Optimisation of Enzyme Lignin Degradation Using Response Surface Methodology for Sustainable Lignocellulosic By-Products Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Experimental Protocol
2.3. Optimisation with Response Surface Methodology—Experimental Design
2.4. Total Phenolic Content (TPC)
2.5. HPLC Quantification of Phenolic Compounds
2.6. UV–Vis Analysis
2.7. FT-IR Analysis
2.8. Statistical Analysis
3. Results
3.1. Optimisation of Kraft Lignin Degradation with Response Surface Methodology
3.1.1. Kraft Lignin Degradation with Lignin Peroxidase
3.1.2. Kraft Lignin Degradation with Manganese Peroxidase
3.1.3. Kraft Lignin Degradation with Laccase
3.2. Degradation of Kraft Lignin and Lignocellulosic By-Products Using Optimised Parameters
3.2.1. Quantification of Phenolic Compounds
Total Phenolic Content (TPC)
Phenolic Profile
3.2.2. UV–Vis Analysis
3.2.3. FT-IR Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RSM | Response surface methodology |
BBD | Box–Behnken Design |
LiP | Lignin peroxidase |
MnP | Manganese peroxidase |
Lac | Laccase |
TPC | Total phenolic content |
GAE | Gallic acid equivalent |
HPLC | High-performance liquid chromatography |
OS | Oat straw |
BS | Birch sawdust |
KL | Kraft lignin |
References
- Mujtaba, M.; Fraceto, L.F.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; de Medeiros, G.A.; do Espirito Santo Pereira, A.; Donnini Mancini, S.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Haq, I.U.; Qaisar, K.; Nawaz, A.; Akram, F.; Mukhtar, H.; Xu, Y.; Mumtaz, M.W.; Rashid, U.; Ghani, W.A.W.A.K.; Choong, T.S.Y. Advances in valorization of lignocellulosic biomass towards energy generation. Catalysts 2021, 11, 309. [Google Scholar] [CrossRef]
- Thuppahige, R.T.W.; Barner, L.; Shahbazi, M.; Fraga, G.; Moghaddam, L. A comprehensive review of sustainable valorisation of lignocellulosic biomass and plastic waste into biofuels and chemicals via co-liquefaction. Waste Manag. 2025, 202, 114827. [Google Scholar] [CrossRef] [PubMed]
- Shaba, E.Y.; Jiya, M.J.; Andrew, A.; Salihu, A.M.; Mamma, E.; Anyanwu, S.K.; Mathew, J.T.; Inobeme, A.; Yisa, B.N.; Saba, J.J. Biomass Valorisation: A Sustainable Approach Towards Carbon Neutrality and Circular Economy. In Biomass Valorization: A Sustainable Approach Towards Carbon Neutrality and Circular Economy; Springer Nature: Singapore, 2025; pp. 99–122. [Google Scholar] [CrossRef]
- Grgas, D.; Rukavina, M.; Bešlo, D.; Štefanac, T.; Crnek, V.; Šikić, T.; Habuda-Stanić, M.; Landeka Dragičević, T. The bacterial degradation of lignin—A review. Water 2023, 15, 1272. [Google Scholar] [CrossRef]
- Gan, M.J.; Niu, Y.Q.; Qu, X.J.; Zhou, C.H. Lignin to value-added chemicals and advanced materials: Extraction, degradation, and functionalization. Green Chem. 2022, 24, 7705–7750. [Google Scholar] [CrossRef]
- Wang, H.M.; Yuan, T.Q.; Song, G.Y.; Sun, R.C. Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chem. 2021, 23, 3790–3817. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, B.; Chen, H.; Wu, W.; Wu, S.; Jin, Y.; Xiao, H. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol. Biofuels 2021, 14, 205. [Google Scholar] [CrossRef]
- Gellerstedt, G.; Henriksson, G. Lignins: Major sources, structure and properties. In Monomers, Polymers and Composites from Renewable Resources; Belgacem, M.N., Gandini, A., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2008; pp. 201–224. [Google Scholar]
- Gałązka, A.; Jankiewicz, U.; Orzechowski, S. The role of ligninolytic enzymes in sustainable agriculture: Applications and challenges. Agronomy 2025, 15, 451. [Google Scholar] [CrossRef]
- Kumar, A.; Chandra, R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 2020, 6, e03170. [Google Scholar] [CrossRef]
- Singh, R.; Jain, R.; Soni, P.; de Los Santos-Villalobos, S.; Chattaraj, S.; Roy, D.; Mitra, D.; Gaur, A. Graphing the green route: Enzymatic hydrolysis in sustainable decomposition. Curr. Res. Microb. Sci. 2024, 7, 100281. [Google Scholar] [CrossRef] [PubMed]
- Gaur, N.; Narasimhulu, K. Biochemical and kinetic characterization of laccase and manganese peroxidase from novel Klebsiella pneumoniae strains and their application in bioethanol production. Rsc Adv. 2018, 8, 15044–15055. [Google Scholar] [CrossRef] [PubMed]
- Buzzo, B.B.; Lima, N.S.M.; Pereira, P.A.M.; Gomes-Pepe, E.S.; Sartini, C.C.F.; Lemos, E.G.D.M. Lignin degradation by a novel thermophilic and alkaline yellow laccase from Chitinophaga sp. Microbiol. Spectr. 2024, 12, e04013-23. [Google Scholar] [CrossRef]
- Minhas, W.R.; Bashir, S.; Zhang, C.; Raza, A. Optimized production of laccase from Pseudomonas stutzeri and its biodegradation of lignin in biomass. Folia Microbiol. 2024, 1–8. [Google Scholar] [CrossRef]
- Verma, M.; Ekka, A.; Mohapatra, T.; Ghosh, P. Optimization of kraft lignin decolorization and degradation by bacterial strain Bacillus velezensis using response surface methodology. J. Environ. Chem. Eng. 2020, 8, 104270. [Google Scholar] [CrossRef]
- Arlet, A.C.I.; Tociu, M.; Balanuca, B.; Israel-Roming, F. Extraction and evaluation of total phenolics content from red corn bran. Sci. Bull. Ser. F. Biotechnol. 2023, 27, 60–67. [Google Scholar]
- Arlet, A.C.I.; Balanuca, B.; Tociu, M.; Ott, C.; Constantin, L.; Popa, A.; Israel-Roming, F. Influence of membrane separation technique upon the phenolic content of red corn bran extract. Sci. Bull. Ser. F. Biotechnol. 2024, 28, 101–109. [Google Scholar]
- Higuchi, T. Microbial degradation of lignin: Role of lignin peroxidase, manganese peroxidase, and laccase. Proc. Jpn. Acad. Ser. B 2004, 80, 204–214. [Google Scholar] [CrossRef]
- Tribulová, T.E.; Kacik, F.; Evtuguin, D.M.; Cabalová, I. Assessment of chromophores in chemically treated and aged wood by uv-vis diffuse reflectance spectroscopy. Cellul. Chem. Technol. 2016, 50, 659–667. [Google Scholar]
- Martin, E.; Agnihotri, S.; Audonnet, F.; Record, E.; Dubessay, P.; Taherzadeh, M.J.; Michaud, P. From Corncob By-Product to Functional Lignins: Comparative Analysis of Alkaline and Organosolv Extraction Followed by Laccase Treatment. Biomolecules 2025, 15, 1226. [Google Scholar] [CrossRef]
- Deng, Z.; Xia, A.; Liao, Q.; Zhu, X.; Huang, Y.; Fu, Q. Laccase pretreatment of wheat straw: Effects of the physicochemical characteristics and the kinetics of enzymatic hydrolysis. Biotechnol. Biofuels 2019, 12, 159. [Google Scholar] [CrossRef]
- Sammons, R.J.; Harper, D.P.; Labbé, N.; Bozell, J.J.; Elder, T.; Rials, T.G. Characterization of organosolv lignins using thermal and FT-IR spectroscopic analysis. BioResources 2013, 8, 2752–2767. [Google Scholar] [CrossRef]
- Cook, C.; Francocci, F.; Cervone, F.; Bellincampi, D.; Bolwell, P.G.; Ferrari, S.; Devoto, A. Combination of pretreatment with white rot fungi and modification of primary and secondary cell walls improves saccharification. BioEnergy Res. 2015, 8, 175–186. [Google Scholar] [CrossRef]
- Huerta, E.R.; Muddasar, M.; Collins, M.N. Enzymatic hydrolysis lignin and kraft lignin from birch wood: A source of functional bio-based materials. Wood Sci. Technol. 2024, 58, 423–440. [Google Scholar] [CrossRef]
- Arora, D.S.; Chander, M.; Gill, P.K. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int. Biodeterior. Biodegrad. 2002, 50, 115–120. [Google Scholar] [CrossRef]
- MacDonald, J.; Goacher, R.E.; Abou-Zaid, M.; Master, E.R. Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS. Appl. Microbiol. Biotechnol. 2016, 100, 8013–8020. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zeng, G.; Tan, Z.; Jiang, M.; Li, H.; Liu, L.; Zhu, Y.; Yu, Z.; Wei, Z.; Liu, Y.; et al. Understanding lignin-degrading reactions of ligninolytic enzymes: Binding affinity and interactional profile. PLoS ONE 2011, 6, e25647. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, Q.; Asgher, M.; Sheikh, M.A.; Nawaz, H. Optimization of ligninolytic enzymes production through response surface methodology. Bioresources 2013, 8, 944–968. [Google Scholar] [CrossRef]
- Rath, S.; Paul, M.; Behera, H.K.; Thatoi, H. Response surface methodology mediated optimization of Lignin peroxidase from Bacillus mycoides isolated from Simlipal Biosphere Reserve, Odisha, India. J. Genet. Eng. Biotechnol. 2022, 20, 2. [Google Scholar] [CrossRef]
Factor | Range and Levels | ||||
---|---|---|---|---|---|
Independent variables | Xi | −1 | 0 | +1 | |
Lac | pH | X1 | 4 | 5 | 6 |
Temperature (°C) | X2 | 30 | 50 | 70 | |
Concentration of kraft lignin (mg/mL) | X3 | 1 | 3 | 5 | |
Concentration of enzyme (U/mL) | X4 | 0.2 | 0.6 | 1 | |
Concentration of copper (II) sulphate (mM) | X5 | 0 | 1 | 2 | |
LiP | pH | X1 | 2 | 3 | 4 |
Temperature (°C) | X2 | 30 | 40 | 50 | |
Concentration of kraft lignin (mg/mL) | X3 | 1 | 3 | 5 | |
Concentration of enzyme (U/mL) | X4 | 0.001 | 0.008 | 0.015 | |
Concentration of veratryl alcohol (mM) | X5 | 0 | 1 | 2 | |
MnP | pH | X1 | 4 | 5 | 6 |
Temperature (°C) | X2 | 30 | 50 | 70 | |
Concentration of kraft lignin (mg/mL) | X3 | 1 | 3 | 5 | |
Concentration of enzyme (U/mL) | X4 | 0.00028 | 0.00224 | 0.0042 | |
Concentration of manganese (II) sulphate (mM) | X5 | 0 | 1 | 2 |
Gallic Acid (µg/mL) | Chlorogenic Acid (µg/mL) | Caffeic Acid (µg/mL) | Syringic Acid (µg/mL) | p-Coumaric Acid (µg/mL) | Ferulic Acid (µg/mL) | Rutin (µg/mL) | Quercetin (µg/mL) | |
---|---|---|---|---|---|---|---|---|
OS-LiP | ND | 0.392 ± 0.06 a | 0.13 ± 0.04 b | 0.246 ± 0.03 a | 0.578 ± 0.02 a | 0.102 ± 0.08 b | 0.901 ± 0.01 a | 0.828 ± 0.11 a |
BS-Lip | ND | ND | 0.101 ± 0.01 b | 0.11 ± 0.09 b | ND | 0.086 ± 0.03 b | ND | 0.443 ± 0.02 b |
KL-Lip | ND | ND | 0.896 ± 0.05 a | 0.394 ± 0.02 a | 2.216 ± 0.12 b | 0.665 ± 0.09 a | ND | ND |
OS-MnP | ND | 0.343 ± 0.12 a | 0.284 ± 0.02 b | 0.279 ± 0.01 a | 1.837 ± 0.06 a | 2.029 ± 0.11 a | 0.96 ± 0.03 a | 0.276 ± 0.09 b |
BS-MnP | 0.041 ± 0.02 b | ND | 0.321 ± 0.08 b | 0.077 ± 0.04 b | 0.053 ± 0.02 b | 0.131 ± 0.02 b | ND | 0.362 ± 0.05 b |
KL-MnP | ND | ND | 2.329 ± 0.12 a | 0.081 ± 0.11 b | 0.072 ± 0.01 b | 0.385 ± 0.02 a | ND | ND |
OS-Lac | ND | 0.231 ± 0.09 b | 0.08 ± 0.09 b | 0.062 ± 0.05 b | 0.045 ± 0.02 b | 0.012 ± 0.01 b | ND | ND |
BS-Lac | 0.049 ± 0.05 b | ND | 0.452 ± 0.01 a | 0.026 ± 0.04 b | ND | 0.009 ± 0.01 b | ND | 0.016 ± 0.04 b |
KL-Lac | 0.023 ± 0.01 b | ND | 0.232 ± 0.04 b | 0.245 ± 0.07 a | ND | 0.032 ± 0.02 b | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burlacu, A.; Popa, A.; Israel-Roming, F. Optimisation of Enzyme Lignin Degradation Using Response Surface Methodology for Sustainable Lignocellulosic By-Products Management. AgriEngineering 2025, 7, 314. https://doi.org/10.3390/agriengineering7100314
Burlacu A, Popa A, Israel-Roming F. Optimisation of Enzyme Lignin Degradation Using Response Surface Methodology for Sustainable Lignocellulosic By-Products Management. AgriEngineering. 2025; 7(10):314. https://doi.org/10.3390/agriengineering7100314
Chicago/Turabian StyleBurlacu (Grigoraș), Alexandra, Aglaia Popa, and Florentina Israel-Roming. 2025. "Optimisation of Enzyme Lignin Degradation Using Response Surface Methodology for Sustainable Lignocellulosic By-Products Management" AgriEngineering 7, no. 10: 314. https://doi.org/10.3390/agriengineering7100314
APA StyleBurlacu, A., Popa, A., & Israel-Roming, F. (2025). Optimisation of Enzyme Lignin Degradation Using Response Surface Methodology for Sustainable Lignocellulosic By-Products Management. AgriEngineering, 7(10), 314. https://doi.org/10.3390/agriengineering7100314