Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,372)

Search Parameters:
Keywords = k-nearest neighbor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 9675 KiB  
Article
Assessing Model Trade-Offs in Agricultural Remote Sensing: A Review of Machine Learning and Deep Learning Approaches Using Almond Crop Mapping
by Mashoukur Rahaman, Jane Southworth, Yixin Wen and David Keellings
Remote Sens. 2025, 17(15), 2670; https://doi.org/10.3390/rs17152670 (registering DOI) - 1 Aug 2025
Abstract
This study presents a comprehensive review and comparative analysis of traditional machine learning (ML) and deep learning (DL) models for land cover classification in agricultural remote sensing. We evaluate the reported successes, trade-offs, and performance metrics of ML and DL models across diverse [...] Read more.
This study presents a comprehensive review and comparative analysis of traditional machine learning (ML) and deep learning (DL) models for land cover classification in agricultural remote sensing. We evaluate the reported successes, trade-offs, and performance metrics of ML and DL models across diverse agricultural contexts. Building on this foundation, we apply both model types to the specific case of almond crop field identification in California’s Central Valley using Landsat data. DL models, including U-Net, MANet, and DeepLabv3+, achieve high accuracy rates of 97.3% to 97.5%, yet our findings demonstrate that conventional ML models—such as Decision Tree, K-Nearest Neighbor, and Random Forest—can reach comparable accuracies of 96.6% to 96.8%. Importantly, the ML models were developed using data from a single year, while DL models required extensive training data spanning 2008 to 2022. Our results highlight that traditional ML models offer robust classification performance with substantially lower computational demands, making them especially valuable in resource-constrained settings. This paper underscores the need for a balanced approach in model selection—one that weighs accuracy alongside efficiency. The findings contribute actionable insights for agricultural land cover mapping and inform ongoing model development in the geospatial sciences. Full article
Show Figures

Figure 1

22 pages, 2120 KiB  
Article
Machine Learning Algorithms and Explainable Artificial Intelligence for Property Valuation
by Gabriella Maselli and Antonio Nesticò
Real Estate 2025, 2(3), 12; https://doi.org/10.3390/realestate2030012 - 1 Aug 2025
Abstract
The accurate estimation of urban property values is a key challenge for appraisers, market participants, financial institutions, and urban planners. In recent years, machine learning (ML) techniques have emerged as promising tools for price forecasting due to their ability to model complex relationships [...] Read more.
The accurate estimation of urban property values is a key challenge for appraisers, market participants, financial institutions, and urban planners. In recent years, machine learning (ML) techniques have emerged as promising tools for price forecasting due to their ability to model complex relationships among variables. However, their application raises two main critical issues: (i) the risk of overfitting, especially with small datasets or with noisy data; (ii) the interpretive issues associated with the “black box” nature of many models. Within this framework, this paper proposes a methodological approach that addresses both these issues, comparing the predictive performance of three ML algorithms—k-Nearest Neighbors (kNN), Random Forest (RF), and the Artificial Neural Network (ANN)—applied to the housing market in the city of Salerno, Italy. For each model, overfitting is preliminarily assessed to ensure predictive robustness. Subsequently, the results are interpreted using explainability techniques, such as SHapley Additive exPlanations (SHAPs) and Permutation Feature Importance (PFI). This analysis reveals that the Random Forest offers the best balance between predictive accuracy and transparency, with features such as area and proximity to the train station identified as the main drivers of property prices. kNN and the ANN are viable alternatives that are particularly robust in terms of generalization. The results demonstrate how the defined methodological framework successfully balances predictive effectiveness and interpretability, supporting the informed and transparent use of ML in real estate valuation. Full article
Show Figures

Figure 1

28 pages, 10147 KiB  
Article
Construction of Analogy Indicator System and Machine-Learning-Based Optimization of Analogy Methods for Oilfield Development Projects
by Muzhen Zhang, Zhanxiang Lei, Chengyun Yan, Baoquan Zeng, Fei Huang, Tailai Qu, Bin Wang and Li Fu
Energies 2025, 18(15), 4076; https://doi.org/10.3390/en18154076 (registering DOI) - 1 Aug 2025
Abstract
Oil and gas development is characterized by high technical complexity, strong interdisciplinarity, long investment cycles, and significant uncertainty. To meet the need for quick evaluation of overseas oilfield projects with limited data and experience, this study develops an analogy indicator system and tests [...] Read more.
Oil and gas development is characterized by high technical complexity, strong interdisciplinarity, long investment cycles, and significant uncertainty. To meet the need for quick evaluation of overseas oilfield projects with limited data and experience, this study develops an analogy indicator system and tests multiple machine-learning algorithms on two analogy tasks to identify the optimal method. Using an initial set of basic indicators and a database of 1436 oilfield samples, a combined subjective–objective weighting strategy that integrates statistical methods with expert judgment is used to select, classify, and assign weights to the indicators. This process results in 26 key indicators for practical analogy analysis. Single-indicator and whole-asset analogy experiments are then performed with five standard machine-learning algorithms—support vector machine (SVM), random forest (RF), backpropagation neural network (BP), k-nearest neighbor (KNN), and decision tree (DT). Results show that SVM achieves classification accuracies of 86% and 95% in medium-high permeability sandstone oilfields, respectively, greatly surpassing other methods. These results demonstrate the effectiveness of the proposed indicator system and methodology, providing efficient and objective technical support for evaluating and making decisions on overseas oilfield development projects. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

23 pages, 2809 KiB  
Article
Evaluation of Baby Leaf Products Using Hyperspectral Imaging Techniques
by Antonietta Eliana Barrasso, Claudio Perone and Roberto Romaniello
Appl. Sci. 2025, 15(15), 8532; https://doi.org/10.3390/app15158532 (registering DOI) - 31 Jul 2025
Abstract
The transition to efficient production requires innovative water control techniques to maximize irrigation efficiency and minimize waste. Analyzing and optimizing irrigation practices is essential to improve water use and reduce environmental impact. The aim of the research was to identify a discrimination method [...] Read more.
The transition to efficient production requires innovative water control techniques to maximize irrigation efficiency and minimize waste. Analyzing and optimizing irrigation practices is essential to improve water use and reduce environmental impact. The aim of the research was to identify a discrimination method to analyze the different hydration levels in baby-leaf products. The species being researched was spinach, harvested at the baby leaf stage. Utilizing a large dataset of 261 wavelengths from the hyperspectral imaging system, the feature selection minimum redundancy maximum relevance (FS-MRMR) algorithm was applied, leading to the development of a neural network-based prediction model. Finally, a mathematical classification model K-NN (k-nearest neighbors type) was developed in order to identify a transfer function capable of discriminating the hyperspectral data based on a threshold value of absolute leaf humidity. Five significant wavelengths were identified for estimating the moisture content of baby leaves. The resulting model demonstrated a high generalization capability and excellent correlation between predicted and measured data, further confirmed by the successful training, validation, and testing of a K-NN-based statistical classifier. The construction phase of the statistical classifier involved the use of the experimental dataset and the critical humidity threshold value of 0.83 (83% of leaf humidity) was considered, below which the baby-leaf crop requires the irrigation intervention. High percentages of correct classification were achieved for data within two humidity classes. Specifically, the statistical classifier demonstrated excellent performance, with 81.3% correct classification for samples below the threshold and 99.4% for those above it. The application of advanced spectral analysis and artificial intelligence methods has led to significant progress in leaf moisture analysis and prediction, yielding substantial implications for both agriculture and biological research. Full article
(This article belongs to the Special Issue Advances in Automation and Controls of Agri-Food Systems)
Show Figures

Figure 1

18 pages, 1777 KiB  
Article
Machine Learning in Sensory Analysis of Mead—A Case Study: Ensembles of Classifiers
by Krzysztof Przybył, Daria Cicha-Wojciechowicz, Natalia Drabińska and Małgorzata Anna Majcher
Molecules 2025, 30(15), 3199; https://doi.org/10.3390/molecules30153199 - 30 Jul 2025
Viewed by 105
Abstract
The aim was to explore using machine learning (including cluster mapping and k-means methods) to classify types of mead based on sensory analysis and aromatic compounds. Machine learning is a modern tool that helps with detailed analysis, especially because verifying aromatic compounds is [...] Read more.
The aim was to explore using machine learning (including cluster mapping and k-means methods) to classify types of mead based on sensory analysis and aromatic compounds. Machine learning is a modern tool that helps with detailed analysis, especially because verifying aromatic compounds is challenging. In the first stage, a cluster map analysis was conducted, allowing for the exploratory identification of the most characteristic features of mead. Based on this, k-means clustering was performed to evaluate how well the identified sensory features align with logically consistent groups of observations. In the next stage, experiments were carried out to classify the type of mead using algorithms such as Random Forest (RF), adaptive boosting (AdaBoost), Bootstrap aggregation (Bagging), K-Nearest Neighbors (KNN), and Decision Tree (DT). The analysis revealed that the RF and KNN algorithms were the most effective in classifying mead based on sensory characteristics, achieving the highest accuracy. In contrast, the AdaBoost algorithm consistently produced the lowest accuracy results. However, the Decision Tree algorithm achieved the highest accuracy value (0.909), demonstrating its potential for precise classification based on aroma characteristics. The error matrix analysis also indicated that acacia mead was easier for the algorithms to identify than tilia or buckwheat mead. The results show the potential of combining an exploratory approach (cluster map with the k-means method) with machine learning. It is also important to focus on selecting and optimizing classification models used in practice because, as the results so far indicate, choosing the right algorithm greatly affects the success of mead identification. Full article
(This article belongs to the Special Issue Analytical Technologies and Intelligent Applications in Future Food)
Show Figures

Graphical abstract

22 pages, 1724 KiB  
Article
Development and Clinical Interpretation of an Explainable AI Model for Predicting Patient Pathways in the Emergency Department: A Retrospective Study
by Émilien Arnaud, Pedro Antonio Moreno-Sanchez, Mahmoud Elbattah, Christine Ammirati, Mark van Gils, Gilles Dequen and Daniel Aiham Ghazali
Appl. Sci. 2025, 15(15), 8449; https://doi.org/10.3390/app15158449 - 30 Jul 2025
Viewed by 236
Abstract
Background: Overcrowded emergency departments (EDs) create significant challenges for patient management and hospital efficiency. In response, Amiens Picardy University Hospital (APUH) developed the “Prediction of the Patient Pathway in the Emergency Department” (3P-U) model to enhance patient flow management. Objectives: To develop and [...] Read more.
Background: Overcrowded emergency departments (EDs) create significant challenges for patient management and hospital efficiency. In response, Amiens Picardy University Hospital (APUH) developed the “Prediction of the Patient Pathway in the Emergency Department” (3P-U) model to enhance patient flow management. Objectives: To develop and clinically validate an explainable artificial intelligence (XAI) model for hospital admission predictions, using structured triage data, and demonstrate its real-world applicability in the ED setting. Methods: Our retrospective, single-center study involved 351,019 patients consulting in APUH’s EDs between 2015 and 2018. Various models (including a cross-validation artificial neural network (ANN), a k-nearest neighbors (KNN) model, a logistic regression (LR) model, and a random forest (RF) model) were trained and assessed for performance with regard to the area under the receiver operating characteristic curve (AUROC). The best model was validated internally with a test set, and the F1 score was used to determine the best threshold for recall, precision, and accuracy. XAI techniques, such as Shapley additive explanations (SHAP) and partial dependence plots (PDP) were employed, and the clinical explanations were evaluated by emergency physicians. Results: The ANN gave the best performance during the training stage, with an AUROC of 83.1% (SD: 0.2%) for the test set; it surpassed the RF (AUROC: 71.6%, SD: 0.1%), KNN (AUROC: 67.2%, SD: 0.2%), and LR (AUROC: 71.5%, SD: 0.2%) models. In an internal validation, the ANN’s AUROC was 83.2%. The best F1 score (0.67) determined that 0.35 was the optimal threshold; the corresponding recall, precision, and accuracy were 75.7%, 59.7%, and 75.3%, respectively. The SHAP and PDP XAI techniques (as assessed by emergency physicians) highlighted patient age, heart rate, and presentation with multiple injuries as the features that most specifically influenced the admission from the ED to a hospital ward. These insights are being used in bed allocation and patient prioritization, directly improving ED operations. Conclusions: The 3P-U model demonstrates practical utility by reducing ED crowding and enhancing decision-making processes at APUH. Its transparency and physician validation foster trust, facilitating its adoption in clinical practice and offering a replicable framework for other hospitals to optimize patient flow. Full article
Show Figures

Figure 1

21 pages, 4163 KiB  
Article
Digital Twin-Based Ray Tracing Analysis for Antenna Orientation Optimization in Wireless Networks
by Onem Yildiz
Electronics 2025, 14(15), 3023; https://doi.org/10.3390/electronics14153023 - 29 Jul 2025
Viewed by 193
Abstract
Efficient antenna orientation of transmitters is essential for improving wireless signal quality and coverage, especially in large-scale and complex 6G networks. Identifying the best antenna angles is difficult due to the nonlinear interaction among orientation, signal propagation, and interference. This paper introduces a [...] Read more.
Efficient antenna orientation of transmitters is essential for improving wireless signal quality and coverage, especially in large-scale and complex 6G networks. Identifying the best antenna angles is difficult due to the nonlinear interaction among orientation, signal propagation, and interference. This paper introduces a digital twin-based evaluation approach utilizing ray tracing simulations to assess the influence of antenna orientation on critical performance metrics: path gain, received signal strength (RSS), and signal-to-interference-plus-noise ratio (SINR). A thorough array of orientation scenarios was simulated to produce a dataset reflecting varied coverage conditions. The dataset was utilized to investigate antenna configurations that produced the optimal and suboptimal performance for each parameter. Additionally, three machine learning models—k-nearest neighbors (KNN), multi-layer perceptron (MLP), and XGBoost—were developed to forecast ideal configurations. XGBoost had superior prediction accuracy compared to the other models, as evidenced by regression outcomes and cumulative distribution function (CDF) analyses. The proposed workflow demonstrates that learning-based predictors can uncover orientation refinements that conventional grid sweeps overlook, enabling agile, interference-aware optimization. Key contributions include an end-to-end digital twin methodology for rapid what-if analysis and a systematic comparison of lightweight machine learning predictors for antenna orientation. This comprehensive method provides a pragmatic and scalable solution for the data-driven optimization of wireless systems in real-world settings. Full article
(This article belongs to the Special Issue Advances in Wireless Communication Performance Analysis)
Show Figures

Figure 1

25 pages, 17505 KiB  
Article
A Hybrid Spatio-Temporal Graph Attention (ST D-GAT Framework) for Imputing Missing SBAS-InSAR Deformation Values to Strengthen Landslide Monitoring
by Hilal Ahmad, Yinghua Zhang, Hafeezur Rehman, Mehtab Alam, Zia Ullah, Muhammad Asfandyar Shahid, Majid Khan and Aboubakar Siddique
Remote Sens. 2025, 17(15), 2613; https://doi.org/10.3390/rs17152613 - 28 Jul 2025
Viewed by 285
Abstract
Reservoir-induced landslides threaten infrastructures and downstream communities, making continuous deformation monitoring vital. Time-series InSAR, notably the SBAS algorithm, provides high-precision surface-displacement mapping but suffers from voids due to layover/shadow effects and temporal decorrelation. Existing deep-learning approaches often operate on fixed-size patches or ignore [...] Read more.
Reservoir-induced landslides threaten infrastructures and downstream communities, making continuous deformation monitoring vital. Time-series InSAR, notably the SBAS algorithm, provides high-precision surface-displacement mapping but suffers from voids due to layover/shadow effects and temporal decorrelation. Existing deep-learning approaches often operate on fixed-size patches or ignore irregular spatio-temporal dependencies, limiting their ability to recover missing pixels. With this objective, a hybrid spatio-temporal Graph Attention (ST-GAT) framework was developed and trained on SBAS-InSAR values using 24 influential features. A unified spatio-temporal graph is constructed, where each node represents a pixel at a specific acquisition time. The nodes are connected via inverse distance spatial edges to their K-nearest neighbors, and they have bidirectional temporal edges to themselves in adjacent acquisitions. The two spatial GAT layers capture terrain-driven influences, while the two temporal GAT layers model annual deformation trends. A compact MLP with per-map bias converts the fused node embeddings into normalized LOS estimates. The SBAS-InSAR results reveal LOS deformation, with 48% of missing pixels and 20% located near the Dasu dam. ST D-GAT reconstructed fully continuous spatio-temporal displacement fields, filling voids at critical sites. The model was validated and achieved an overall R2 (0.907), ρ (0.947), per-map R2 ≥ 0.807 with RMSE ≤ 9.99, and a ROC-AUC of 0.91. It also outperformed the six compared baseline models (IDW, KNN, RF, XGBoost, MLP, simple-NN) in both RMSE and R2. By combining observed LOS values with 24 covariates in the proposed model, it delivers physically consistent gap-filling and enables continuous, high-resolution landslide monitoring in radar-challenged mountainous terrain. Full article
Show Figures

Figure 1

17 pages, 1149 KiB  
Article
The Relationship Between Smartphone and Game Addiction, Leisure Time Management, and the Enjoyment of Physical Activity: A Comparison of Regression Analysis and Machine Learning Models
by Sevinç Namlı, Bekir Çar, Ahmet Kurtoğlu, Eda Yılmaz, Gönül Tekkurşun Demir, Burcu Güvendi, Batuhan Batu and Monira I. Aldhahi
Healthcare 2025, 13(15), 1805; https://doi.org/10.3390/healthcare13151805 - 25 Jul 2025
Viewed by 284
Abstract
Background/Objectives: Smartphone addiction (SA) and gaming addiction (GA) have become risk factors for individuals of all ages in recent years. Especially during adolescence, it has become very difficult for parents to control this situation. Physical activity and the effective use of free time [...] Read more.
Background/Objectives: Smartphone addiction (SA) and gaming addiction (GA) have become risk factors for individuals of all ages in recent years. Especially during adolescence, it has become very difficult for parents to control this situation. Physical activity and the effective use of free time are the most important factors in eliminating such addictions. This study aimed to test a new machine learning method by combining routine regression analysis with the gradient-boosting machine (GBM) and random forest (RF) methods to analyze the relationship between SA and GA with leisure time management (LTM) and the enjoyment of physical activity (EPA) among adolescents. Methods: This study presents the results obtained using our developed GBM + RF hybrid model, which incorporates LTM and EPA scores as inputs for predicting SA and GA, following the preprocessing of data collected from 1107 high school students aged 15–19 years. The results were compared with those obtained using routine regression results and the lasso, ElasticNet, RF, GBM, AdaBoost, bagging, support vector regression (SVR), K-nearest neighbors (KNN), multi-layer perceptron (MLP), and light gradient-boosting machine (LightGBM) models. In the GBM + RF model, probability scores obtained from GBM were used as input to RF to produce final predictions. The performance of the models was evaluated using the R2, mean absolute error (MAE), and mean squared error (MSE) metrics. Results: Classical regression analyses revealed a significant negative relationship between SA scores and both LTM and EPA scores. Specifically, as LTM and EPA scores increased, SA scores decreased significantly. In contrast, GA scores showed a significant negative relationship only with LTM scores, whereas EPA was not a significant determinant of GA. In contrast to the relatively low explanatory power of classical regression models, ML algorithms have demonstrated significantly higher prediction accuracy. The best performance for SA prediction was achieved using the Hybrid GBM + RF model (MAE = 0.095, MSE = 0.010, R2 = 0.9299), whereas the SVR model showed the weakest performance (MAE = 0.310, MSE = 0.096, R2 = 0.8615). Similarly, the Hybrid GBM + RF model also showed the highest performance for GA prediction (MAE = 0.090, MSE = 0.014, R2 = 0.9699). Conclusions: These findings demonstrate that classical regression analyses have limited explanatory power in capturing complex relationships between variables, whereas ML algorithms, particularly our GBM + RF hybrid model, offer more robust and accurate modeling capabilities for multifactorial cognitive and performance-related predictions. Full article
Show Figures

Figure 1

22 pages, 3429 KiB  
Article
Indoor Positioning and Tracking System in a Multi-Level Residential Building Using WiFi
by Elmer Magsino, Joshua Kenichi Sim, Rica Rizabel Tagabuhin and Jan Jayson Tirados
Information 2025, 16(8), 633; https://doi.org/10.3390/info16080633 - 24 Jul 2025
Viewed by 271
Abstract
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the [...] Read more.
The implementation of an Indoor Positioning System (IPS) in a three-storey residential building employing WiFi signals that can also be used to track indoor movements is presented in this study. The movement of inhabitants is monitored through an Android smartphone by detecting the Received Signal Strength Indicator (RSSI) signals from WiFi Anchor Points (APs).Indoor movement is detected through a successive estimation of a target’s multiple positions. Using the K-Nearest Neighbors (KNN) and Particle Swarm Optimization (PSO) algorithms, these RSSI measurements are trained for estimating the position of an indoor target. Additionally, the Density-based Spatial Clustering of Applications with Noise (DBSCAN) has been integrated into the PSO method for removing RSSI-estimated position outliers of the mobile device to further improve indoor position detection and monitoring accuracy. We also employed Time Reversal Resonating Strength (TRRS) as a correlation technique as the third method of localization. Our extensive and rigorous experimentation covers the influence of various weather conditions in indoor detection. Our proposed localization methods have maximum accuracies of 92%, 80%, and 75% for TRRS, KNN, and PSO + DBSCAN, respectively. Each method also has an approximate one-meter deviation, which is a short distance from our targets. Full article
Show Figures

Graphical abstract

33 pages, 3019 KiB  
Article
Aging Assessment of Power Transformers with Data Science
by Samuel Lessinger, Alzenira da Rosa Abaide, Rodrigo Marques de Figueiredo, Lúcio Renê Prade and Paulo Ricardo da Silva Pereira
Energies 2025, 18(15), 3960; https://doi.org/10.3390/en18153960 - 24 Jul 2025
Viewed by 307
Abstract
Maintenance techniques are fundamental in the context of the safe operation of continuous process installations, especially in electrical energy-transmission and/or -distribution substations. The operating conditions of power transformers are fundamental for the safe functioning of the electrical power system. Predictive maintenance consists of [...] Read more.
Maintenance techniques are fundamental in the context of the safe operation of continuous process installations, especially in electrical energy-transmission and/or -distribution substations. The operating conditions of power transformers are fundamental for the safe functioning of the electrical power system. Predictive maintenance consists of periodically monitoring the asset in use, in order to anticipate critical situations. This article proposes a methodology based on data science, machine learning and the Internet of Things (IoT), to track operational conditions over time and evaluate transformer aging. This characteristic is achieved with the development of a synchronization method for different databases and the construction of a model for estimating ambient temperatures using k-Nearest Neighbors. In this way, a history assessment is carried out with more consistency, given the environmental conditions faced by the equipment. The work evaluated data from three power transformers in different geographic locations, demonstrating the initial applicability of the method in identifying equipment aging. Transformer TR1 showed aging of 3.24×103%, followed by TR2 with 8.565×103% and TR3 showing 294.17×106% in the evaluated period of time. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

24 pages, 1572 KiB  
Article
Optimizing DNA Sequence Classification via a Deep Learning Hybrid of LSTM and CNN Architecture
by Elias Tabane, Ernest Mnkandla and Zenghui Wang
Appl. Sci. 2025, 15(15), 8225; https://doi.org/10.3390/app15158225 - 24 Jul 2025
Viewed by 213
Abstract
This study addresses the performance of deep learning models for predicting human DNA sequence classification through an exploration of ideal feature representation, model architecture, and hyperparameter tuning. It contrasts traditional machine learning with advanced deep learning approaches to ascertain performance with respect to [...] Read more.
This study addresses the performance of deep learning models for predicting human DNA sequence classification through an exploration of ideal feature representation, model architecture, and hyperparameter tuning. It contrasts traditional machine learning with advanced deep learning approaches to ascertain performance with respect to genomic data complexity. A hybrid network combining long short-term memory (LSTM) and convolutional neural networks (CNN) was developed to extract long-distance dependencies as well as local patterns from DNA sequences. The hybrid LSTM + CNN model achieved a classification accuracy of 100%, which is significantly higher than traditional approaches such as logistic regression (45.31%), naïve Bayes (17.80%), and random forest (69.89%), as well as other machine learning models such as XGBoost (81.50%) and k-nearest neighbor (70.77%). Among deep learning techniques, the DeepSea model also accounted for good performance (76.59%), while others like DeepVariant (67.00%) and graph neural networks (30.71%) were relatively lower. Preprocessing techniques, one-hot encoding, and DNA embeddings were mainly at the forefront of transforming sequence data to a compatible form for deep learning. The findings underscore the robustness of hybrid structures in genomic classification tasks and warrant future research on encoding strategy, model and parameter tuning, and hyperparameter tuning to further improve accuracy and generalization in DNA sequence analysis. Full article
Show Figures

Figure 1

21 pages, 4847 KiB  
Article
The Application of KNN-Optimized Hybrid Models in Landslide Displacement Prediction
by Hongwei Jiang, Jiayi Wu, Hao Zhou, Mengjie Liu, Shihao Li, Yuexu Wu and Yongfan Guo
Eng 2025, 6(8), 169; https://doi.org/10.3390/eng6080169 - 23 Jul 2025
Viewed by 259
Abstract
Early warning systems depend heavily on the accuracy of landslide displacement forecasts. This study focuses on the Bazimen landslide located in the Three Gorges Reservoir region and proposes a hybrid prediction approach combining support vector regression (SVR) and long short-term memory (LSTM) networks. [...] Read more.
Early warning systems depend heavily on the accuracy of landslide displacement forecasts. This study focuses on the Bazimen landslide located in the Three Gorges Reservoir region and proposes a hybrid prediction approach combining support vector regression (SVR) and long short-term memory (LSTM) networks. These models are optimized via the K-Nearest Neighbor (KNN) algorithm. Initially, cumulative displacement data were separated into trend and cyclic elements using a smoothing approach. SVR and LSTM were then used to predict the components, and KNN was introduced to optimize input factors and classify the results, improving accuracy. The final KNN-optimized SVR-LSTM model effectively integrates static and dynamic features, addressing limitations of traditional models. The results show that LSTM performs better than SVR, with an RMSE and MAPE of 24.73 mm and 1.87% at monitoring point ZG111, compared to 30.71 mm and 2.15% for SVR. The sequential hybrid model based on KNN-optimized SVR and LSTM achieved the best performance, with an RMSE and MAPE of 23.11 mm and 1.68%, respectively. This integrated model, which combines multiple algorithms, offers improved prediction of landslide displacement and practical value for disaster forecasting in the Three Gorges area. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

25 pages, 6316 KiB  
Article
Integration of Remote Sensing and Machine Learning Approaches for Operational Flood Monitoring Along the Coastlines of Bangladesh Under Extreme Weather Events
by Shampa, Nusaiba Nueri Nasir, Mushrufa Mushreen Winey, Sujoy Dey, S. M. Tasin Zahid, Zarin Tasnim, A. K. M. Saiful Islam, Mohammad Asad Hussain, Md. Parvez Hossain and Hussain Muhammad Muktadir
Water 2025, 17(15), 2189; https://doi.org/10.3390/w17152189 - 23 Jul 2025
Viewed by 644
Abstract
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess [...] Read more.
The Ganges–Brahmaputra–Meghna (GBM) delta, characterized by complex topography and hydrological conditions, is highly susceptible to recurrent flooding, particularly in its coastal regions where tidal dynamics hinder floodwater discharge. This study integrates Synthetic Aperture Radar (SAR) imagery with machine learning (ML) techniques to assess near real-time flood inundation patterns associated with extreme weather events, including recent cyclones between 2017 to 2024 (namely, Mora, Titli, Fani, Amphan, Yaas, Sitrang, Midhili, and Remal) as well as intense monsoonal rainfall during the same period, across a large spatial scale, to support disaster risk management efforts. Three machine learning algorithms, namely, random forest (RF), support vector machine (SVM), and K-nearest neighbors (KNN), were applied to flood extent data derived from SAR imagery to enhance flood detection accuracy. Among these, the SVM algorithm demonstrated the highest classification accuracy (75%) and exhibited superior robustness in delineating flood-affected areas. The analysis reveals that both cyclone intensity and rainfall magnitude significantly influence flood extent, with the western coastal zone (e.g., Morrelganj and Kaliganj) being most consistently affected. The peak inundation extent was observed during the 2023 monsoon (10,333 sq. km), while interannual variability in rainfall intensity directly influenced the spatial extent of flood-affected zones. In parallel, eight major cyclones, including Amphan (2020) and Remal (2024), triggered substantial flooding, with the most severe inundation recorded during Cyclone Remal with an area of 9243 sq. km. Morrelganj and Chakaria were consistently identified as flood hotspots during both monsoonal and cyclonic events. Comparative analysis indicates that cyclones result in larger areas with low-level inundation (19,085 sq. km) compared to monsoons (13,829 sq. km). However, monsoon events result in a larger area impacted by frequent inundation, underscoring the critical role of rainfall intensity. These findings underscore the utility of SAR-ML integration in operational flood monitoring and highlight the urgent need for localized, event-specific flood risk management strategies to enhance flood resilience in the GBM delta. Full article
Show Figures

Figure 1

19 pages, 1406 KiB  
Article
A Comparative Study of Dimensionality Reduction Methods for Accurate and Efficient Inverter Fault Detection in Grid-Connected Solar Photovoltaic Systems
by Shahid Tufail and Arif I. Sarwat
Electronics 2025, 14(14), 2916; https://doi.org/10.3390/electronics14142916 - 21 Jul 2025
Viewed by 249
Abstract
The continuous, effective operation of grid-connected photovoltaic (GCPV) systems depends on dependable inverter failure detection. Early, precise fault diagnosis improves general system dependability, lowers maintenance costs, and saves downtime. Although computing efficiency remains a difficulty, particularly in resource-limited contexts, machine learning-based fault detection [...] Read more.
The continuous, effective operation of grid-connected photovoltaic (GCPV) systems depends on dependable inverter failure detection. Early, precise fault diagnosis improves general system dependability, lowers maintenance costs, and saves downtime. Although computing efficiency remains a difficulty, particularly in resource-limited contexts, machine learning-based fault detection presents interesting prospects in accuracy and responsiveness. By streamlining data complexity and allowing faster and more effective fault diagnosis, dimensionality reduction methods play vital role. Using dimensionality reduction and ML techniques, this work explores inverter fault detection in GCPV systems. Photovoltaic inverter operational data was normalized and preprocessed. In the next step, dimensionality reduction using Principal Component Analysis (PCA) and autoencoder-based feature extraction were explored. For ML training four classifiers which include Random Forest (RF), logistic regression (LR), decision tree (DT), and K-Nearest Neighbors (KNN) were used. Trained on the whole standardized dataset, the RF model routinely produced the greatest accuracy of 99.87%, so efficiently capturing complicated feature interactions but requiring large processing resources and time of 36.47sec. LR model showed reduction in accuracy, but very fast training time compared to other models. Further, PCA greatly lowered computing demands, especially improving inference speed for LR and KNN. High accuracy of 99.23% across all models was maintained by autoencoder-derived features. Full article
Show Figures

Figure 1

Back to TopTop