Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (163)

Search Parameters:
Keywords = laboratory-developed molecular assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1100 KB  
Article
Development and Validation of a Field-Based Colorimetric LAMP Assay for the Detection of Clavibacter michiganensis in Tomato Plants
by Glykeria Mermigka, Maria Megariti, Dimitris Malliarakis, Marianthi G. Pagoulatou, Electra Gizeli and Dimitrios E. Goumas
Plants 2026, 15(3), 372; https://doi.org/10.3390/plants15030372 - 25 Jan 2026
Viewed by 206
Abstract
Point-of-care diagnostics are revolutionizing the detection of plant pathogens by enabling rapid, on-site identification without the need for specialized laboratories. One of the tools used for this purpose is loop-mediated isothermal amplification (LAMP). LAMP is a powerful molecular technique increasingly used in pathogen [...] Read more.
Point-of-care diagnostics are revolutionizing the detection of plant pathogens by enabling rapid, on-site identification without the need for specialized laboratories. One of the tools used for this purpose is loop-mediated isothermal amplification (LAMP). LAMP is a powerful molecular technique increasingly used in pathogen control for its rapid, sensitive, and specific detection of plant pathogens. The aim of this study was the development of a novel, easy-to-use portable colorimetric LAMP (cLAMP) assay that could be used by inexperienced personnel for the detection of the pathogen Clavibacter michiganensis. The assay was combined with a newly constructed device in which LAMP can be performed in 30 min. Initially, a new set of LAMP primers targeting the micA gene was designed and evaluated the sensitivity (100 fg/reaction) and specificity of the assay. Next, the limit of detection (LoD) of two different commercial LAMP kits was compared with common laboratory detection techniques (DAS-ELISA, immunofluorescence, quantitative PCR, and PCR) using the same samples. Additionally, the LoD of the developed cLAMP assay was evaluated in bacterial suspensions and plant extracts spiked with C. michiganensis and validated the effect on the LoD of plant extracts from different tomato varieties. Lastly, its efficacy for C. michiganensis detection was assessed in experimentally inoculated tomato seedlings. The developed method for C. michiganensis detection can be used as a reliable tool for the early detection of the pathogen for field-based applications by untrained personnel. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

40 pages, 1207 KB  
Review
Tools to Quantify and Characterize the Persistent Reservoir in People with HIV-1: Focus on Non-B Subtypes
by Zora Sinay, Annefien Tiggeler, Robert-Jan Palstra and Tokameh Mahmoudi
Viruses 2026, 18(1), 110; https://doi.org/10.3390/v18010110 - 14 Jan 2026
Viewed by 628
Abstract
Human immunodeficiency virus type 1 (HIV-1) continues to be a major global health burden. Combination antiretroviral therapy (cART) effectively abrogates HIV-1 replication and has transformed HIV-1 infection from a fatal to chronic disease. While ART can suppress viremia to undetectable levels in people [...] Read more.
Human immunodeficiency virus type 1 (HIV-1) continues to be a major global health burden. Combination antiretroviral therapy (cART) effectively abrogates HIV-1 replication and has transformed HIV-1 infection from a fatal to chronic disease. While ART can suppress viremia to undetectable levels in people living with HIV-1 (PWH), a small reservoir of cells infected with replication-competent HIV-1 persists and can lead to viral rebound upon ART interruption. This persistent HIV-1 reservoir can be quantified and characterized by measuring replication of infectious HIV-1 using a quantitative viral outgrowth assay (qVOA), or by measuring HIV-1 DNA, RNA, or protein levels as a proxy for the reservoir. Tools to quantify the reservoir in these distinct molecular compartments have been developed for HIV-1 subtype B, which is predominant in the Global North. However, non-B subtypes constitute the majority of HIV-1 infections worldwide. Here, we discuss the wide range of reservoir quantitation and characterization tools, explore their limitations, and, where applicable, their adaptations to non-B subtypes. We conclude that standardized tools should be used to characterize reservoir dynamics of HIV-1 B and non-B subtypes. These tests should be well-validated and accessible to all laboratories world-wide to be able to draw conclusions about subtype-specific reservoir dynamics. Full article
(This article belongs to the Special Issue Regulation of HIV-1 Transcription and Latency, 2nd Edition)
Show Figures

Figure 1

25 pages, 737 KB  
Article
From Triplex to Quadruplex: Enhancing CDC’s Respiratory qPCR Assay with RSV Detection on Panther Fusion® Open Access™
by Andy Caballero Méndez, Mayeline N. Sosa Ortiz, Roberto A. Reynoso de la Rosa, Miguel E. Abreu Bencosme and Karla V. Montero Lebrón
Microorganisms 2026, 14(1), 167; https://doi.org/10.3390/microorganisms14010167 - 12 Jan 2026
Viewed by 498
Abstract
The overlapping circulation of influenza (Flu), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; SC2), and respiratory syncytial virus (RSV) continues to challenge clinical laboratories, particularly in settings with limited automation and fragmented healthcare coverage. This study expanded the CDC Flu-SC2 assay by incorporating [...] Read more.
The overlapping circulation of influenza (Flu), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; SC2), and respiratory syncytial virus (RSV) continues to challenge clinical laboratories, particularly in settings with limited automation and fragmented healthcare coverage. This study expanded the CDC Flu-SC2 assay by incorporating a laboratory-developed test (LDT) for RSV A/B detection into a fully automated quadruplex RT-qPCR (LDRA) on the Panther Fusion® Open Access™ system. The design, based on more than 8000 RSV genomic sequences targeting the conserved M gene, achieved optimal amplification efficiencies (97–105%) and full multiplex compatibility. Analytical assessment established limits of detection between 9.6 and 37.8 copies per reaction, absence of cross-reactivity with 30 respiratory pathogens, and inclusivity for 32 viral variants. Commutability and diagnostic performance among the LDRA, CE IVD-marked Allplex™ SARS-CoV-2/FluA/FluB/RSV, and US IVD-marked Panther Fusion® SARS-CoV-2/Flu A/B/RSV Assays were evaluated using 405 nasopharyngeal UTM-preserved swabs. The LDRA demonstrated excellent concordance (overall agreement ≥ 98%, κ > 0.95), strong diagnostic accuracy, and reliable detection of mixed infections. This quadruplex provides a fully automated, rapid, and accurate solution for the simultaneous detection of influenza A, influenza B, SARS-CoV-2, and RSV viruses, enhancing molecular diagnostic capacity and supporting equitable, timely clinical decision-making in middle-income healthcare systems such as that of the Dominican Republic. Full article
Show Figures

Figure 1

16 pages, 4374 KB  
Article
Development and Laboratory Validation of a Real-Time Quantitative PCR Assay for Rapid Detection and Quantification of Heterocapsa bohaiensis
by Mengfan Cai, Ruijia Jing, Yiwen Zhang and Jingjing Zhan
J. Mar. Sci. Eng. 2026, 14(1), 98; https://doi.org/10.3390/jmse14010098 - 4 Jan 2026
Viewed by 236
Abstract
Heterocapsa bohaiensis is an emerging harmful dinoflagellate increasingly reported from coastal regions of the Pacific. However, an available molecular assay offering rapid and sensitive detection is still lacking. This study developed a SYBR Green real-time quantitative PCR (qPCR) assay for the identification and [...] Read more.
Heterocapsa bohaiensis is an emerging harmful dinoflagellate increasingly reported from coastal regions of the Pacific. However, an available molecular assay offering rapid and sensitive detection is still lacking. This study developed a SYBR Green real-time quantitative PCR (qPCR) assay for the identification and quantification of H. bohaiensis. Species-specific primers (F: 5′-CCATCGAACCAGAACTCCGT-3′; R: 5′-AGTGTAGTGCACCGCATGTC-3′) were designed and the assay was optimized and evaluated using laboratory cultures for specificity, sensitivity, and quantitative performance. Primer screening and melt-curve analysis confirmed that the selected primer pair produced a single, specific amplification peak for H. bohaiensis, with no cross-reactivity observed in non-target species (Chlorella pyrenoidosa, Phaeocystis globosa, Skeletonema costatum, Alexandrium tamarense) or mixed algal communities. The standard curve displayed strong linearity (R2 = 0.9868) and a high amplification efficiency (102.5%). The limit of detection (LOD) was approximately 2–3 cells per reaction, as determined from 24 replicates of 5-cell equivalents and verified at ~2.7-cell equivalents. This sensitivity was comparable to or exceeded that reported for assays targeting other HABs forming dinoflagellates. Quantitative results derived from the qPCR assay closely matched microscopic cell counts, with a relative error of 10.79%, falling within the acceptable threshold for phytoplankton surveys. In summary, this study established and validates a species-specific qPCR assay for H. bohaiensis under controlled laboratory conditions. The method shows strong potential for incorporation into HAB monitoring programs, early-warning systems, and future ecological investigations of this emerging species. Full article
Show Figures

Figure 1

14 pages, 882 KB  
Article
High-Accuracy Serodiagnosis of African Swine Fever Using P72 and P30-Based Lateral Flow Assays: A Validation Study with Field Samples in Thailand
by Nitipon Srionrod, Supphathat Wutthiwitthayaphong, Teera Nipakornpun and Sakchai Ruenphet
Vet. Sci. 2026, 13(1), 4; https://doi.org/10.3390/vetsci13010004 - 19 Dec 2025
Viewed by 372
Abstract
African Swine Fever (ASF) control is severely hampered by the reliance on slow, laboratory-bound diagnostics. While rapid, field-deployable lateral flow assays (LFAs) are urgently needed, the comparative performance of key single-antigen targets remains poorly characterized. This study aimed to develop and systematically evaluate [...] Read more.
African Swine Fever (ASF) control is severely hampered by the reliance on slow, laboratory-bound diagnostics. While rapid, field-deployable lateral flow assays (LFAs) are urgently needed, the comparative performance of key single-antigen targets remains poorly characterized. This study aimed to develop and systematically evaluate the diagnostic performance of three in-house single-antigen LFAs targeting ASF virus P30, P54, and P72, using swine field samples from Thailand, including a panel of 143 quantitative polymerase chain reaction-negative swine serum samples. The performance of each LFA was compared against a commercial multi-antigen (P32/P62/P72) indirect ELISA, which served as the reference standard, classifying 64 samples as positive and 79 as negative. The P72-based LFA demonstrated perfect diagnostic performance (100% sensitivity, 100% specificity) and perfect agreement (κ = 1.0) with the enzyme-linked immunosorbent assay (ELISA). Similarly, the P30 LFA demonstrated high performance (100% sensitivity, 98.7% specificity) with ‘Almost Perfect’ agreement (κ = 0.9859). In contrast, the P54 LFA was unsuitable, achieving 100% sensitivity but unacceptably low specificity (88.6%) due to a high rate of false positives. Overall, the single-antigen P72 and P30 LFAs demonstrated excellent concordance with the multi-antigen ELISA, supporting their reliable for detecting antibodies against ASFV. Although these assays do not replace molecular methods for acute infection detection, they represent valuable complementary tools for serosurveillance. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

24 pages, 1886 KB  
Review
Diagnostic Methods for Bovine Coronavirus: A Review of Recent Advancements and Challenges
by Jie Dong, Xiaoxiao He, Shijun Bao and Zhanyong Wei
Viruses 2025, 17(12), 1533; https://doi.org/10.3390/v17121533 - 22 Nov 2025
Viewed by 874
Abstract
Bovine coronavirus(BCoV) is a significant pathogen causing substantial economic losses in the cattle industry through increased calf mortality, reduced growth performance, and decreased milk yield. Rapid and accurate diagnostic methods are therefore essential for controlling BCoV transmission. Current diagnostic methods comprise two primary [...] Read more.
Bovine coronavirus(BCoV) is a significant pathogen causing substantial economic losses in the cattle industry through increased calf mortality, reduced growth performance, and decreased milk yield. Rapid and accurate diagnostic methods are therefore essential for controlling BCoV transmission. Current diagnostic methods comprise two primary categories: conventional techniques and cutting-edge innovations. Conventional approaches, including molecular methods like RT-PCR/qRT-PCR and immunological assays such as ELISA and neutralization tests, remain the main diagnostic methods. However, they are limited by laboratory dependency as well as the necessary balance between speed and sensitivity. These limitations have promoted the development of innovative methods, including isothermal amplification, CRISPR/Cas systems, droplet digital PCR, and integrated platforms. This review comprehensively analyzes the advantages, limitations, and applications of current diagnostic methods, highlighting integrated platforms such as RPA-CRISPR-LFA and microfluidics-based LFA. These innovations bridge critical performance gaps by enhancing sensitivity and specificity while enabling field application, demonstrating significant potential as next-generation point-of-care diagnostics for managing this economically critical pathogen. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 910 KB  
Article
Titanium Dioxide Solar Photocatalytic Microbial Inactivation Assessment Utilizing Viability Tests and a Novel Triplex qPCR Assay for Nucleic Acid Degradation Determination
by Ioannis Paspaltsis, Eirini Kanata, Sotirios Sotiriadis, Chrysanthi Berberidou, Sophia Tsoumachidou, Athanasios Arsenakis, Konstantinos Xanthopoulos, Dimitra Dafou, Ioannis Poulios and Theodoros Sklaviadis
Molecules 2025, 30(22), 4333; https://doi.org/10.3390/molecules30224333 - 7 Nov 2025
Viewed by 534
Abstract
Photocatalytic oxidation of microorganisms is a powerful alternative to established disinfection approaches, applicable to a variety of water matrices. Bacterial vegetative cells, spores, fungi, and viruses, represent potential biopathogens and photocatalysis targets. Inactivation efficiency is usually evaluated by assessing viability through culture. However, [...] Read more.
Photocatalytic oxidation of microorganisms is a powerful alternative to established disinfection approaches, applicable to a variety of water matrices. Bacterial vegetative cells, spores, fungi, and viruses, represent potential biopathogens and photocatalysis targets. Inactivation efficiency is usually evaluated by assessing viability through culture. However, additional inactivation assessment approaches are needed, as some microbes, despite being unculturable, remain metabolically active and pathogenic. Nucleic acid quantification approaches (qPCR) can assess nucleic acid release and degradation during photocatalysis. We developed a novel multiplex qPCR assay for simultaneous detection/quantification of genomic DNA from different bacterial and fungal species and of MS2 bacteriophage load. Following small-scale solar titanium dioxide photocatalysis on a microbial suspension mixture containing different biopathogen classes, we assessed photocatalytic efficiency by conventional microbiological assays (culture) and our novel molecular assay. Microbiological assays show a significant reduction in microbe viability within one hour of processing, following previously reported patterns of microbial species resistance. Molecular analysis data show that nucleic acids released in solution due to microbial oxidative damage were significantly reduced due to oxidative degradation within six hours. Through targeting different biopathogen classes, our assay could be a useful tool for assessment of photocatalytic microbe inactivation both in laboratory and real-wastewater applications. Full article
(This article belongs to the Topic Advanced Oxidation Processes for Wastewater Purification)
Show Figures

Graphical abstract

8 pages, 316 KB  
Case Report
Travel-Related Malaria Diagnosis on Karius Test Despite Negative Blood Smear
by Joseph Eugene Weigold, Shankar Lal and Dima Ahmad Youssef
Trop. Med. Infect. Dis. 2025, 10(11), 310; https://doi.org/10.3390/tropicalmed10110310 - 31 Oct 2025
Viewed by 724
Abstract
Malaria remains a considerable challenge to international health, especially in returning travelers from endemic regions where exposure risk may be downplayed. Prompt and accurate diagnosis is crucial, especially when conventional diagnostic techniques are insufficient. This case report presents a 59-year-old man who developed [...] Read more.
Malaria remains a considerable challenge to international health, especially in returning travelers from endemic regions where exposure risk may be downplayed. Prompt and accurate diagnosis is crucial, especially when conventional diagnostic techniques are insufficient. This case report presents a 59-year-old man who developed fever, rash, and myalgia after returning from the Amazon rainforest. Initial laboratory tests demonstrated leukopenia, thrombocytopenia, transaminitis, and hyperbilirubinemia. Despite these abnormal results and a clinically suspicious presentation, malaria smears were negative. Since the symptoms did not resolve, a Karius test—a plasma-based microbial cell-free DNA sequencing assay—successfully detected the presence of Plasmodium vivax, thus establishing the diagnosis. The patient needed several treatment regimens for the recurrent attacks, including chloroquine and primaquine, artemether-lumefantrine, and eventually a combination of quinine and doxycycline together with a prolonged course of primaquine. His symptoms resolved completely after the last treatment regimen, along with the normalization of the blood counts and liver function tests. This case demonstrates the limitations of smear microscopy diagnosis in P. vivax infections, highlights the role of molecular diagnostics like the Karius test, and stresses the importance of preventing relapses with adequate hypnozoite clearance. It further highlights the importance of clinician awareness and diligent follow-up in cases of travel-related Malaria, especially those with unusual presentations or recurrent symptoms. Full article
Show Figures

Figure 1

19 pages, 6041 KB  
Article
Integrating RPA-LFD and TaqMan qPCR for Rapid On-Site Screening and Accurate Laboratory Identification of Coilia brachygnathus and Coilia nasus in the Yangtze River
by Yu Lin, Suyan Wang, Min Zhang, Na Wang, Hongli Jing, Jizhou Lv and Shaoqiang Wu
Foods 2025, 14(20), 3484; https://doi.org/10.3390/foods14203484 - 13 Oct 2025
Cited by 1 | Viewed by 686
Abstract
Accurate differentiation between Coilia brachygnathus and Coilia nasus is imperative for the effective management of fisheries, the conservation of aquatic ecosystems, and the mitigation of commercial fraud. Current morphological identification remains challenging due to their high morphological similarity—particularly for processed samples—while conventional molecular [...] Read more.
Accurate differentiation between Coilia brachygnathus and Coilia nasus is imperative for the effective management of fisheries, the conservation of aquatic ecosystems, and the mitigation of commercial fraud. Current morphological identification remains challenging due to their high morphological similarity—particularly for processed samples—while conventional molecular methods often lack the speed or specificity required for field applications or high-throughput screening. In this study, a novel integrated approach was developed and validated, combining TaqMan quantitative real-time PCR (qPCR). for precise genotyping of C. brachygnathus and C. nasus with Recombinase Polymerase Amplification coupled with Lateral Flow Dipstick (RPA-LFD) for rapid on-site screening. First, species-specific RPA-LFD assays were designed to target the mitochondrial COI gene sequence. This enabled visual detection within 10 min at 37 °C, with a sensitivity of 102 copies/μL, and required no complex equipment. A dual TaqMan MGB qPCR assay was further developed by validating stable differentiating SNPs (chr21:3798155, C/T) between C. brachygnathus and C. nasus, using FAM/VIC dual-labeled MGB probes. Results showed that this assay could distinguish the two species in a single tube: for C. brachygnathus, Ct values in the FAM channel were significantly earlier than those in the VIC channel (ΔCt ≥ 1), with a FAM detection limit of 125 copies/reaction; for C. nasus, only VIC channel amplification was observed, with a detection limit as low as 12.5 copies/reaction. Validation with 171 known tissue samples demonstrated 100% concordance with expected species identities. This integrated approach effectively combines the high accuracy and quantitative capacity of TaqMan qPCR for confirmatory laboratory genotyping with the speed, simplicity, and portability of RPA-LFD for initial field or point-of-need screening. This reliable, efficient, and user-friendly technique provides a powerful tool for resource management, biodiversity monitoring, and ensuring the authenticity of high-quality C. brachygnathus and C. nasus. Full article
Show Figures

Figure 1

15 pages, 592 KB  
Article
Evaluating the Impact of a Molecular Diagnostic Algorithm on Tuberculosis and Nontuberculous Mycobacterial Infections in Newfoundland and Labrador, Canada
by Robert Needle, Yang Yu, Hafid Soualhine, Catherine Yoshida, Lei Jiao and Rodney Russell
Biomedicines 2025, 13(10), 2416; https://doi.org/10.3390/biomedicines13102416 - 2 Oct 2025
Viewed by 1074
Abstract
Background/Objectives: The diagnosis of Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacterial (NTM) infections is accomplished by three main diagnostics methods: smear microscopy, culture, and molecular testing. Diagnostic algorithms used by laboratories can significantly impact clinical and infection control management. Current Canadian Tuberculosis [...] Read more.
Background/Objectives: The diagnosis of Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacterial (NTM) infections is accomplished by three main diagnostics methods: smear microscopy, culture, and molecular testing. Diagnostic algorithms used by laboratories can significantly impact clinical and infection control management. Current Canadian Tuberculosis Standards recommend the use of nucleic acid amplification testing (NAAT) for smear-positive patients and smear-negative patients upon request. An alternative algorithm is to utilize NAAT in the Panel approach on all samples, pulmonary and extrapulmonary, to potentially reduce time to diagnosis and treatment. This alternative approach was implemented in November 2019 at the Newfoundland and Labrador Public Health and Microbiology Laboratory (NL PHML) using a laboratory-developed multiplex real-time PCR (LDT m-qPCR) assay targeting Mycobacterium spp. (Myco spp.) and MTBC, performed in parallel with smear and culture. Methods: To investigate the impact of this alternate testing approach, we conducted an observational retrospective analysis of laboratory diagnostic and treatment data, recognizing that temporal changes in epidemiology, clinical practice, and laboratory workflow may also have influenced outcomes. To complete this, study data from three years before and four years after implementation were gathered. Results: The sensitivity/specificity of the smear, m-LDT qPCR-MTBC, m-LDT qPCR-Myco spp., and culture assays in this study were 18.1%/100%, 96.7%/99.8%, 47.6%/99.0%, and 96.8%/100%, respectively. The gold standard utilized for these calculations was clinical diagnosis for active MTBC disease and culture for NTM infections, recognizing that the use of clinical diagnosis may introduce subjectivity. The Panel approach reduced the time to diagnosis of tuberculosis MTBC by 29 days (p < 0.0001) for NL PHML, and when modelled for a laboratory with rapid culture identification, diagnosis was reduced by 14 days (p = 0.003). Among non-empirically treated tuberculosis patients, the time to treatment was decreased by 25.5 days (p < 0.001). For NTM infections, rapid diagnostics only affected one patient’s treatment. This finding agrees with clinical management guidelines, which do not routinely utilize rapid diagnostics for the diagnosis of disease or treatment decisions. The cost implications of additional NAAT testing were calculated to be an increase of CAD 23.62 per sample. Conclusions: Our findings support the adoption of a molecular assay for MTBC as an initial diagnostic tool to decrease time to diagnosis and time to treatment, depending on local epidemiology and irrespective of smear status. Utilizing a molecular assay for genus level identification of NTM had minimal impact on clinical management suggesting its limited diagnostic utility in a broad population setting. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Monitoring in Tuberculosis)
Show Figures

Figure 1

28 pages, 2183 KB  
Review
CRISPR-Powered Liquid Biopsies in Cancer Diagnostics
by Joshua R. Slattery, Noel Ye Naung, Bernd H. Kalinna and Martin Pal
Cells 2025, 14(19), 1539; https://doi.org/10.3390/cells14191539 - 1 Oct 2025
Cited by 1 | Viewed by 2393
Abstract
Liquid biopsies promise major advantages for cancer screening and diagnosis. By detecting biomarkers in peripheral blood samples, liquid biopsies reduce the need for invasive techniques and provide important genetic information integral to the emerging molecular classification of cancers. Unfortunately, the concentrations of most [...] Read more.
Liquid biopsies promise major advantages for cancer screening and diagnosis. By detecting biomarkers in peripheral blood samples, liquid biopsies reduce the need for invasive techniques and provide important genetic information integral to the emerging molecular classification of cancers. Unfortunately, the concentrations of most biomarkers, particularly circulating tumour nucleic acids, are vanishingly small—beyond the sensitivity and specificity of most assays. Clustered Regularly Interspaced Short Palindromic Repeats diagnostics (herein labelled ‘CRISPR-Dx’) use gene editing tools to detect, rather than modify, nucleic acids with extremely high specificity. These tools are commonly combined with isothermal nucleic acid amplification to also achieve sensitivities comparable to high-performance laboratory-based techniques, such as digital PCR. CRISPR assays, however, are inherently well suited to adaptation for point-of-care (POC) use, and unlike antigen-based POC assays, are significantly easier and faster to develop. In this review, we summarise current CRISPR-Dx platforms and their analytical potential for cancer biomarker discovery, with an emphasis on enhancing early diagnosis, disease monitoring, point-of-care testing, and supporting cancer therapy. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing Approaches in Cancer Therapy)
Show Figures

Figure 1

12 pages, 1339 KB  
Article
Development of an RPA-CRISPR/LbaCas12a-Lateral Flow Assay for the Visual Detection of Chrysotila dentata (Haptophyta)
by Jiating Yu, Yun Shen, Qinfei Zhang, Xuxu Luo, Yujie Zong, Chengxu Zhou, Hailong Huang and Haibo Jiang
Microorganisms 2025, 13(9), 2203; https://doi.org/10.3390/microorganisms13092203 - 20 Sep 2025
Viewed by 1012
Abstract
Chrysotila dentata (Haptophyta), a harmful algal bloom (HAB) species frequently occurring in coastal waters of China, is one with strong environmental adaptability that poses a serious threat to marine ecosystems and fisheries. Current molecular detection techniques and early warning systems for this species [...] Read more.
Chrysotila dentata (Haptophyta), a harmful algal bloom (HAB) species frequently occurring in coastal waters of China, is one with strong environmental adaptability that poses a serious threat to marine ecosystems and fisheries. Current molecular detection techniques and early warning systems for this species remain limited. To address this, we developed a rapid and highly sensitive detection method for C. dentata. This method integrates recombinase polymerase amplification (RPA) with CRISPR-LbaCas12a and lateral flow dipstick (LFD) technologies, enabling visual readout of results. Key parameters, including the single-stranded DNA (ssDNA) reporter concentration, reaction time, and temperature, were systematically optimized. Field water sample testing demonstrated high specificity and sensitivity, achieving a detection limit of 5 × 10−6 pg μL−1 for genomic DNA under laboratory conditions and 2.82 × 101 cells mL−1 in simulated environmental samples. The entire detection process takes only 1 h (at a constant 39 °C), and results can be directly interpreted via LFD strips. For early warning and prevention of C. dentata outbreaks, this assay provides a powerful, reliable, and field-ready monitoring tool. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

10 pages, 3044 KB  
Communication
Development of a Multienzyme Isothermal Rapid-Amplification Lateral Flow Assay for On-Site Identification of the Japanese Eel (Anguilla japonica)
by Eun Soo Noh, Chun-Mae Dong, Hyo Sun Jung, Jungwook Park, Injun Hwang and Jung-Ha Kang
Foods 2025, 14(17), 3100; https://doi.org/10.3390/foods14173100 - 4 Sep 2025
Cited by 1 | Viewed by 986
Abstract
Eel populations are globally threatened by overfishing and illegal trade, making accurate species identification essential for resource conservation and regulatory enforcement. Conventional molecular identification methods are generally applied in the laboratory, with limited rapid on-site application. This study developed a field-deployable assay to [...] Read more.
Eel populations are globally threatened by overfishing and illegal trade, making accurate species identification essential for resource conservation and regulatory enforcement. Conventional molecular identification methods are generally applied in the laboratory, with limited rapid on-site application. This study developed a field-deployable assay to identify the Japanese eel (Anguilla japonica), by incorporating multienzyme isothermal rapid amplification (MIRA) technology with a visually readable lateral flow assay (LFA). Species-specific primers targeting a 286 bp region within the mitochondrial genome of A. japonica were designed and labeled with fluorescein amidite and biotin, respectively. The performance of the MIRA-LFA was validated by assessing its specificity against four other major eel species and its analytical sensitivity, i.e., limit of detection (LoD), under optimized temperature and reaction-time conditions. The MIRA-LFA demonstrated 100% specificity, generating a positive signal only for A. japonica, with no cross-reactivity. A clear visual result was obtained within 10 min at the optimal reaction temperature of 39 °C. Under these optimal conditions, the assay showed a high sensitivity, with an LoD of 0.1 ng/μL of genomic DNA. The proposed assay is an effective tool for the rapid, specific, and sensitive identification of A. japonica. The ability to obtain fast, equipment-free visual results makes this assay an ideal point-of-care testing solution to combat seafood fraud and support the sustainable management of this economically important and vulnerable species. Full article
Show Figures

Figure 1

15 pages, 1118 KB  
Article
An Isothermal Deoxyribozyme Sensor for Rapid Detection of Enteroviral RNA
by Begüm Şaş, Anastasiia Dmitrievna Kirichenko, Marina Anatolyevna Kapitonova, Anna Vyacheslavovna Shabalina, Olga Ilyinichna Kanaeva, Tamer Mohammed El-Messery, Vladimir Georgievich Dedkov and Anna Sergeevna Dolgova
Biosensors 2025, 15(9), 562; https://doi.org/10.3390/bios15090562 - 27 Aug 2025
Viewed by 1248
Abstract
Enteric viruses are a major cause of waterborne infections due to their high environmental stability and extremely low infectious dose. Current molecular diagnostic methods, while accurate, often depend on thermal cycling and centralized laboratory facilities, limiting their applicability in decentralized or resource-limited settings. [...] Read more.
Enteric viruses are a major cause of waterborne infections due to their high environmental stability and extremely low infectious dose. Current molecular diagnostic methods, while accurate, often depend on thermal cycling and centralized laboratory facilities, limiting their applicability in decentralized or resource-limited settings. In this study, we developed an isothermal biosensor based on a split deoxyribozyme that reconstitutes its catalytic core upon hybridization with a conserved sequence of enteroviral RNA. This activation leads to site-specific cleavage of a fluorogenic substrate, producing a quantifiable fluorescent signal. The system was experimentally validated using both synthetic enteroviral RNA and RNA extracted from environmental water samples. To enhance detection sensitivity, the DNAzyme-based assay was coupled with isothermal RNA amplification. The results demonstrate high selectivity and compatibility with real-world samples, supporting the sensor’s utility for field-deployable viral RNA detection. Overall, this study highlights the potential of the DNAzyme-based platform as a portable, sequence-specific, and amplification-assisted diagnostic tool for environmental surveillance of enteric viruses. Full article
(This article belongs to the Section Environmental, Agricultural, and Food Biosensors)
Show Figures

Figure 1

10 pages, 1901 KB  
Article
Bovine Viral Diarrhea Virus-1 (Pestivirus bovis) Associated with Stillborn and Mummified Fetuses in Farmed White-Tailed Deer (Odocoileus virginianus) in Florida
by An-Chi Cheng, Emily DeRuyter, Pedro H. de Oliveira Viadanna, Zoe S. White, John A. Lednicky, Samantha M. Wisely, Kuttichantran Subramaniam and Juan M. Campos Krauer
Viruses 2025, 17(8), 1104; https://doi.org/10.3390/v17081104 - 12 Aug 2025
Viewed by 2550
Abstract
Bovine viral diarrhea virus (BVDV) is a globally significant pathogen affecting both domestic livestock and wildlife, including white-tailed deer (WTD; Odocoileus virginianus). While experimental infections have demonstrated WTD susceptibility to BVDV, natural infections and associated reproductive outcomes remain scarcely documented. Here, we [...] Read more.
Bovine viral diarrhea virus (BVDV) is a globally significant pathogen affecting both domestic livestock and wildlife, including white-tailed deer (WTD; Odocoileus virginianus). While experimental infections have demonstrated WTD susceptibility to BVDV, natural infections and associated reproductive outcomes remain scarcely documented. Here, we report the first confirmed case of naturally occurring BVDV-1 infection associated with fetal mummification in farmed WTD in Florida. A two-year-old doe experienced a stillbirth involving two mummified fetuses, which were submitted for necropsy and laboratory diagnostics. Gross findings included diarrhea and underdeveloped eyes in the fetuses, along with small white nodules indicative of amnion nodosum. While not harmful, this condition suggests underlying fetal compromise or intrauterine stress. Virus isolation using Vero E6 and bovine turbinate cell lines, along with a reverse transcription PCR (RT-PCR) assay specifically developed in this study, confirmed the presence of BVDV-1 (Pestivirus bovis) RNA in both maternal and fetal samples, suggesting vertical transmission. Sanger sequencing of RT-PCR amplicons further verified the virus species as BVDV-1. Differential diagnostics for other pathogens, including bluetongue virus, epizootic hemorrhagic disease virus, Mycobacterium spp., and Toxoplasma gondii, were negative. These findings underscore the importance of using biosecurity measures and including BVDV in the differential diagnosis of abortions to reduce the risk of BVDV transmission and potential outbreaks on deer farms, particularly those close to cattle operations. The molecular tools developed in this study provide a robust framework for improved detection and monitoring of BVDV in both wildlife and livestock populations. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

Back to TopTop