Ágreda, T.; Fernández-Toirán, M.; García-Cervigón, A.I.; Rodríguez-Puerta, F.; Águeda, B. Primary productivity and climate control mushroom yields in Mediterranean pine forests. Agric. For. Meteorol. 2020, 288, 108015. [Google Scholar] [CrossRef]
- Procházka, P.; Soukupová, J.; Tomšík Jr, K.; Mullen, K.J.; Čábelková, I. Climatic factors affecting wild mushroom foraging in central Europe. Forests 2023, 14, 382. [Google Scholar] [CrossRef]
- Gupta, M.M.; Gupta, A.; Kumar, P. Urbanization and biodiversity of arbuscular mycorrhizal fungi: The case study of Delhi, India. Rev. Biol. Trop. 2018, 66, 1547–1558. [Google Scholar] [CrossRef]
- Epp Schmidt, D.J.; Pouyat, R.; Szlavecz, K.; Setala, H.; Kotze, D.J.; Yesilonis, I.; Cilliers, S.; Hornung, E.; Dombos, M.; Yarwood, S.A. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 2017, 1, 123. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chen, Y.; Xu, G.; Zhang, Y.; Zhang, S.; Ma, K. Impacts of urbanization undermine nestedness of the plant–arbuscular mycorrhizal fungal network. Front. Microbiol. 2021, 12, 626671. [Google Scholar] [CrossRef]
- Poudel, S. Examining caterpillar fungus (Ophiocordyceps sinensis) harvesting and management practice at Pupal pasture of Dhorpatan Hunting Reserve, Nepal. Master’s Thesis, The University of Western Australia, Perth, Australia, 2020. [Google Scholar]
- Datta, P.; Das, S. Model-based strategic planning for strengthening mushroom entrepreneurship: Insights from a sub-Himalayan Region of West Bengal, India. GeoJournal 2021, 86, 145–158. [Google Scholar] [CrossRef]
- Kumar, A. Ganoderma lucidum: A traditional chinese medicine used for curing tumors. Int. J. Pharm. Pharm. Sci. 2021, 13, 1–13. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Zeyaullah, M.; Alsayegh, A.A.; Mahmood, S.E.; AlShahrani, A.M.; Khan, M.S.; Shama, E.; Hamouda, A.; Elbendary, E.Y. Ganoderma lucidum: Novel insight into hepatoprotective potential with mechanisms of action. Nutrients 2023, 15, 1874. [Google Scholar] [CrossRef]
- Nes, W.R.; Sekula, B.C.; Nes, W.D.; Adler, J.H. The functional importance of structural features of ergosterol in yeast. J. Biol. Chem. 1978, 253, 6218–6225. [Google Scholar] [CrossRef]
- Malinsky, J.; Opekarová, M. New insight into the roles of membrane microdomains in physiological activities of fungal cells. Int. Rev. Cell Mol. Biol. 2016, 325, 119–180. [Google Scholar]
- Zhang, Y.Q.; Rao, R. Beyond ergosterol: Linking pH to antifungal mechanisms. Virulence 2010, 1, 551–554. [Google Scholar] [CrossRef]
- Daroodi, Z.; Taheri, P.; Tarighi, S.; Iranshahi, M.; Akaberi, M. Efficacy of ergosterol peroxide obtained from the endophytic fungus Acrophialophora jodhpurensis against Rhizoctonia solani. J. Appl. Microbiol. 2024, 135, lxae031. [Google Scholar] [CrossRef]
- Jorda, T.; Puig, S. Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes 2020, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, Y.; Du, G.; Zhou, J.; Chen, J. Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress. J. Appl. Microbiol. 2013, 114, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Alcazar-Fuoli, L.; Mellado, E. Ergosterol biosynthesis in Aspergillus fumigatus: Its relevance as an antifungal target and role in antifungal drug resistance. Front. Microbiol. 2013, 3, 349. [Google Scholar] [CrossRef] [PubMed]
- Keller, N.P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol. 2019, 17, 167–180. [Google Scholar] [CrossRef]
- Hu, Z.; He, B.; Ma, L.; Sun, Y.; Niu, Y.; Zeng, B. Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae. Indian J. Microbiol. 2017, 57, 270–277. [Google Scholar] [CrossRef]
- Mo, C.; Bard, M. Erg28p is a key protein in the yeast sterol biosynthetic enzyme complex. J. Lipid Res. 2005, 46, 1991–1998. [Google Scholar] [CrossRef]
- Liu, J.-F.; Xia, J.-J.; Nie, K.-L.; Wang, F.; Deng, L. Outline of the biosynthesis and regulation of ergosterol in yeast. World J. Microbiol. Biotechnol. 2019, 35, 98. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.B.; Jadhav, A.K.; Sharma, R.K.; Basrani, S.T.; Gavandi, T.C.; Chougule, S.A.; Yankanchi, S.R.; Karuppayil, S.M. Antifungal activity of Allyl isothiocyanate by targeting signal transduction pathway, ergosterol biosynthesis, and cell cycle in Candida albicans. Curr. Med. Mycol. 2023, 9, 29. [Google Scholar]
- Rodrigues, M.L. The Multifunctional Fungal Ergosterol. mBio 2018, 9, 10-1128. [Google Scholar] [CrossRef]
- Jin, H.; McCaffery, J.M.; Grote, E. Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast. J. Cell Biol. 2008, 180, 813–826. [Google Scholar] [CrossRef] [PubMed]
- She, X.; Zhang, L.; Peng, J.; Zhang, J.; Li, H.; Zhang, P.; Calderone, R.; Liu, W.; Li, D. Mitochondrial Complex I Core Protein Regulates cAMP Signaling via Phosphodiesterase Pde2 and NAD Homeostasis in Candida albicans. Front. Microbiol. 2020, 11, 559975. [Google Scholar] [CrossRef]
- Maeng, S.; Ko, Y.-J.; Kim, G.-B.; Jung, K.-W.; Floyd, A.; Heitman, J.; Bahn, Y.-S. Comparative Transcriptome Analysis Reveals Novel Roles of the Ras and Cyclic AMP Signaling Pathways in Environmental Stress Response and Antifungal Drug Sensitivity in Cryptococcus neoformans. Eukaryot. Cell 2010, 9, 360–378. [Google Scholar] [CrossRef]
- Nilkhet, S.; Vongthip, W.; Lertpatipanpong, P.; Prasansuklab, A.; Tencomnao, T.; Chuchawankul, S.; Baek, S.J. Ergosterol inhibits the proliferation of breast cancer cells by suppressing AKT/GSK-3beta/beta-catenin pathway. Sci. Rep. 2024, 14, 19664. [Google Scholar] [CrossRef]
- Jordá, T.; Barba-Aliaga, M.; Rozès, N.; Alepuz, P.; Martínez-Pastor, M.T.; Puig, S. Transcriptional regulation of ergosterol biosynthesis genes in response to iron deficiency. Environ. Microbiol. 2022, 24, 5248–5260. [Google Scholar] [CrossRef]
- Náhlík, J.; Hrnčiřík, P.; Mareš, J.; Rychtera, M.; Kent, C.A. Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts. Biotechnol. Prog. 2017, 33, 838–848. [Google Scholar] [CrossRef]
- Li, Y.; Wadsö, L.; Larsson, L. Impact of temperature on growth and metabolic efficiency of Penicillium roqueforti–correlations between produced heat, ergosterol content and biomass. J. Appl. Microbiol. 2009, 106, 1494–1501. [Google Scholar] [CrossRef]
- Shimizu, I.; Katsuki, H. Effect of temperature on ergosterol biosynthesis in yeast. J. Biochem. 1975, 77, 1023–1027. [Google Scholar] [CrossRef]
- Brown, H.E.; Telzrow, C.L.; Saelens, J.W.; Fernandes, L.; Alspaugh, J.A. Sterol-Response Pathways Mediate Alkaline Survival in Diverse Fungi. mBio 2020, 11, 10-1128. [Google Scholar] [CrossRef]
- Johnston, E.J.; Moses, T.; Rosser, S.J. The wide-ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories. Yeast 2020, 37, 27–44. [Google Scholar] [CrossRef]
- Arthington-Skaggs, B.A.; Warnock, D.W.; Christine, M.J. Quantitation of Candida albicans ergosterol content improves the correlation between in vitro antifungal susceptibility test results and in vivo outcome after fluconazole treatment in a murine model of invasive candidiasis. Antimicrob. Agents Chemother. 2000, 44, 2081–2085. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Zhang, M.; Gao, H. Ergosterol production by fed-batch fermentation of Saccharomyces cerevisiae. Enzym. Microb. Technol. 2003, 33, 366–370. [Google Scholar] [CrossRef]
- Sun, Z.-J.; Lian, J.-Z.; Zhu, L.; Jiang, Y.-Q.; Li, G.-S.; Xue, H.-L.; Wu, M.-B.; Yang, L.-R.; Lin, J.-P. Combined biosynthetic pathway engineering and storage pool expansion for high-level production of ergosterol in industrial Saccharomyces cerevisiae. Front. Bioeng. Biotechnol. 2021, 9, 681666. [Google Scholar] [CrossRef] [PubMed]
- Shang, F.; Wen, S.; Wang, X.; Tan, T. Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae. J. Biotechnol. 2006, 122, 285–292. [Google Scholar] [CrossRef]
- Thakur, M. Wild Macro-Fungi from Northwest Himalayas: Future Prospects and Challenges. In Biology of Macrofungi; Singh, B.P., Lallawmsanga, Passari, A.K., Eds.; Fungal Biology; Springer: Cham, Switzerland, 2018; pp. 379–394. [Google Scholar]
- Goltzman, D. Functions of vitamin D in bone. Histochem. Cell Biol. 2018, 149, 305–312. [Google Scholar] [CrossRef]
- Huang, G.; Cai, W.; Xu, B. Vitamin D2, ergosterol, and vitamin B2 content in commercially dried mushrooms marketed in China and increased vitamin D2 content following UV-C irradiation. Int. J. Vitam. Nutr. Res. 2019, 87, 237–246. [Google Scholar]
- Kristensen, H.L.; Rosenqvist, E.; Jakobsen, J. Increase of vitamin D(2) by UV-B exposure during the growth phase of white button mushroom (Agaricus bisporus). Food Nutr. Res. 2012, 56, 7114. [Google Scholar] [CrossRef]
- Mračević, S.Đ.; Mutić, J.; Stanković, V.; Ražić, S. Voltametric Analysis of Ergosterol Isolated from Wild-Growing and Cultivated Edible Mushrooms from Serbia and Korea. Molecules 2025, 30, 2010. [Google Scholar] [CrossRef]
- Krakowska, A.; Zięba, P.; Włodarczyk, A.; Kała, K.; Sułkowska-Ziaja, K.; Bernaś, E.; Sękara, A.; Ostachowicz, B.; Muszyńska, B. Selected edible medicinal mushrooms from Pleurotus genus as an answer for human civilization diseases. Food Chem. 2020, 327, 127084. [Google Scholar] [CrossRef]
- Phillips, K.M.; Ruggio, D.M.; Horst, R.L.; Minor, B.; Simon, R.R.; Feeney, M.J.; Byrdwell, W.C.; Haytowitz, D.B. Vitamin D and sterol composition of 10 types of mushrooms from retail suppliers in the United States. J. Agric. Food Chem. 2011, 59, 7841–7853. [Google Scholar] [CrossRef]
- Jasinghe, V.J.; Perera, C.O. Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chem. 2005, 92, 541–546. [Google Scholar] [CrossRef]
- Gąsecka, M.; Magdziak, Z.; Siwulski, M.; Mleczek, M. Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus. Eur. Food Res. Technol. 2018, 244, 259–268. [Google Scholar] [CrossRef]
- Gąsecka, M.; Siwulski, M.; Mleczek, M. Evaluation of bioactive compounds content and antioxidant properties of soil-growing and wood-growing edible mushrooms. J. Food Process. Preserv. 2017, 42, e13386. [Google Scholar]
- Saini, R.K.; Rauf, A.; Khalil, A.A.; Ko, E.-Y.; Keum, Y.-S.; Anwar, S.; Alamri, A.; Rengasamy, K.R. Edible mushrooms show significant differences in sterols and fatty acid compositions. S. Afr. J. Bot. 2021, 141, 344–356. [Google Scholar]
- Mattila, P.; Lampi, A.-M.; Ronkainen, R.; Toivo, J.; Piironen, V. Sterol and vitamin D2 contents in some wild and cultivated mushrooms. Food Chem. 2002, 76, 293–298. [Google Scholar] [CrossRef]
- Teichmann, A.; Dutta, P.C.; Staffas, A.; Jägerstad, M. Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: Effects of UV irradiation. LWT-Food Sci. Technol. 2007, 40, 815–822. [Google Scholar]
- Phillips, K.M.; Rasor, A.S. A nutritionally meaningful increase in vitamin D in retail mushrooms is attainable by exposure to sunlight prior to consumption. Nutr. Food Sci. 2013, 3, 1. [Google Scholar]
- Hidalgo-Sanz, R.; Del-Castillo-Alonso, M.-Á.; Monforte, L.; Tomás-Las-Heras, R.; Sanz, S.; Olarte, C.; Pérez-Matute, P.; Íñiguez-Martínez, M.; Ene, A.-L.; Martínez-Abaigar, J. Ultraviolet-B radiation, mushrooms, and vitamin D: From technology to bioavailability. LWT-Food Sci. Technol. 2023, 186, 115210. [Google Scholar] [CrossRef]
- Ko, J.A.; Lee, B.H.; Lee, J.S.; Park, H.J. Effect of UV-B exposure on the concentration of vitamin D2 in sliced shiitake mushroom (Lentinus edodes) and white button mushroom (Agaricus bisporus). J. Agric. Food Chem. 2008, 56, 3671–3674. [Google Scholar] [CrossRef]
- Wu, W.J.; Ahn, B.Y. Statistical optimization of ultraviolet irradiate conditions for vitamin D(2) synthesis in oyster mushrooms (Pleurotus ostreatus) using response surface methodology. PLoS ONE 2014, 9, e95359. [Google Scholar] [CrossRef] [PubMed]
- Nölle, N.; Argyropoulos, D.; Ambacher, S.; Müller, J.; Biesalski, H.K. Vitamin D2 enrichment in mushrooms by natural or artificial UV-light during drying. LWT-Food Sci. Technol. 2017, 85, 400–404. [Google Scholar] [CrossRef]
- Nölle, N.; Argyropoulos, D.; Müller, J.; Biesalski, H.K. Temperature stability of vitamin D2 and color changes during drying of UVB-treated mushrooms. Dry Technol. 2018, 36, 307–315. [Google Scholar] [CrossRef]
- Wilson, L.R.; Tripkovic, L.; Hart, K.H.; Lanham-New, S.A. Vitamin D deficiency as a public health issue: Using vitamin D2 or vitamin D3 in future fortification strategies. Proc. Nutr. Soc. 2017, 76, 392–399. [Google Scholar] [PubMed]
- Göring, H. Vitamin D in nature: A product of synthesis and/or degradation of cell membrane components. Biochemistry 2018, 83, 1350–1357. [Google Scholar] [CrossRef]
- Alday, J.G.; Martinez de Aragon, J.; de-Miguel, S.; Bonet, J.A. Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients. Sci. Rep. 2017, 7, 45824. [Google Scholar] [CrossRef]
- Anand, A.; Garg, V.K. Temperature–precipitation trends and response of high-altitude biodiversity reserve of western Himalayas. J. Earth Syst. Sci. 2024, 133, 76. [Google Scholar] [CrossRef]
- Song, B.; Gao, Y.; Stöcklin, J.; Song, M.; Sun, L.; Sun, H. Ultraviolet screening increases with elevation in translucent bracts of Rheum nobile (Polygonaceae), an alpine ‘glasshouse’ plant from the high Himalayas. Bot. J. Linn. Soc. 2020, 193, 276–286. [Google Scholar] [CrossRef]
- Hu, D.; Yang, X.; Hu, C.; Feng, Z.; Chen, W.; Shi, H. Comparison of Ergosterol and Vitamin D(2) in Mushrooms Agaricus bisporus and Cordyceps militaris Using Ultraviolet Irradiation Directly on Dry Powder or in Ethanol Suspension. ACS Omega 2021, 6, 29506–29515. [Google Scholar] [CrossRef]
- Kalaras, M.D. Production of Ergocalciferol (Vitamin D2) and Related Sterols in Mushrooms with Exposure to Pulsed Ultraviolet Light. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 2012. [Google Scholar]
- Villarreal, P.; Carrasco, M.; Barahona, S.; Alcaino, J.; Cifuentes, V.; Baeza, M. Tolerance to ultraviolet radiation of psychrotolerant yeasts and analysis of their carotenoid, mycosporine, and ergosterol content. Curr. Microbiol. 2016, 72, 94–101. [Google Scholar] [CrossRef]
- Singh, J.; Singh, R.P.; Khare, R. Higher Rate of Pigment Synthesis in Antarctic Plants: A Strategy of Survival Under UV Radiations; Springer International Publishing: Cham, Switzerland, 2022; pp. 255–275. [Google Scholar]
- Pant, M.; Negi, G.C.; Kumar, P. Macrofauna contributes to organic matter decomposition and soil quality in Himalayan agroecosystems, India. Appl. Soil Ecol. 2017, 120, 20–29. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Baath, E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef]
- Wisecaver, J.H.; Slot, J.C.; Rokas, A. The evolution of fungal metabolic pathways. PLoS Genet. 2014, 10, e1004816. [Google Scholar] [CrossRef] [PubMed]
- Villares, A.; Mateo-Vivaracho, L.; Garcia-Lafuente, A.; Guillamon, E. Storage temperature and UV-irradiation influence on the ergosterol content in edible mushrooms. Food Chem. 2014, 147, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Biswa, V. A Study on Growth Parameters, Genetic and Nutritional Characterization of Candidate Cordyceps spp. Ph.D. Thesis, Bodoland University Institutional Repository, Kokrajhar, India, 2024. [Google Scholar]
- Chellapandi, P.; Saranya, S. Ophiocordyceps sinensis: A Potential Caterpillar Fungus for the Production of Bioactive Compounds. Explor. Res. Hypothesis Med. 2024, 9, 236–249. [Google Scholar] [CrossRef]
- Dong, Z.; Sun, X. Chemical components in cultivated Cordyceps sinensis and their effects on fibrosis. Chin. Herb. Med. 2024, 16, 162–167. [Google Scholar]
- Khemiri, A.; Mendili, M.; Aouadhi, C.; Jaffali, C.; Khadhri, A. Valorization of Morchella esculenta (Ascomycota) Using a Healthy Extraction Method: Investigation of Bioavailability, Anti-Acetylcholinesterase, and Antioxidant Potentials. Int. J. Med. Mushrooms 2025, 27, 61–74. [Google Scholar] [CrossRef]
- Negi, V.S.; Rana, S.K.; Giri, L.; Rawal, R.S. Caterpillar Fungus in the Himalaya, Current Understanding and Future Possibilities; G.B. Pant National Institute of Himalayan Environment: Uttarakhand, India, 2020. [Google Scholar]
- Aranow, C. Vitamin D and the immune system. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2011, 59, 881–886. [Google Scholar] [CrossRef]
- Shao, S.; Hernandez, M.; Kramer, J.K.; Rinker, D.L.; Tsao, R. Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. J. Agric. Food Chem. 2010, 58, 11616–11625. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, R.C.; Barros, L.; Fernandes, Â.; Sokovic, M.; Bracht, A.; Peralta, R.M.; Ferreira, I.C. A natural food ingredient based on ergosterol: Optimization of the extraction from Agaricus blazei, evaluation of bioactive properties and incorporation in yogurts. Food Funct. 2018, 9, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Heleno, S.A.; Prieto, M.A.; Barros, L.; Rodrigues, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Optimization of microwave-assisted extraction of ergosterol from Agaricus bisporus L. by-products using response surface methodology. Food Bioprod. Process. 2016, 100, 25–35. [Google Scholar] [CrossRef]
- Kuwabara, N.; Kanda, J.; Sato, S.; Nakagawa, S. Impact of daily high ergosterol intake for 14 weeks in ovariectomized rats on cholesterol and vitamin D3 biosynthesis pathways. Biol. Pharm. Bull. 2025, 48, 39–45. [Google Scholar] [CrossRef]
- Rangsinth, P.; Sharika, R.; Pattarachotanant, N.; Duangjan, C.; Wongwan, C.; Sillapachaiyaporn, C.; Nilkhet, S.; Wongsirojkul, N.; Prasansuklab, A.; Tencomnao, T.; et al. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023, 12, 2529. [Google Scholar] [CrossRef]
- Yongxia, Z.; Jian, X.; Suyuan, H.; Aixin, N.; Lihong, Z. Isolation and characterization of ergosterol from Monascus anka for anti-lipid peroxidation properties. J. Mycol. Med. 2020, 30, 101038. [Google Scholar] [CrossRef]
- Stastny, J.; Marsik, P.; Tauchen, J.; Bozik, M.; Mascellani, A.; Havlik, J.; Landa, P.; Jablonsky, I.; Treml, J.; Herczogova, P.; et al. Antioxidant and Anti-Inflammatory Activity of Five Medicinal Mushrooms of the Genus Pleurotus. Antioxidants 2022, 11, 1569. [Google Scholar] [CrossRef]
- Tada, H.; Kawahara, K.; Osawa, H.; Song, L.T.; Numazaki, K.; Kawai, J.; Onoue, S.; Nishioka, T.; Nemoto, E.; Matsushita, K.; et al. Hericium erinaceus ethanol extract and ergosterol exert anti-inflammatory activities by neutralizing lipopolysaccharide-induced pro-inflammatory cytokine production in human monocytes. Biochem. Biophys. Res. Commun. 2022, 636, 1–9. [Google Scholar] [CrossRef]
- Sun, P.; Li, W.; Guo, J.; Peng, Q.; Ye, X.; Hu, S.; Liu, Y.; Liu, W.; Chen, H.; Qiao, J. Ergosterol isolated from Antrodia camphorata suppresses LPS-induced neuroinflammatory responses in microglia cells and ICR mice. Molecules 2023, 28, 2406. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, C.; Xu, H.; Yang, S.; Chen, Z.; Wang, H.; Zheng, B.; Mao, B.; Wu, X. Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food Chem. Toxicol. 2021, 150, 112073. [Google Scholar] [CrossRef]
- Sillapachaiyaporn, C.; Mongkolpobsin, K.; Chuchawankul, S.; Tencomnao, T.; Baek, S.J. Neuroprotective effects of ergosterol against TNF-α-induced HT-22 hippocampal cell injury. Biomed. Pharmacother. 2022, 154, 113596. [Google Scholar] [CrossRef]
- Lewoniewska, S.; Oscilowska, I.; Forlino, A.; Palka, J. Understanding the Role of Estrogen Receptor Status in PRODH/POX-Dependent Apoptosis/Survival in Breast Cancer Cells. Biology 2021, 10, 1314. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yong, T.; Zhang, Y.; Su, J.; Jiao, C.; Xie, Y. Anti-tumor and Anti-angiogenic Ergosterols from Ganoderma lucidum. Front. Chem. 2017, 5, 85. [Google Scholar] [CrossRef] [PubMed]
- Rhee, Y.H.; Jeong, S.J.; Lee, H.J.; Lee, H.J.; Koh, W.; Jung, J.H.; Kim, S.H.; Sung-Hoon, K. Inhibition of STAT3 signaling and induction of SHP1 mediate antiangiogenic and antitumor activities of ergosterol peroxide in U266 multiple myeloma cells. BMC Cancer 2012, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shao, J. Fungal vaccines and adjuvants: A tool to reveal the interaction between host and fungi. Arch. Microbiol. 2024, 206, 293. [Google Scholar] [CrossRef]
- Ashok, A.; Andrabi, S.S.; Mansoor, S.; Kuang, Y.; Kwon, B.K.; Labhasetwar, V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants 2022, 11, 408. [Google Scholar] [CrossRef]
- Zhou, B.; Liang, X.; Feng, Q.; Li, J.; Pan, X.; Xie, P.; Jiang, Z.; Yang, Z. Ergosterol peroxide suppresses influenza A virus-induced pro-inflammatory response and apoptosis by blocking RIG-I signaling. Eur. J. Pharmacol. 2019, 860, 172543. [Google Scholar] [CrossRef]
- Ling, T.; Arroyo-Cruz, L.V.; Smither, W.R.; Seighman, E.K.; Martínez-Montemayor, M.M.; Rivas, F. Early Preclinical Studies of Ergosterol Peroxide and Biological Evaluation of Its Derivatives. ACS Omega 2024, 9, 37117–37127. [Google Scholar] [CrossRef]
- Duan, C.; Ge, X.; Wang, J.; Wei, Z.; Feng, W.-h.; Wang, J. Ergosterol peroxide exhibits antiviral and immunomodulatory abilities against porcine deltacoronavirus (PDCoV) via suppression of NF-κB and p38/MAPK signaling pathways in vitro. Int. Immunopharmacol. 2021, 93, 107317. [Google Scholar] [CrossRef]
- Slominski, A.; Kim, T.K.; Zmijewski, M.A.; Janjetovic, Z.; Li, W.; Chen, J.; Kusniatsova, E.I.; Semak, I.; Postlethwaite, A.; Miller, D.D.; et al. Novel vitamin D photoproducts and their precursors in the skin. Derm.-Endocrinol. 2013, 5, 7–19. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Food Additives Permitted for Direct Addition to Food for Human Consumption; Vitamin D2 Mushroom Powder. Fed. Regist. 2020, 85, 41916–41919. [Google Scholar]
- Zhang, H.-Y.; Firempong, C.K.; Wang, Y.-W.; Xu, W.-Q.; Wang, M.-M.; Cao, X.; Zhu, Y.; Tong, S.-S.; Yu, J.-N.; Xu, X.-M. Ergosterol-loaded poly(lactide-co-glycolide) nanoparticles with enhanced in vitro antitumor activity and oral bioavailability. Acta Pharmacol. Sin. 2016, 37, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Baur, A.C.; Kühn, J.; Brandsch, C.; Hirche, F.; Stangl, G.I. Intake of ergosterol increases the vitamin D concentrations in serum and liver of mice. J. Steroid Biochem. Mol. Biol. 2019, 194, 105435. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.D.; Tewari, P.; Dhaila, P.; Tamta, K.K. Diversifying livelihood options of timberline resource dependent communities in Uttarakhand Himalayas: Conservation and development implications. J. Asia-Pac. Biodivers. 2018, 59, 327–338. [Google Scholar]
- Layek, J.; Saikia, R.; Sharma, K.; Das, A.; Bhadana, V.; Biswakarma, N.; Pandey, A.; Bishi, S.; Kumar, M.; Naskar, B. Organic Farming: Scope and Potential in North Eastern Hill Region of India; ICAR-National Academy of Agricultural Research Management: Hyderabad, India, 2025; pp. 45–62. [Google Scholar]
- Mishra, P.K.; Rai, A.; Abdelrahman, K.; Rai, S.C.; Tiwari, A. Analysing challenges and strategies in land productivity in Sikkim Himalaya, India. Sustainability 2021, 13, 11112. [Google Scholar] [CrossRef]
- Pipaliya, G.; Ansari, M. Exploring the Challenges and Constraints Encountered by Mushroom Growers in Uttarakhand: A Comprehensive Study. Asian J. Agric. Ext. Econ. Sociol. 2023, 41, 1–8. [Google Scholar] [CrossRef]
- Sharma, D.; Kumar, A.; Guleria, J. Economic viability, technological gap and problems of mushroom cultivation in Mandi district of Himachal Pradesh. Himachal J. Agric. Res. 2016, 42, 47–54. [Google Scholar]
- Kuniyal, C.P.; Sundriyal, R.C. Conservation Salvage of Cordyceps sinensis Collection in the Himalayan Mountains Is Neglected. Ecosyst. Serv. 2013, 3, e40–e43. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, M.; Mujumdar, A.S. UV induced conversion during drying of ergosterol to vitamin D in various mushrooms: Effect of different drying conditions. Trends Food Sci. Technol. 2020, 105, 200–210. [Google Scholar] [CrossRef]
- Kavaliauskas, Ž.; Šajev, I.; Gecevičius, G.; Čapas, V. Intelligent Control of Mushroom Growing Conditions Using an Electronic System for Monitoring and Maintaining Environmental Parameters. Appl. Sci. 2022, 12, 13040. [Google Scholar] [CrossRef]
- Salemi, S.; Saedisomeolia, A.; Azimi, F.; Zolfigol, S.; Mohajerani, E.; Mohammadi, M.; Yaseri, M. Optimizing the production of vitamin D in white button mushrooms (Agaricus bisporus) using ultraviolet radiation and measurement of its stability. LWT-Food Sci. Technol. 2021, 137, 110401. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Patel, M. Effective utilization of rice straw in value-added by-products: A systematic review of state of art and future perspectives. Biomass Bioenergy 2022, 159, 106411. [Google Scholar] [CrossRef]
- Akcay, C.; Ceylan, F.; Arslan, R. Production of oyster mushroom (Pleurotus ostreatus) from some waste lignocellulosic materials and FTIR characterization of structural changes. Sci. Rep. 2023, 13, 12897. [Google Scholar] [CrossRef] [PubMed]
- Martín, C.; Zervakis, G.I.; Xiong, S.; Koutrotsios, G.; Strætkvern, K.O. Spent substrate from mushroom cultivation: Exploitation potential toward various applications and value-added products. Bioengineered 2023, 14, 2252138. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Yang, L.; Zhang, Q. Application progress of CRISPR/Cas9 genome-editing technology in edible fungi. Front. Microbiol. 2023, 14, 1169884. [Google Scholar] [CrossRef]
- Borah, T.R.; Singh, A.R.; Paul, P.; Talang, H.; Kumar, B.; Hazarika, S. Spawn Production and Mushroom Cultivation Technology; Indian Council of Agricultural Research ICAR Research Complex for NEH Region: Meghalaya, India, 2019; Volume 46. [Google Scholar]
- Thakur, M. Advances in mushroom production: Key to food, nutritional and employment security: A review. Indian Phytopathol. 2020, 73, 377–395. [Google Scholar] [CrossRef]
- Sharma, S. Cultivating sustainable solutions: Integrated Pest Management (IPM) for safer and greener agronomy. Corp. Sustain. Manag. J. (CSMJ) 2023, 1, 103–108. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Kumar, V.; Rawat, D.K.; Singh, S.; Saroj, D.K.; Verma, S. Mushroom cultivation: A sustainable approach to future agriculture to ensure quality food and nutritional security of current population in India. Int. J. Multidiscip. Res. Growth Eval. 2023, 4, 697–705. [Google Scholar]
- Antunes, F.; Marçal, S.; Taofiq, O.; Morais, A.M.M.B.; Freitas, A.C.; Ferreira, I.C.F.R.; Pintado, M. Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules 2020, 25, 2672. [Google Scholar] [CrossRef]
- Raman, J.; Lee, S.-K.; Im, J.-H.; Oh, M.-J.; Oh, Y.-L.; Jang, K.-Y. Current prospects of mushroom production and industrial growth in India. J. Mushroom 2018, 16, 239–249. [Google Scholar]
- Gao, Y.; Wu, Z.; Li, W.; Sun, H.; Chai, Y.; Li, T.; Liu, C.; Gong, X.; Liang, Y.; Qin, P. Expanding the valorization of waste mushroom substrates in agricultural production: Progress and challenges. Environ. Sci. Pollut. Res. 2023, 30, 2355–2373. [Google Scholar] [CrossRef]
- Othman, N.Z.; Sarjuni, M.N.H.; Rosli, M.A.; Nadri, M.H.; Yeng, L.H.; Ying, O.P.; Sarmidi, M.R. Spent Mushroom Substrate as Biofertilizer for Agriculture Application; Springer: Berlin/Heidelberg, Germany, 2020; pp. 37–57. [Google Scholar]
Area | Division | Wild Edible Mushroom Species | Reference |
---|---|---|---|
Uttarakahnd | Basidiomycota | Agaricus campestris, Agaricus augustus, Agaricus arvensis, Agaricus micromegathus, Agaricus silvaticus, and Agaricus silvicola, alongside Amanita ceciliae, Amanita chepangiana, Amanita hemibapha, Amanita vaginata, Amaria fennica and Astraeus hygrometricus, Auricularia auricula-judae (Bull.) Quel, Auricularia polytricha, Boletus edulis, Cantharellus cibarius Khajjiar, Cantharellus lateritius (Berk.) Singer, and Cantharellus minor, Chlorophyllum rachodes, Clavaria zollingeri, Clavatia craniformis, Coprinus comatus (Mul.) Pers, Craterellus cornucopioides, Gomphus clavatus, Grifola frondosa (Dicks.) Gray, Gymnopilus junonius, Hericium coralloides, Hericium erinaceus, Kuehneromyces mutabilis, and Lactarius species such as Lactarius azonites, Lactarius camphoratus, Lactarius corrugis, Lactarius deliciosus (Fries) S.F. Grey, Lactarius hygrophoroides var. hygrophoroides, Lactarius subindigo, and Lactarius volemus (Fr.) Fr., Closely related, the Lactifluus genus features Lactifluus corrugis, Lactifluus hygrophoroides, and Lactifluus volemus, while the striking Laetiporus sulphureus (Bull.) Murrill is also included. Macrolepiota procera, Macrolepiota rhachodes, Monotropa unifora, Pleurotus cornucopiae, Pleurotus ostreatus, Psathyrella candolleana, Ramaria botrytis (Pers.) Ricken, Ramaria flava, Ramaria sanguinea, Russula brevipes, Russula cyanoxantha (Schaeff.) Fr., Russula lepida, Russula virescens, Sparassis crispa (Wulfen) Fr., Strobilomyces floccopus, and Stropharia rugosoannulata. Finally, the termite-associated Termitomyces species— Termitomyces heimii Natarajan, Termitomyces eurrhizus (Berk.) R. Heim, and Termitomyces microcarpus, Termitomyces sp., Tremella foliacea, Tremella mesenterica, and Termitomyces robustus. | [60,61,62,63,64,65] |
Ascomycota | Aleuria aurantia (Pers.) Fuckel, Cordyceps sinensis, Helvella crispa (Scop.) Fr., Hydnum repandum, Morchella esculenta (L.) Pers. | [60,63,64,66] | |
Sikkim | Basidiomycota | Amanita vaginata, Auricularia auricula-judae (Bull.) Quel, Armillaria mellea (Vahl) P. Kumm, Cantharellus cibarius Khajjiar, Coprinus comatus (Mul.) Pers., Coprinus micaceus (Bull). Fr, Crepedotus mollis (Schaeff. Ex. Fr.) Kumm, Entoloma lividoalbum (Kuhner & Romagn.) Kubicka, Flammulina velutipes (Curtis) Singe, Fistulina hepatica (Schaeff.) With., Grifola frondosa (Dicks.) Gray, Hygrocybe miniata (Fr.) Kumm., Lactarius volemus (Fr.) Fr, Laetiporus sulphureus (Bull.) Murrill, Lentinula edodes (Berk.) Pegler, Lycoperdon pyreforme, Meripilus giganteus (Pers.) P. Karst., Oudemansiella mucida (Schrad.) Hohn., Pholiota aurivella (Batsch) P. Kumm., Pleurotus flabellatus Sacc., Ramaria subalpina, Ramaria aurea (Schaeff.) Quel., Ramaria thindii, Russula cyanoxantha (Schaeff.) Fr., Russula gnathangensis, Schizophyllum commune Fr., Sparassis crispa (Wulfen) Fr., Termitomyces medius R. Heim & Grasse, Termitomyces eurrhizus (Berk.) R. Heim, and Xerula radicata (Relhan) Dorfelt. | [58,67,68] |
Ascomycota | Aleuria aurantia (Pers.) Fuckel | [67] | |
Himachal Pradesh | Basidiomycota | Agaricus campestris, Agaricus comtulus, Agaricus fulva, and Agaricus silvicola, Amanita bisporigera G.F. Atk., Alloclavaria purpurea (Fr.) Dentinger & D.J. McLaughlin, Amanita caesarea, Amanita chepangiana, Amanita hemibapha, Amanita vaginata, Astraeus hygrometricus, Auricularia auricula-judae (Bull.) Quel, Auricularia polytricha, Cantharellus species, Cantharellus cibarius Khajjiar, Cantharellus lateritius (Berk.) Singer, Cantharellus minor, Conocybe tenera, Termitomyces microcarpus and Termitomyces sp. | [66,69,70] |
Ascomycota | Morchella deliciosa Fries, Morchella esculenta (L.) Pers | [66,69,70] | |
Jammu and Kashmir | Basidiomycota | Agaricus bisporus, Agaricus californicus Peck, Agaricus campestris, Auricularia auricula-judae (Bull.) Quel, Amanita vaginata, Bovista plumbea, Clavatia bovista (L.) Pers., Langermannia gigantea, Geastrum saccatum Fr., Calocera viscosa, Hericium coralloides, Coprinus atramentarius, Coprinus comatus (Mul.) Pers., Coprinus micaceus (Bull.) Fr., Flammulina velutipes (Curtis) Sing., Hevella lacunosa, Inocybe Lactarius deliciosus (Fries) S.F., Lentinus tigrinus, Leucoagaricus rhodocephalus (Berk.) Pegler, Lepiota procera (Scop.) Gray, Phallus impudicus, Podaxis pistillaris (Peck) Hesler, Ramaria formosa, Russula aeruginea, Russula aurea Pers., Russula cyanoxantha (Schaeff.) Fr., Russula delica, Termitomyces eurrhizus (Berk.) R. Heim, Termitomyces clypeatus R. Heim, Termitomyces heimii Natarajan. | [71,72,73,74] |
Ascomycota | Gyromitra esculenta, Gyromitra sphaerospora, Helvella macropus, Morchella esculenta (L.) Pers., Morchella vulgaris, Peziza repanda, Termitomyces sp., and Termitomyces striatus var. annulatus R. Heim | [71,73] | |
Ladakh | Basidiomycota | Lactarius controversus and Lactarius drassinus, Laetiporus sulphureus (Bull.) Murrill, Pleurotus shentelii | [75,76,77] |
Ascomycota | Morchella angusticipes, Morchella conica, Morchella crassipes, Morchella elata, Morchella esculenta (L.) Pers., Morchella deliciosa (Fries) S.F. Grey, Morchella gigaspora, Morchella hybrida, Morchella rotunda, Morchella semilibera, and Morchella tomentosa | [78] | |
Tripura | Basidiomycota | Lentinus tuber-regium (Fr.) Fr., Macrocybe gigantea (Massee) Pegler & Loddge, Pleurotus squarrosulus (Mont.) Sing. Pleurotus genus, Schizophyllum commune Fr. | [59] |
Ascomycota | |||
Arunachal Pradesh | Basidiomycota | Auricularia sp., Auricularia auricula-judae, Pleurotus pulmonarius, Polyporus squamosus, Pleurotus sajor-caju, Schizophyllum commune Fr., Termitomyces robustus, Termitomyces robustus, Termitomyces sp., Tricholoma lobayense, Tremella fuciformis, and Volvariella bombycena | [79] |
Ascomycota | Aleuria aurantia (Pers.) Fuckel | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panthari, P.; Khantwal, G.; Kumar, M.; Shang, X.; Lee, J.-H.; Haniyyah, S.; Sharma, K.; Saini, R.K. Himalayan Mushrooms as a Natural Source of Ergosterol and Vitamin D2: A Review of Nutraceutical and Functional Food Perspectives. Foods 2025, 14, 3516. https://doi.org/10.3390/foods14203516
Panthari P, Khantwal G, Kumar M, Shang X, Lee J-H, Haniyyah S, Sharma K, Saini RK. Himalayan Mushrooms as a Natural Source of Ergosterol and Vitamin D2: A Review of Nutraceutical and Functional Food Perspectives. Foods. 2025; 14(20):3516. https://doi.org/10.3390/foods14203516
Chicago/Turabian StylePanthari, Pooja, Garima Khantwal, Manoj Kumar, Xiaomin Shang, Ji-Ho Lee, Soha Haniyyah, Kavita Sharma, and Ramesh Kumar Saini. 2025. "Himalayan Mushrooms as a Natural Source of Ergosterol and Vitamin D2: A Review of Nutraceutical and Functional Food Perspectives" Foods 14, no. 20: 3516. https://doi.org/10.3390/foods14203516
APA StylePanthari, P., Khantwal, G., Kumar, M., Shang, X., Lee, J.-H., Haniyyah, S., Sharma, K., & Saini, R. K. (2025). Himalayan Mushrooms as a Natural Source of Ergosterol and Vitamin D2: A Review of Nutraceutical and Functional Food Perspectives. Foods, 14(20), 3516. https://doi.org/10.3390/foods14203516