Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = joint reduction of oxides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7589 KiB  
Article
Analysis of PM2.5 Transport Characteristics and Continuous Improvement in High-Emission-Load Areas of the Beijing–Tianjin–Hebei Region in Winter
by Yuyao Qiang, Chuanda Wang, Xiaoqi Wang and Shuiyuan Cheng
Sustainability 2025, 17(14), 6389; https://doi.org/10.3390/su17146389 - 11 Jul 2025
Viewed by 308
Abstract
The air quality in the Beijing–Tianjin–Hebei region of China has markedly improved in recent decades. Characterizing current PM2.5 transmission between cities in light of the continuous reduction in emissions from various sources is of great significance for the formulation of future regional [...] Read more.
The air quality in the Beijing–Tianjin–Hebei region of China has markedly improved in recent decades. Characterizing current PM2.5 transmission between cities in light of the continuous reduction in emissions from various sources is of great significance for the formulation of future regional joint prevention and control strategies. To address these issues, a WRF-CAMx modeling project was implemented to explore the pollution characteristics from the perspectives of transport flux, regional source apportionment, and the comprehensive impact of multiple pollutants from 2013 to 2020. It was found that the net PM2.5 transport flux among cities declined considerably during the study period and was positively affected by the continuous reduction in emission sources. The variations in local emissions and transport contributions in various cities from 2013 to 2020 revealed differences in emission control policies and efforts. It is worth noting that under polluted weather conditions, obvious interannual differences in PM2.5 transport fluxes in the BTH region were observed, emphasizing the need for more scientifically based regional collaborative control strategies. The change in the predominant precursor from SO2 to NOx has posed new challenges for emission reduction. NOx emission reductions will significantly decrease PM2.5 concentrations, while SO2 and NH3 reductions show limited effects. The reduction in NOx emissions might have a fluctuating impact on the generation of SOAs, possibly due to changes in atmospheric oxidation. However, the deep treatment of NOx has a positive effect on the synergistic improvement of multiple air pollutants. This emphasizes the need to enhance the reduction in NOx emissions in the future. The results of this study can serve as a reference for the development of effective PM2.5 precursor control strategies and regional differentiation optimization improvement policies in the BTH region. Full article
Show Figures

Figure 1

17 pages, 3267 KiB  
Article
The Power Electronic Soldering Process: An Evaluation of Soldering Materials and Basic Soldering Principles
by Marek Chnapko, Jan Sitar, Michal Frivaldsky and Libor Hargas
Appl. Sci. 2025, 15(14), 7732; https://doi.org/10.3390/app15147732 - 10 Jul 2025
Viewed by 253
Abstract
The article describes a basic comparison of soldering materials (preforms) from several suppliers, focusing on the main differences in surface structure, internal structure, and contamination on the surface and in the interior of the solder. As a result, we are able to define [...] Read more.
The article describes a basic comparison of soldering materials (preforms) from several suppliers, focusing on the main differences in surface structure, internal structure, and contamination on the surface and in the interior of the solder. As a result, we are able to define how different preforms of the surface, preforms related to impurities, or preforms of the structures of the composition parts of the power modules, which are subjected to the soldering process, influence the formation of different void types. Simultaneously an investigation of the impact on the soldering process (heating, cleaning, soldering, cooling), which influences the formation of the solder joint and on the formation intermetallic structure (IMC) and voids, is performed as well. A comparison of the individual results between RTG or X-ray (Radioisotope Thermoelectric Generator) and SAM (Scanning Acoustic Microscopy) are given together with the highlighted differences. This application study was carried out under various settings to investigate the effects of temperature and exposure time on formic acid. The findings confirm that oxide reduction is a time-dependent process. The lowest average void area—0.2%—was observed at the highest tested temperature of 230 °C, and the longest formic acid exposure duration of 300 s. Full article
Show Figures

Figure 1

17 pages, 2726 KiB  
Article
Cooperative Interaction of Hyaluronic Acid with Epigallocatechin-3-O-gallate and Xanthohumol in Targeting the NF-κB Signaling Pathway in a Cellular Model of Rheumatoid Arthritis
by Francesco Longo, Alessandro Massaro, Manuela Mauro, Mario Allegra, Vincenzo Arizza, Luisa Tesoriere and Ignazio Restivo
Antioxidants 2025, 14(6), 713; https://doi.org/10.3390/antiox14060713 - 11 Jun 2025
Viewed by 489
Abstract
Current intra-articular therapies with hyaluronic acid (HA) provide symptomatic relief in joint diseases, but have limited efficacy in counteracting oxidative stress and inflammation, key drivers of cartilage degradation in rheumatoid arthritis (RA). To address this limitation, the potential of combining HA with the [...] Read more.
Current intra-articular therapies with hyaluronic acid (HA) provide symptomatic relief in joint diseases, but have limited efficacy in counteracting oxidative stress and inflammation, key drivers of cartilage degradation in rheumatoid arthritis (RA). To address this limitation, the potential of combining HA with the phytochemicals xanthohumol (XAN) and epigallocatechin-3-O-gallate (EGCG), known for their antioxidant and anti-inflammatory properties, was evaluated in a cellular model of RA (SW982 synoviocytes stimulated with interleukin-1β, IL-1β). The Chou–Talalay method demonstrated that their combination synergistically reduced reactive oxygen species (ROS) and nitric oxide (NO) levels. The “TRIPLE” combination (HA + XAN + EGCG) showed the lowest combination index and the highest dose reduction index. Compared to individual treatments, TRIPLE significantly decreased IL-1β-induced IL-6, IL-8, TNF-α, and MMP-3 levels, while increasing the levels of the anti-inflammatory cytokine IL-10. Western blot analysis revealed a marked reduction in iNOS, COX-2, and MMP-3 protein expression following TRIPLE treatment. Moreover, the combination inhibited IL-1β-induced phosphorylation of IκB and p65, thereby preventing NF-κB activation. These findings suggest that integrating XAN and EGCG into injectable HA formulations may represent a promising strategy to improve the management of joint inflammation in RA. Full article
Show Figures

Graphical abstract

12 pages, 7004 KiB  
Article
Bonding Characteristics in Air of a Decomposable Composite Sheet Containing Sn-3.0Ag-0.5Cu Particles for Formation of a Robust Metallic Solder Joint in Die Attachment
by Hye-Min Lee and Jong-Hyun Lee
J. Manuf. Mater. Process. 2025, 9(5), 161; https://doi.org/10.3390/jmmp9050161 - 15 May 2025
Viewed by 470
Abstract
To address solder paste drawbacks, such as die contamination and flux residue, a polymer-based sheet containing Sn-3.0 (wt%) Ag-0.5Cu solder particles as fillers was fabricated, and its bonding characteristics were analyzed. The reductant in the manufactured sheet evaporated while removing the oxide layers [...] Read more.
To address solder paste drawbacks, such as die contamination and flux residue, a polymer-based sheet containing Sn-3.0 (wt%) Ag-0.5Cu solder particles as fillers was fabricated, and its bonding characteristics were analyzed. The reductant in the manufactured sheet evaporated while removing the oxide layers on the solder and copper finish surfaces during heating. Subsequently, the resin component (polymethyl methacrylate) began to decompose thermally and gradually dissipated. Ultimately, the resulting joint formed a solder interconnection with a small amount of residual resin. This joint is expected to exhibit superior thermal conductivity compared with composite joints with a polymer matrix structure. Die-attach tests were conducted in air using the fabricated sheet between Cu finishes. Results showed that joints formed at 300 °C for 30 s and 350 °C for 10 s provided excellent shear strength values of 48.0 and 44.3 MPa, respectively, along with appropriately developed intermetallic compound (IMC) layers at the bonding interface. In contrast, bonding at 350 °C for 60 s resulted in excessive growth of IMC layers at the interface. When comparing size effects of solder particles, type 6 particles exhibited superior shear strength along with a relatively thinner total IMC layer thickness compared to when type 7 particles were used. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

13 pages, 2055 KiB  
Article
Guava (Psidium guajava) Fruit Extract Ameliorates Monosodium Urate-Induced Inflammatory Response
by Hsiu-Man Lien, Chao-Lu Huang, Chih-Ho Lai, Chia-Chang Chen, Shiau-Huei Huang, Chin-Jui Tseng and Charng-Cherng Chyau
Chemistry 2025, 7(3), 73; https://doi.org/10.3390/chemistry7030073 - 1 May 2025
Cited by 1 | Viewed by 639
Abstract
Hyperuricemia, induced by monosodium urate (MSU) crystals that accumulate in articular joints and periarticular soft tissues, can impair macrophages. Possible causes of macrophage injury include uric acid-induced oxidative stress or inflammation. This study examined the dried fruits of guava (DFG) as a complementary [...] Read more.
Hyperuricemia, induced by monosodium urate (MSU) crystals that accumulate in articular joints and periarticular soft tissues, can impair macrophages. Possible causes of macrophage injury include uric acid-induced oxidative stress or inflammation. This study examined the dried fruits of guava (DFG) as a complementary medicine with urate-lowering properties, utilizing THP-1 macrophages to determine if high uric acid-induced cellular damage could be mitigated through the reduction of oxidative stress and inflammation via treatment with a phytochemical extract. The active extract was prescreened using a xanthine oxidase (XO) inhibition assay coupled with fractionation and component analysis. The DFG extracts were used to identify, through an in vitro study of THP-1 cells. The results indicated that the DFG extracts with the highest total flavonoids (12.08 ± 0.81 mg/g DW) exhibited the XO inhibition activity. High-performance liquid chromatography–tandem mass spectrometry analysis showed that DFG extract contained 85.32% flavonoids, including quercetin and kaempferol derivatives. Furthermore, fractionation results of DFG extracts indicated a significant reduction in MSU-induced cytotoxicity in THP-1 cells obtained from the 75% ethanol-eluted fraction (Fr-75). Additionally, kaempferol, an active compound in Fr-75, effectively mitigated MSU-induced NF-κB and NLRP3 gene overexpression. These findings suggest that the prepared Fr-75 is a promising hyperuricemia therapeutic candidate. Full article
(This article belongs to the Section Food Science)
Show Figures

Figure 1

30 pages, 650 KiB  
Review
Molecular Mechanisms and Therapeutic Role of Intra-Articular Hyaluronic Acid in Osteoarthritis: A Precision Medicine Perspective
by Wojciech Glinkowski, Dariusz Śladowski, Wiesław Tomaszewski and Pol-IAHA Study Group
J. Clin. Med. 2025, 14(8), 2547; https://doi.org/10.3390/jcm14082547 - 8 Apr 2025
Cited by 1 | Viewed by 1425
Abstract
Background: Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage breakdown, synovial inflammation, and pain, which leads to significant disability. IAHA is widely used because of its viscoelastic properties, which restore synovial fluid homeostasis and reduce symptoms. However, emerging evidence [...] Read more.
Background: Osteoarthritis (OA) is a degenerative joint disease characterized by progressive cartilage breakdown, synovial inflammation, and pain, which leads to significant disability. IAHA is widely used because of its viscoelastic properties, which restore synovial fluid homeostasis and reduce symptoms. However, emerging evidence suggests that IAHA exerts additional biological effects including chondroprotection, inflammatory modulation, oxidative stress reduction, and pain modulation, which may influence disease progression. Objective: This narrative review examines the biological mechanisms underlying IAHA’s role in OA management. The review explored IAHA’s effects on synovial fluid viscoelasticity, inflammatory cytokine modulation, cartilage preservation, oxidative stress regulation, and pain pathways, emphasizing the influence of molecular weight variations on therapeutic efficacy. Additionally, this review evaluates IAHA’s integration into multimodal treatment strategies, its potential disease-modifying effects, and future directions for personalized treatment approaches. Methods: A comprehensive literature review was conducted using PubMed, Cochrane Library, EMBASE, Scopus, and Web of Science for studies published between January 2000 and March 2024. The search focused on IAHA’s molecular, cellular, and biochemical effects in OA and clinical findings assessing its impact on joint function, pain relief, and disease progression. Results: IAHA improves synovial fluid lubrication, reduces proinflammatory cytokines (IL-1β, TNF-α), inhibits matrix metalloproteinases (MMPs), scavenges reactive oxygen species (ROS), and modulates nociceptive pathways. High-molecular-weight IAHA demonstrates superior efficacy in advanced OA, while low-molecular-weight formulations may be better suited for early-stage disease. Although IAHA’s symptom relief is comparable to corticosteroids and NSAIDs, its favorable safety profile and emerging disease-modifying potential support its long-term use in OA management. Conclusions: IAHA represents a multifaceted therapeutic approach bridging symptomatic relief and regenerative strategies. While long-term efficacy, optimal administration protocols, and patient-specific responses remain subjects of ongoing research, refining treatment selection criteria, dosing regimens, and combination strategies may enhance clinical outcomes. Future studies should explore biomarker-driven approaches, standardize treatment protocols, and assess IAHA’s synergy with regenerative medicine to optimize its role in OA management. Full article
Show Figures

Figure 1

17 pages, 22554 KiB  
Article
Static and Fatigue Strength of Graphene Nanoplatelet-Reinforced AA6061-T6 Friction Stir Spot-Welded Lap Joints
by Amir Alkhafaji, Daniel Camas and Hayder Al-Asadi
J. Manuf. Mater. Process. 2025, 9(3), 98; https://doi.org/10.3390/jmmp9030098 - 18 Mar 2025
Viewed by 552
Abstract
Despite the significant economic and environmental advantages of friction stir spot welding (FSSW) and its amazing results in welding similar and dissimilar metals and alloys, some of which were known as unweldable, it has some structural and characteristic defects such as keyhole formation, [...] Read more.
Despite the significant economic and environmental advantages of friction stir spot welding (FSSW) and its amazing results in welding similar and dissimilar metals and alloys, some of which were known as unweldable, it has some structural and characteristic defects such as keyhole formation, hook defects, and bond line oxidation. This has prompted researchers to focus on these defects and propose and investigate techniques to treat or compensate for their deteriorating effects on microstructural and mechanical properties under different loading conditions. In this experimental study, sheets of AA6061-T6 aluminum alloy with a thickness of 1.8 mm were employed to investigate the influence of reinforcement by graphene nanoplatelets (GNPs) with lateral sizes of 1–10 µm and thicknesses of 3–9 nm on the static and fatigue behavior of FSSW lap joints. The welding process was carried out with constant, predetermined welding parameters and a constant amount of nanofiller throughout the experiment. Cross-sections of as-welded specimens were tested by optical microscope (OM) and energy-dispersive spectroscopy (EDS) to ensure the incorporation of the nanographene into the matrix of the base alloy by measuring the weight percentage (wt.%) of carbon. Microhardness and tensile tests revealed a significant improvement in both tensile shear strength and micro-Vickers hardness due to the reinforcement process. The fatigue behavior of the GNP-reinforced FSSW specimens was evaluated under low and high cycle fatigue conditions. The reinforcement process had a detrimental effect on the fatigue life of the joints under cyclic loading conditions. The microstructural analysis and examinations conducted during this study revealed that this reduction in fatigue strength is attributed to the agglomeration of GNPs at the grain boundaries of the aluminum matrix, leading to porosity in the stir zone (SZ), the formation of continuous brittle phases, and a transition in the fracture mechanism from ductile to brittle. The experimental results, including fracture modes, are presented and thoroughly discussed. Full article
Show Figures

Figure 1

17 pages, 5059 KiB  
Article
Synergistic Regulation at Physiological, Transcriptional, and Metabolic Levels in Dendrobium huoshanense Plants Under Combined Drought and High-Temperature Stress
by Xingen Zhang, Guohui Li, Peipei Wei, Binbin Du, Shifan Liu and Jun Dai
Genes 2025, 16(3), 287; https://doi.org/10.3390/genes16030287 - 27 Feb 2025
Viewed by 782
Abstract
Background: With global warming and climate change, the occurrence of abiotic stresses has become increasingly prevalent. Drought often occurs with high temperatures, especially in arid and semi-arid regions. However, the molecular mechanisms of plants responding to combined drought and high-temperature stress remains unclear. [...] Read more.
Background: With global warming and climate change, the occurrence of abiotic stresses has become increasingly prevalent. Drought often occurs with high temperatures, especially in arid and semi-arid regions. However, the molecular mechanisms of plants responding to combined drought and high-temperature stress remains unclear. Results: Through integrative physiological, transcriptomic, and metabolomic analyses, we systematically investigated the adaptive mechanisms of Dendrobium huoshanense under combined drought and high-temperature stress. Our findings revealed that combined drought and high-temperature stress led to significant reductions in photosynthetic efficiency and increased oxidative damage in Dendrobium huoshanense, with high-temperature stress being the primary contributor to these adverse effects. The joint analysis shows that three core pathways—signal transduction, lipid metabolism, and secondary metabolite biosynthesis—were identified as critical for antioxidant defense and stress adaptation. Conclusions: These findings not only deepen our understanding of plant responses to combined drought and high-temperature stress but also provide new directions for future research on the cultivation and resistance improvement of Dendrobium huoshanense. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

20 pages, 3507 KiB  
Article
One-Time Application of Polymer-Coated Urea Increased Rice Yield and Plant Nitrogen Uptake by Optimizing Root Morphological and Physiological Traits
by Junlin Zhu, Song Chen, Chunmei Xu, Yuanhui Liu, Kai Yu, Xiufu Zhang, Danying Wang and Guang Chu
Agronomy 2025, 15(2), 282; https://doi.org/10.3390/agronomy15020282 - 23 Jan 2025
Viewed by 919
Abstract
Previous studies have shown that a one-time application of polymer-coated urea (PCU) can increase rice yield and nitrogen (N) uptake. However, the connection between rice root morphology and physiological traits and grain yield and N absorption has still not been well understood. The [...] Read more.
Previous studies have shown that a one-time application of polymer-coated urea (PCU) can increase rice yield and nitrogen (N) uptake. However, the connection between rice root morphology and physiological traits and grain yield and N absorption has still not been well understood. The objective of this study was to explore whether one-time application of PCU could enhance shoot growth, improve plant physiological activity, and ultimately boost rice yield and NUE by optimizing root morphological and physiological traits. In this study, a super-large-panicle indica-japonica hybrid rice variety, Yongyou1540, was cultivated under three N treatments during 2022 and 2023: (1) 0N, throughout the entire growth period, no N fertilizer was applied; (2) LFP, local farmers’ N management practices were followed, using urea as the N source, and N fertilizer management was carried out according to the local farmers’ customary fertilization practices; and (3) PCU, a one-time application of PCU was performed at one day before transplanting. PCU is a controlled-release fertilizer in which urea granules are coated with a synthetic polymer layer; it has been widely used in rice cultivation. In both LFP and PCU treatments, N was applied at a rate of 200 kg N ha−1. PCU is a type of controlled-release fertilizer in which urea granules are coated with a layer of synthetic polymer. Compared to LFP, PCU significantly improved several root morphological traits, including increased deep-root proportion and specific root length (SRL), throughout the entire growth period; increased root length and root length density at heading and maturity; and increased root biomass growth rate from jointing to heading and reduced reduction rate after heading. Additionally, PCU enhanced root oxidative activity (ROA) and increased zeatin and zeatin riboside (Z+ZR) content in both roots and root bleeding sap at the middle and late grain-filling stages. Furthermore, PCU markedly increased the flag-leaf net photosynthetic rate, Z+ZR content in leaves, and activities of key enzymes involved in sucrose-to-starch conversion in grains during the middle and late grain-filling stages. Correlation analysis indicated that root and shoot biomass growth rate showed a significant positive correlation before heading, and that root biomass reduction rate was significantly negatively correlated with shoot biomass growth rate after heading. ROA and Z+ZR content in both roots and root bleeding sap were significantly associated with flag-leaf photosynthetic rate, Z+ZR content in leaves, and the activities of key enzymes involved in the sucrose-to-starch conversion in grains. On average, PCU increased rice yield by 10.0% and agronomic NUE by 46.2%, compared to LFP. These findings suggest that PCU could optimize root morphological and physiological traits, and thereby promote shoot growth, enhance physiological activity, and ultimately increase both rice yield and NUE. Further research could also investigate the potential for combining PCU with other agronomic practices to enhance both rice yield and NUE. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 5045 KiB  
Article
Curcumin and Vitamin D Supplement Attenuates Knee Osteoarthritis Progression in ACLT + MMx Rat Model: Effect on Cartilage Protection and Pain Reduction
by Lokesh Kumar Mende, Yaswanth Kuthati and Chih-Shung Wong
Nutrients 2025, 17(2), 349; https://doi.org/10.3390/nu17020349 - 19 Jan 2025
Cited by 2 | Viewed by 2436
Abstract
Background: Knee osteoarthritis (OA) is a common and debilitating disorder marked by joint degradation, inflammation, and persistent pain. This study examined the possible therapeutic effects of curcumin and vitamin D on OA progression and pain in a rat knee OA model by anterior [...] Read more.
Background: Knee osteoarthritis (OA) is a common and debilitating disorder marked by joint degradation, inflammation, and persistent pain. This study examined the possible therapeutic effects of curcumin and vitamin D on OA progression and pain in a rat knee OA model by anterior cruciate ligament transection and meniscectomy (ACLT + MMx). Methods: Male Wistar rats were categorized into five groups: control, curcumin-treated (100 mg/kg/day), vitamin D-treated (25 µg/kg/day), a combination of vitamin D and curcumin, and sham-operated. All supplements were administered orally on a daily basis for 12 weeks. Pain behaviors were assessed, serum biomarkers were measured, and knee histology was examined. Results: Both curcumin and vitamin D independently reduced pain, while the combined group exhibited better analgesic effects. Serum inflammatory cytokines demonstrated a decrease in pro-inflammatory cytokines and an elevation in anti-inflammatory cytokine interleukin-10 (IL-10) in the supplement groups. The antioxidative markers were partially recovered by curcumin and vitamin D supplement. However, the oxidative stress marker Cartilage Oligomeric Matrix Protein (COMP) was significantly reduced. Histology analysis revealed a preservation of joint architecture and cartilage integrity and decreased synovium inflammation in the groups treated with curcumin and vitamin D. Conclusions: Our findings indicate a dual mechanism that encompasses the role of anti-inflammation and antioxidation on knee OA progression and pain reduction, underscoring the potential of these natural chemicals as therapeutic agents for knee OA; curcumin and vitamin D supplement may be added in delaying knee OA progression and associated pain management in clinical patient care. Full article
Show Figures

Figure 1

25 pages, 32351 KiB  
Article
Effect of Inert Gas Cover on the Static and Fatigue Behavior of AA6061-T6 Aluminum Alloy Friction Stir Spot Lap-Shear Welds
by Amir Alkhafaji, Daniel Camas and Hayder Al-Asadi
Materials 2025, 18(2), 256; https://doi.org/10.3390/ma18020256 - 9 Jan 2025
Cited by 1 | Viewed by 693
Abstract
Friction stir spot welding (FSSW) technology relies on the generation of frictional heat during the rotation of the welding tool in contact with the workpiece as well as the stirring effect of the tool pin to produce solid-state spot joints, especially for lightweight [...] Read more.
Friction stir spot welding (FSSW) technology relies on the generation of frictional heat during the rotation of the welding tool in contact with the workpiece as well as the stirring effect of the tool pin to produce solid-state spot joints, especially for lightweight materials. Although FSSW offers significant advantages over traditional fusion welding, the oxidation of the interfacial bond line remains one of the most challenging issues, affecting the quality and strength of the joint under both static and cyclic loading conditions. In this experimental study, inert argon gas was employed to surround the joint, aiming to prevent or minimize the formation of the interfacial oxides. Two welding processes were conducted with identical welding process parameters and welding tool geometry: the conventional process and another that employs an inert gas cover. Micrographs of as-welded specimens were analyzed using a computerized optical microscope to characterize the interfacial bond lines and an energy-dispersive spectroscope (EDS) was used to quantify the interfacial oxides. Specimens from both welding conditions were tested under static and cyclic loads to investigate the static and fatigue behaviors, respectively. The fatigue tested specimens were examined under different load levels to investigate the fatigue crack behavior and the modes of failure at low-cycle and high-cycle fatigue conditions. The optical micrographs showed significant improvement in bond line morphologies (33% enlarged fully bonded area) and both static and fatigue strengths (35% reduced partially bonded area) when the inert gas cover was used. The EDS analysis revealed a maximum reduction of the interfacial oxide of 41% in the bond line achieved in the argon-surrounded joints compared to specimens of the conventional welding process. Accordingly, an improvement of 14% in the static strength was reached, along with 60% and 26% in the fatigue strengths at low- and high-cycle fatigue conditions, respectively. Full article
Show Figures

Figure 1

18 pages, 4647 KiB  
Article
Hematological Response to Particle Debris Generated During Wear–Corrosion Processes of CoCr Surfaces Modified with Graphene Oxide and Hyaluronic Acid for Joint Prostheses
by María L. Escudero, Maria C. García-Alonso, Belén Chico, Rosa M. Lozano, Luna Sánchez-López, Manuel Flores-Sáenz, Soledad Cristóbal-Aguado, Rafael Moreno-Gómez-Toledano and Soledad Aguado-Henche
Nanomaterials 2024, 14(22), 1815; https://doi.org/10.3390/nano14221815 - 13 Nov 2024
Viewed by 1173
Abstract
Various surface modifications to increase the lifespan of cobalt–chromium (CoCr) joint prostheses are being studied to reduce the wear rate in bone joint applications. One recently proposed modification involves depositing graphene oxide functionalized with hyaluronic acid (a compound present in joints) on CoCr [...] Read more.
Various surface modifications to increase the lifespan of cobalt–chromium (CoCr) joint prostheses are being studied to reduce the wear rate in bone joint applications. One recently proposed modification involves depositing graphene oxide functionalized with hyaluronic acid (a compound present in joints) on CoCr surfaces, which can act as a solid lubricant. This paper analyzes the biological alterations caused by wear–corrosion phenomena that occur in joints, both from the perspective of the worn surface (in vitro model) and the particles generated during the wear processes (in vivo model). The analysis of the inflammatory response of macrophage was performed on CoCr surfaces modified with graphene oxide and functionalized with hyaluronic acid (CoCr-GO-HA), before and after wear–corrosion processes. The wear particles released during the wear–corrosion tests of the CoCr-GO-HA/CoCr ball pair immersed in 3 g/L hyaluronic acid were intra-articularly injected into the experimental animals. The hematological analysis in vivo was made considering a murine model of intra-articular injection into the left knee in male adult Wistar rats, at increasing concentrations of the collected wear particles dispersed in 0.9% NaCl. Non-significant differences in the inflammatory response to unworn CoCr-GO-HA surfaces and control (polystyrene) were obtained. The wear–corrosion of the CoCr-GO-HA disk increased the inflammatory response at both 72 and 96 h of material exposure compared to the unworn CoCr-GO-HA surfaces, although the differences were not statistically significant. The pro-inflammatory response of the macrophages was reduced on the worn surfaces of the CoCr modified and functionalized with graphene oxide (GO) and hyaluronic acid (HA), compared to the worn surfaces of the unmodified CoCr. The hematological analysis and tissue reactions after intra-articular injection did not reveal pathological damage, with average hematological values recorded, although slight reductions in creatinine and protein within non-pathological ranges were found. Some traces of biomaterial particles in the knee at the highest concentration of injected particles were only found but without inflammatory signs. The results show the potential benefits of using graphene in intra-articular prostheses, which could improve the quality of life for numerous patients. Full article
(This article belongs to the Special Issue Advanced Studies in Bionanomaterials)
Show Figures

Figure 1

18 pages, 6976 KiB  
Article
Highly Robust, Pressureless Silver Sinter-Bonding Technology Using PMMA Combustion for Power Semiconductor Applications
by Moses Gu, Hyunjin Nam, Sehoon Park, Minkyung Shin and Sung-Hoon Choa
Materials 2024, 17(21), 5142; https://doi.org/10.3390/ma17215142 - 22 Oct 2024
Viewed by 1669
Abstract
This study presents the development of a highly robust, pressureless, and void-free silver sinter-bonding technology for power semiconductor packaging. A bimodal silver paste containing silver nanoparticles and sub-micron particles was used, with polymethyl methacrylate (PMMA) as an additive to provide additional thermal energy [...] Read more.
This study presents the development of a highly robust, pressureless, and void-free silver sinter-bonding technology for power semiconductor packaging. A bimodal silver paste containing silver nanoparticles and sub-micron particles was used, with polymethyl methacrylate (PMMA) as an additive to provide additional thermal energy during sintering. This enabled rapid sintering and the formation of a dense, void-free bonding joint. The effects of sintering temperature and PMMA content on shear strength and microstructure were systematically investigated. The results showed that the shear strength increased with rising sintering temperatures, achieving a maximum of 41 MPa at 300 °C, with minimal void formation due to enhanced particle necking facilitated by PMMA combustion. However, at 350 °C, the shear strength decreased to 35 MPa due to cracks and voids at the copper substrate–copper oxide interface caused by thermal expansion mismatch. The optimal PMMA content was found to be 5 wt.%, balancing sufficient thermal energy and void reduction. This pressureless sintering technology demonstrates significant potential for high-reliability applications in power semiconductor modules operating under high-temperature and high-stress conditions. Full article
Show Figures

Graphical abstract

20 pages, 4470 KiB  
Article
Artemisia pallens W. Attenuates Inflammation and Oxidative Stress in Freund’s Complete Adjuvant-Induced Rheumatoid Arthritis in Wistar Rats
by Tasneem Ahmad, Parag Kadam, Gopal Bhiyani, Hasan Ali, Md. Akbar, Mohd Usman Mohd Siddique and Mudassar Shahid
Diseases 2024, 12(10), 230; https://doi.org/10.3390/diseases12100230 - 29 Sep 2024
Cited by 1 | Viewed by 1578
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes distinctive inflammatory symptoms and affects over 21 million people worldwide. RA is characterized by severe discomfort, swelling, and degradation of the bone and cartilage, further impairing joint function. The current study investigates the antiarthritic [...] Read more.
Rheumatoid arthritis (RA) is an autoimmune disease that causes distinctive inflammatory symptoms and affects over 21 million people worldwide. RA is characterized by severe discomfort, swelling, and degradation of the bone and cartilage, further impairing joint function. The current study investigates the antiarthritic effect of a methanolic extract of Artemisia pallens (methanolic extract of A. pallens, MEAP), an aromatic herb. Artemisinin content (% per dry weight of the plant) was estimated using a UV Vis spectrophotometer. In the present study, animals were divided into six groups (n = 6). The control group (group I) was injected with 0.25% of carboxymethyl cellulose. The arthritic control group (group II) was treated with Freund’s complete adjuvant (by injecting 0.1 mL). Prednisolone (10 mg/kg), a lower dose of MEAP (100 mg/kg), a medium dose of MEAP (200 mg/kg), and a higher dose of MEAP (400 mg/kg) were orally delivered to groups III, IV, V, and VI, respectively. Freund’s complete adjuvant was administered into the sub-plantar portion of the left-hind paw in all the groups except vehicle control to induce rheumatoid arthritis. Weight variation; joint diameter; paw volume; thermal and mechanical hyperalgesia; hematological, biochemical, and oxidative stress parameters; radiology; and a histopathological assessment of the synovial joint were observed in order to evaluate the antiarthritic effect of the methanolic extract of A. pallens. In this study, the estimated content of artemisinin was found to be 0.28% (per dry weight of the plant), which was in good agreement with the reported value. MEAP (200 and 400 mg/kg) caused a significant reduction in increased paw volume and joint diameter in arthritic rats while significantly increasing body weight and the mechanical threshold of thermal algesia. Moreover, complete blood counts and serum enzyme levels improved significantly. Radiological analysis showed a reduction in soft tissue swelling and small erosions. A histopathological examination of the cells revealed reduced cell infiltration and the erosion of joint cartilage in MEAP-administered arthritic rats. The present research suggests that the antiarthritic activity of the methanolic extract of A. pallens wall is promising, as evidenced by the findings explored in our rat model. Full article
(This article belongs to the Special Issue Treatment Strategies and Immune Responses in Rheumatic Diseases)
Show Figures

Figure 1

17 pages, 12728 KiB  
Article
Effect of an Ultrasonic Vibration on the Microstructure and Properties of Al Alloy/Steel Laser Welding-Brazing Joints
by Chao Zhang, Daozhong Du, Ziqian Wu, Yubo Sun, Xiaoyang Wang, Weimin Long and Juan Pu
Coatings 2024, 14(9), 1219; https://doi.org/10.3390/coatings14091219 - 21 Sep 2024
Cited by 3 | Viewed by 1645
Abstract
This study analyzes the influence of different ultrasonic amplitudes on the microstructure composition, microhardness, tensile strength, and corrosion resistance of Al alloy/steel laser welding-brazing joints assisted by ultrasonic vibration. The application of ultrasonic vibration did not change the microstructure composition of the joints [...] Read more.
This study analyzes the influence of different ultrasonic amplitudes on the microstructure composition, microhardness, tensile strength, and corrosion resistance of Al alloy/steel laser welding-brazing joints assisted by ultrasonic vibration. The application of ultrasonic vibration did not change the microstructure composition of the joints but refined them. The joints were all composed of θ-Fe(Al, Si)3 and τ5-Al7.2Fe1.8Si formed at the interface reaction zone, as well as an α-Al solid solution and Al-Si eutectic phase generated in the weld seam zone. Meanwhile, the thickness of the IMCs at the interface decreased with an increase in the ultrasonic amplitude. When the ultrasonic amplitude was 8 μm, the IMCs thickness was a minimum of 1.62 μm. In this condition, the reduction of the IMCs thickness and the refined grain of joints made the microhardness and tensile strength reach the maximum. The fracture of joints with ultrasonic amplitudes of 0 and 4.8 μm began at the weld seam and extended to the interface reaction zone at the steel side, while the fracture of joints was located in the heat-affected zone (HAZ) of the Al alloy side when the ultrasonic amplitude was 8.0 and 11.2 μm. The fracture mode of the former presented a typical mixed fracture with cleavage steps and tearing edges, and that of the latter showed ductile fracture with uniform and fine ductile dimples. The corrosion resistance of the joints was improved by adding ultrasonic vibration. When the ultrasonic amplitude was 8 μm, its corrosion resistance was optimum; it was ascribed to a dense oxide film formed on the surface of the metal under the action of ultrasonic vibration. Full article
(This article belongs to the Special Issue Tribology and Mechanical Characteristics of Films)
Show Figures

Figure 1

Back to TopTop