Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = jatrorrhizine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4543 KiB  
Article
A New Protein–Ligand Trapping System to Rapidly Screen and Discover Small-Molecule Inhibitors of PD-L1 from Natural Products
by Yazhuo Huang, Senfeng Sun, Runxin Yin, Zongtao Lin, Daidong Wang, Wanwan Wang, Xiangyu Fu, Jing Wang, Xinyu Lei, Mimi Sun, Shizhong Chen and Hong Wang
Molecules 2025, 30(8), 1754; https://doi.org/10.3390/molecules30081754 - 14 Apr 2025
Viewed by 710
Abstract
Chinese herbal medicines have played a significant role in the development of new and effective drugs, but how to identify the active ingredients from complex extracts of traditional Chinese herbal medicines was a research difficulty. In recent years, few studies have focused on [...] Read more.
Chinese herbal medicines have played a significant role in the development of new and effective drugs, but how to identify the active ingredients from complex extracts of traditional Chinese herbal medicines was a research difficulty. In recent years, few studies have focused on high-efficiency identification of small-molecule inhibitors of Programmed Death Ligand 1 with lower antigenicity and flexible structure tunability. In order to identify small molecule inhibitors of PD-L1 from complex Chinese herbal extracts, this study established a protein–ligand trapping system based on high-performance liquid chromatography coupled with a photo-diode array detector, ion trap/quadrupole time-of-flight tandem mass spectrometry, and a Programmed Death Ligand 1 affinity chromatography unit (ACPD-L1-HPLC-PDA-IT-TOF (Q-TOF)-MS) to rapidly screen and identify small-molecule inhibitors of Programmed Death Ligand 1 from Toddalia asiatica (L.) Lam. Fourteen components were then identified as PD-L1 binders, and surface plasmon resonance (SPR) validation results showed that six of them—magnoflorine (6), nitidine (22), chelerythrine (24), jatrorrhizine (13), toddaculin (68), and toddanol (45)—displayed PD-L1 binding activity. Laser scanning confocal microscopy results demonstrated that these compounds effectively inhibited the binding of PD-1 to PD-L1 in a dose-dependent manner. Additionally, flow cytometry analysis indicated they could promote human lung cancer cell line (A549) apoptosis when co-cultured with Peripheral Blood Mononuclear Cells (PBMCs). The system’s innovation lies in its first integration of dynamic protein–ligand trapping with multi-dimensional validation, coupled with high-throughput screening capacity for structurally diverse natural products. This workflow overcomes traditional phytochemical screening bottlenecks by preserving native protein conformations during affinity capture while maintaining chromatographic resolution, offering a transformative template for accelerating natural product-derived immunotherapeutics through the PD-1/PD-L1 pathway. Full article
(This article belongs to the Special Issue Anticancer Natural Products)
Show Figures

Figure 1

10 pages, 1704 KiB  
Communication
Jatrorrhizine Isolated from Phellodendron amurense Improves Collagen Homeostasis in CCD-986sk Human Dermal Fibroblast Cells
by Junhyo Cho
Cosmetics 2025, 12(2), 70; https://doi.org/10.3390/cosmetics12020070 - 9 Apr 2025
Cited by 1 | Viewed by 664
Abstract
Jatrorrhizine is one of the major bioactive compounds found in Phellodendron amurense. Previous studies have reported various health benefits of jatrorrhizine, but little is known about its effect on skin health. In this study, jatrorrhizine isolated from Phellodendron amurense was used to [...] Read more.
Jatrorrhizine is one of the major bioactive compounds found in Phellodendron amurense. Previous studies have reported various health benefits of jatrorrhizine, but little is known about its effect on skin health. In this study, jatrorrhizine isolated from Phellodendron amurense was used to determine the impact on collagen homeostasis in CCD-986sk human dermal fibroblast cells. Jatrorrhizine did not show toxicity of up to 10 μM in CCD-986sk cells. Jatrorrhizine induced procollagen and hyaluronic acid synthesis by increasing the gene expression of collagen type I alpha 2, TIMP metallopeptidase inhibitor 1, transforming growth factor beta 1, and hyaluronan synthase 2. In addition, jatrorrhizine treatment inhibited the gene expression of matrix metallopeptidase 1 and matrix metallopeptidase 9 by increasing tissue inhibitors of metalloproteinase. Our results suggest that jatrorrhizine has the potential for application in therapeutic and cosmetic products to improve collagen homeostasis and prevent wrinkle formation. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

24 pages, 7028 KiB  
Article
Natural Product Identification and Molecular Docking Studies of Leishmania Major Pteridine Reductase Inhibitors
by Moses N. Arthur, George Hanson, Emmanuel Broni, Patrick O. Sakyi, Henrietta Mensah-Brown, Whelton A. Miller and Samuel K. Kwofie
Pharmaceuticals 2025, 18(1), 6; https://doi.org/10.3390/ph18010006 - 24 Dec 2024
Cited by 2 | Viewed by 2216
Abstract
Background/Objectives: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness [...] Read more.
Background/Objectives: Pteridine reductase 1 (PTR1) has been one of the prime targets for discovering novel antileishmanial therapeutics in the fight against Leishmaniasis. This enzyme catalyzes the NADPH-dependent reduction of pterins to their tetrahydro forms. While chemotherapy remains the primary treatment, its effectiveness is constrained by drug resistance, unfavorable side effects, and substantial associated costs. Methods: This study addresses the urgent need for novel, cost-effective drugs by employing in silico techniques to identify potential lead compounds targeting the PTR1 enzyme. A library of 1463 natural compounds from AfroDb and NANPDB, prefiltered based on Lipinski’s rules, was used to screen against the LmPTR1 target. The X-ray structure of LmPTR1 complexed with NADP and dihydrobiopterin (Protein Data Bank ID: 1E92) was identified to contain the critical residues Arg17, Leu18, Ser111, Phe113, Pro224, Gly225, Ser227, Leu229, and Val230 including the triad of residues Asp181-Tyr194-Lys198, which are critical for the catalytic process involving the reduction of dihydrofolate to tetrahydrofolate. Results: The docking yielded 155 compounds meeting the stringent criteria of −8.9 kcal/mol instead of the widely used −7.0 kcal/mol. These compounds demonstrated binding affinities comparable to the known inhibitors; methotrexate (−9.5 kcal/mol), jatrorrhizine (−9.0 kcal/mol), pyrimethamine (−7.3 kcal/mol), hardwickiic acid (−8.1 kcal/mol), and columbamine (−8.6 kcal/mol). Protein–ligand interactions and molecular dynamics (MD) simulation revealed favorable hydrophobic and hydrogen bonding with critical residues, such as Lys198, Arg17, Ser111, Tyr194, Asp181, and Gly225. Crucial to the drug development, the compounds were physiochemically and pharmacologically profiled, narrowing the selection to eight compounds, excluding those with potential toxicities. The five selected compounds ZINC000095486253, ZINC000095486221, ZINC000095486249, 8alpha-hydroxy-13-epi-pimar-16-en-6,18-olide, and pachycladin D were predicted to be antiprotozoal (Leishmania) with Pa values of 0.642, 0.297, 0.543, 0.431, and 0.350, respectively. Conclusions: This study identified five lead compounds that showed substantial binding affinity against LmPTR1 as well as critical residue interactions. A 100 ns MD combined with molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations confirmed the robust binding interactions and provided insights into the dynamics and stability of the protein–ligand complexes. Full article
Show Figures

Figure 1

15 pages, 12378 KiB  
Article
Induction of Tetraploids in Phellodendron amurense Rupr. and Its Effects on Morphology and Alkaloid Content
by Jing Li, Ning Yu, Can-Can Lv, Long Tie, Jia-Ju Pang, Jin-Wang Zhang and Jun Wang
Agronomy 2024, 14(9), 2090; https://doi.org/10.3390/agronomy14092090 - 13 Sep 2024
Cited by 1 | Viewed by 1299
Abstract
Phellodendron amurense Rupr. is a precious medicinal tree species in northeast China. However, P. amurense resources have been severely destroyed due to uncontrolled overharvest and the limited innovation of new germplasms by traditional cross-breeding. In this study, polyploid breeding was introduced to the [...] Read more.
Phellodendron amurense Rupr. is a precious medicinal tree species in northeast China. However, P. amurense resources have been severely destroyed due to uncontrolled overharvest and the limited innovation of new germplasms by traditional cross-breeding. In this study, polyploid breeding was introduced to the improvement program of P. amurense. Fifty-four tetraploid plants of P. amurense were first produced by colchicine-induced adventitious bud chromosome doubling in stem segment explants. The induction frequency reached 36.16% (1.0 g L−1 colchicine solution for 48 h treatment) and 50.00% (2.0 g L−1 colchicine solution for 24 h treatment), respectively, showing the high efficiency of the somatic chromosome doubling based on the organogenesis system. Tetraploidization resulted in significant phenotypic variation, such as larger and thicker leaves, thicker stems, and bigger stomata. Ultra-performance liquid chromatography–mass spectrometry (UPLC–MS/MS) analysis identified 59 differentially accumulated alkaloids (DAAs) between the leaf and stem samples of tetraploids, including 32 upregulated and 27 downregulated in stems. For both leaf and stem samples, 18 DAAs were identified between diploids and tetraploids, with 16 DAAs upregulated in tetraploid leaves and 8 upregulated in tetraploid stems, suggesting that polyploidization caused significant alterations in alkaloid contents in leaves and stems of P. amurense. The contents of the main medicinal compounds, such as berberine, jatrorrhizine, phellodendrine, and palmatine, increased significantly in the leaf and/or stem samples after polyploidization. This finding implied that polyploid breeding might be an effective approach for improving P. amurense, beneficial to preserving and exploiting natural resources. Full article
Show Figures

Figure 1

24 pages, 4325 KiB  
Article
Comprehensive Analysis of Berberis aristata DC. Bark Extracts: In Vitro and In Silico Evaluation of Bioaccessibility and Safety
by Giovanna Rigillo, Giorgio Cappellucci, Giulia Baini, Federica Vaccaro, Elisabetta Miraldi, Luca Pani, Fabio Tascedda, Renato Bruni and Marco Biagi
Nutrients 2024, 16(17), 2953; https://doi.org/10.3390/nu16172953 - 2 Sep 2024
Cited by 5 | Viewed by 3942
Abstract
Berberine (BER) is an alkaloid found, together with other protoberberinoids (PROTBERs), in several species used in medicines and food supplements. While some herbal preparations containing BER and PROTBERs, such as Berberis aristata DC. bark extracts, have shown promising potential for human health, their [...] Read more.
Berberine (BER) is an alkaloid found, together with other protoberberinoids (PROTBERs), in several species used in medicines and food supplements. While some herbal preparations containing BER and PROTBERs, such as Berberis aristata DC. bark extracts, have shown promising potential for human health, their safety has not been fully assessed. Recently, the EFSA issued a call for data to deepen the pharmacokinetic and pharmacodynamic understanding of products containing BER and PROTBERs and to comprehensively assess their safety, especially when used in food supplements. In this context, new data were collected in this work by assessing: (i) the phytochemical profile of 16 different commercial B. aristata dry extracts, which are among the most widely used preparations containing BER and PROTBERs in Europe; (ii) the In Vitro and In Silico investigation of the pharmacokinetic properties of BER and PROTBERs; (iii) the In Vitro cytotoxicity of selected extracts in different human cell lines, including tests on hepatic cells in the presence of CYP450 substrates; (iv) the effects of the extracts on cancer cell migration; and (v) the In Vitro molecular effects of extracts in non-cancer human cells. Results showed that commercial B. aristata extracts contain BER as the main constituent, with jatrorrhizine as main secondary PROTBER. BER and jatrorrhizine were found to have a good bioaccessibility rate, but they interact with P-gp. B. aristata extracts showed limited cytotoxicity and minimal interaction with CYP450 substrates. Furthermore, tested extracts demonstrated inhibition of cancer cell migration and were devoid of any pro-tumoral effects in normal cells. Overall, our work provides a valuable overview to better elucidate important concerns regarding botanicals containing BER and PROTBERs. Full article
(This article belongs to the Special Issue Dietary Supplements in Human Health and Disease)
Show Figures

Figure 1

17 pages, 7048 KiB  
Article
An Extraction Process Based on the Collaborative Extraction of Coptis chinensis Franch. Phytoconstituents Using a Deep Eutectic Solvent and an Organic Solvent
by Cheng Liu, Fangyuan Gong, Zhengwei Xiong, Cun Wang, Xinhe Ran, Jiahua Ran, Runzi Li, Yangjin Ou, Qingqing Xia, Pei Wei and Jin Guo
Separations 2024, 11(8), 249; https://doi.org/10.3390/separations11080249 - 16 Aug 2024
Cited by 1 | Viewed by 1778
Abstract
A low-cost method for the simultaneous extraction of alkaloids and water-insoluble flavonoids and esters from Coptis chinensis Franch. (Abbrev. C. chinensis) was explored to provide a reference for the production of green plant-based preparations and traditional Chinese medicine formula granules. A combined [...] Read more.
A low-cost method for the simultaneous extraction of alkaloids and water-insoluble flavonoids and esters from Coptis chinensis Franch. (Abbrev. C. chinensis) was explored to provide a reference for the production of green plant-based preparations and traditional Chinese medicine formula granules. A combined extraction method with the deep eutectic solvents (DESs) of choline chloride and urea (molar mass ratio of 1:2) and organic solvent ethanol was used, supplemented by ultrasonic-assisted extraction (ultrasonic power: 150 W; ultrasonic temperature: 60 °C; treatment time: 15 min). The extraction efficiency of the 50% DES (choline chloride and urea) aqueous solution for berberine, palmatine, jatrorrhizine, and magnoflorine was found to be the highest and was superior to traditional ultrasonic extraction and water bath reflux extraction methods. Furthermore, the flavonoids and esters from C. chinensis residue were extracted using ethanol. The results from high-performance liquid chromatography and gas chromatography–mass spectrometry indicated a high extraction efficiency overall. Full article
Show Figures

Figure 1

15 pages, 1547 KiB  
Article
Differences in Metabolite Profiles of Dihydroberberine and Micellar Berberine in Caco-2 Cells and Humans—A Pilot Study
by Chuck Chang, Yoon Seok Roh, Min Du, Yun Chai Kuo, Yiming Zhang, Mary Hardy, Roland Gahler and Julia Solnier
Int. J. Mol. Sci. 2024, 25(11), 5625; https://doi.org/10.3390/ijms25115625 - 22 May 2024
Cited by 3 | Viewed by 3759
Abstract
We investigated the pharmacokinetic pathway of berberine and its metabolites in vitro, in Caco-2 cells, and in human participants following the administration of dihydroberberine (DHB) and micellar berberine (LipoMicel®, LMB) formulations. A pilot trial involving nine healthy volunteers was conducted over [...] Read more.
We investigated the pharmacokinetic pathway of berberine and its metabolites in vitro, in Caco-2 cells, and in human participants following the administration of dihydroberberine (DHB) and micellar berberine (LipoMicel®, LMB) formulations. A pilot trial involving nine healthy volunteers was conducted over a 24 h period; blood samples were collected and subjected to Ultra High-Performance Liquid Chromatography–High Resolution Mass Spectrometry (UHPLC-HRMS) analyses to quantify the concentrations of berberine and its metabolites. Pharmacokinetic correlations indicated that berberrubine and thalifendine follow distinct metabolic pathways. Additionally, jatrorrhizine sulfate appeared to undergo metabolism differently compared to the other sulfated metabolites. Moreover, berberrubine glucuronide likely has a unique metabolic pathway distinct from other glucuronides. The human trial revealed significantly higher blood concentrations of berberine metabolites in participants of the DHB treatment group compared to the LMB treatment group—except for berberrubine glucuronide, which was only detected in the LMB treatment group. Similarly, results from in vitro investigations showed significant differences in berberine metabolite profiles between DHB and LMB. Dihydroberberine, dihydroxy-berberrubine/thalifendine and jatrorrhizine sulfate were detected in LMB-treated cells, but not in DHB-treated cells; thalifendine and jatrorrhizine-glucuronide were detected in DHB-treated cells only. While DHB treatment provided higher blood concentrations of berberine and most berberine metabolites, both in vitro (Caco-2 cells) and in vivo human studies showed that treatment with LMB resulted in a higher proportion of unmetabolized berberine compared to DHB. These findings suggest potential clinical implications that merit further investigation in future large-scale trials. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Graphical abstract

20 pages, 9612 KiB  
Article
DFT Calculations, Pro-Apoptotic Effects, and Anti-Infective Investigations of Alkaloids Isolated from the Stem Bark Extract of Enantia chlorantha
by Vincent O. Imieje, Ahmed A. Zaki, Mansour A. E. Bashar, Islam Rady, Mohamed A. M. El-Tabakh, Mohamed A. E. Abd El-Aziz, Eman. S. Abou-Amra, Shahd Yasser, Ibraheem M. M. Gobaara, Mohammed A. S. Abourehab, Reham M. Samra, Hussein A. El-Naggar and Abiodun Falodun
Drugs Drug Candidates 2024, 3(1), 291-310; https://doi.org/10.3390/ddc3010017 - 7 Mar 2024
Cited by 1 | Viewed by 2735
Abstract
Fractionation of the stem bark of Enantia chlorantha Oliv yields three alkaloids, palmatine (1), jatrorrhizine (2), columbamine (3), and β-Sitosterol (4). In this investigation, density functional theory (DFT) calculations were carried out to evaluate [...] Read more.
Fractionation of the stem bark of Enantia chlorantha Oliv yields three alkaloids, palmatine (1), jatrorrhizine (2), columbamine (3), and β-Sitosterol (4). In this investigation, density functional theory (DFT) calculations were carried out to evaluate the electronic structure and properties of 14 by DFT-B3LYP/6-31G level of theory using Gaussian 09 software. The highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), HOMO-LUMO energy difference (band gap), hardness (η), softness (S), dipole moment (μ), electronegativity (χ), hydrophobicity (logP), topological surface area (TPSA), and energy gap (Eg) were calculated. The in vitro cytotoxicity of the compounds was investigated against MCF-7 and HCT116 cancer cell lines using Wi-38 cells as a control. The compounds inhibited the proliferation of the MCF-7 and HCT116 cell lines and induced apoptosis via upregulation of caspase-3, Bax, PARP cleavage, and downregulation of Bcl-2. DFT analyses revealed that compounds 1 and 3 have smaller energy gaps, 0.072 and 0.071eV, respectively, with the highest dipole moments; hence, these compounds are more chemically reactive and exhibit better modulation of caspase-3 enzyme and inhibitory activities of the MCF-3 and HCT116 cell lines. The antimicrobial and antiparasitic evaluation of 14 showed moderate efficacy against the bacterial strains and moderate antiparasitic activity against Cichlidogyrus tilapia. Full article
(This article belongs to the Section Drug Candidates from Natural Sources)
Show Figures

Figure 1

10 pages, 1672 KiB  
Article
Jatrorrhizine Suppresses Murine-Norovirus-Triggered N-GSDMD-Dependent Pyroptosis in RAW264.7 Macrophages
by Ming Fu, Nini Chen, Yanhe Zhou, Sidong Chen, Wanfu Xu, Sitang Gong and Lanlan Geng
Vaccines 2023, 11(1), 164; https://doi.org/10.3390/vaccines11010164 - 12 Jan 2023
Cited by 6 | Viewed by 2389
Abstract
Human norovirus (HNV) is one of the emerging and rapidly spreading groups of pathogens and the main cause of epidemic viral gastroenteritis globally. Due to a lack of in vitro culture systems and suitable animal models for HNV infection, murine norovirus (MNV) has [...] Read more.
Human norovirus (HNV) is one of the emerging and rapidly spreading groups of pathogens and the main cause of epidemic viral gastroenteritis globally. Due to a lack of in vitro culture systems and suitable animal models for HNV infection, murine norovirus (MNV) has become a common model. A recent study showed that MNV activates NLRP3 inflammasome leading to pyroptosis. Jatrorrhizine (JAT) is a natural isoquinoline alkaloid isolated from Coptis Chinensis, which has been proven to have antibacterial, anti-inflammatory, and antitumor effects. However, whether JAT has an effect on norovirus gastroenteritis and the underlying molecular mechanism remain unclear. Here, we found that JAT could ameliorate NLRP3-N-GSDMD-dependent pyroptosis induced by MNV infection through inhibiting the MAPKs/NF-κB signaling pathways and decrease MNV replication in RAW264.7 macrophages, suggesting that JAT has the potential to be a therapeutic agent for treating norovirus gastroenteritis. Full article
Show Figures

Figure 1

30 pages, 5323 KiB  
Article
Optimization of Ethanolic Extraction of Enantia chloranta Bark, Phytochemical Composition, Green Synthesis of Silver Nanoparticles, and Antimicrobial Activity
by Mbarga M. J. Arsene, Podoprigora I. Viktorovna, Marukhlenko V. Alla, Morozova A. Mariya, Goriainov V. Sergei, Esparza Cesar, Anyutoulou K. L. Davares, Kezimana Parfait, Kamgang N. Wilfrid, Tuturov S. Nikolay, Manar Rehailia, Smolyakova A. Larisa, Souadkia Sarra, Senyagin N. Alexandr, Ibrahim Khelifi, Khabadze S. Zurab, Karnaeva S. Amina, Todua M. Iia, Pikina P. Alla, Ada A. Gabin, Ndandja T. K. Dimitri, Kozhevnikova A. Liudmila and Pilshchikova V. Olgaadd Show full author list remove Hide full author list
Fermentation 2022, 8(10), 530; https://doi.org/10.3390/fermentation8100530 - 11 Oct 2022
Cited by 12 | Viewed by 4472
Abstract
In this study, using the Box–Behnken model, we optimized the ethanolic extraction of phytochemicals from Enantia chloranta bark for the first time, assessed the composition with HPLC-MS/MS, performed the green synthesis of silver nanoparticles (AgNPs) and characterized them with UV-Vis spectrophotometry, photon cross-correlation [...] Read more.
In this study, using the Box–Behnken model, we optimized the ethanolic extraction of phytochemicals from Enantia chloranta bark for the first time, assessed the composition with HPLC-MS/MS, performed the green synthesis of silver nanoparticles (AgNPs) and characterized them with UV-Vis spectrophotometry, photon cross-correlation spectroscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. The antibacterial and antibiotic-resistance reversal properties of optimized extract (O-ECB) and AgNPs were assessed on various microorganisms (15 Gram−, 7 Gram+, and 2 fungi) using the well diffusion method and microbroth dilution assay. The mechanism of action was investigated on growth kinetic and proton pumps of Escherichia coli. The in vivo antimicrobial activity and toxicity were assessed on Galleria mellonella larvae. The optimal mass yield (14.3%) related to the highest antibacterial activity (31 mm vs. S. aureus ATCC 6538) was obtained with the following operating conditions: % EtOH—100%; ratio m/v—20 g/mL; and extraction time—6 h. All the compounds identified in O-ECB were alkaloids and the major constituents were palmatine (51.63%), columbamine +7,8-dihydro-8-hydroxypalmatine (19.21%), jatrorrhizine (11.02%), and pseudocolumbamine (6.33%). Among the minerals found in O-ECB (S, Si, Cl, K, Ca, Mn, Fe, Zn, and Br), Br, Fe, and Cl were the most abundant with mean fluorescence intensities of 4.6529, 3.485,4, and 2.5942 cps/uA, respectively. The synthesized AgNPs revealed a strong absorption plasmon band between 430 and 450 nm and an average hydrodynamic diameter ×50 of 59.74 nm, and the presence of Ag was confirmed by a characteristic peak in the spectrum at the silver Kα line of 22.105 keV. Both O-ECB and AgNPs displayed noteworthy and broad-spectrum antimicrobial activities against 20/24 and 24/24 studied microorganisms, respectively, with recorded minimal inhibitory concentrations (MICs) ranging from 8 to ≥1024 µg/mL and 2 to 64 µg/mL. O-ECB and AgNPs showed antibiofilm properties and significantly enhanced the efficacy of conventional antibiotics against selected multidrug-resistant bacteria, and the mechanistic investigations revealed their interference with bacterial growth kinetic and the inhibition of H+-ATPase proton pumps. LD50s were 40 mg/mL and 0.6 mg/mL for O-ECB and AgNPs, respectively. In conclusion, the current study provides a strong experimental baseline to consider Enantia chlorantha bark and their green synthetized AgNPs as potent antimicrobial compounds in this era of antimicrobial resistance. Full article
Show Figures

Figure 1

14 pages, 4036 KiB  
Article
Jatrorrhizine Improves Endothelial Function in Diabetes and Obesity through Suppression of Endoplasmic Reticulum Stress
by Yan Zhou, Yuehan Wang, Chi Teng Vong, Yanyan Zhu, Baojun Xu, Cheng-Chao Ruan, Yitao Wang and Wai San Cheang
Int. J. Mol. Sci. 2022, 23(20), 12064; https://doi.org/10.3390/ijms232012064 - 11 Oct 2022
Cited by 19 | Viewed by 2900
Abstract
Jatrorrhizine (JAT) is one of the major bioactive protoberberine alkaloids found in rhizoma coptidis, which has hypoglycemic and hypolipidemic potential. This study aimed to evaluate the vasoprotective effects of JAT in diabetes and obesity and the underlying mechanism involved. Mouse aortas, carotid arteries [...] Read more.
Jatrorrhizine (JAT) is one of the major bioactive protoberberine alkaloids found in rhizoma coptidis, which has hypoglycemic and hypolipidemic potential. This study aimed to evaluate the vasoprotective effects of JAT in diabetes and obesity and the underlying mechanism involved. Mouse aortas, carotid arteries and human umbilical cord vein endothelial cells (HUVECs) were treated with risk factors (high glucose or tunicamycin) with and without JAT ex vivo and in vitro. Furthermore, aortas were obtained from mice with chronic treatment: (1) control; (2) diet-induced obese (DIO) mice fed a high-fat diet (45% kcal% fat) for 15 weeks; and (3) DIO mice orally administered JAT at 50 mg/kg/day for the last 5 weeks. High glucose or endoplasmic reticulum (ER) stress inducer tunicamycin impaired acetylcholine-induced endothelium-dependent relaxations (EDRs) in mouse aortas, induced oxidative stress in carotid arteries and HUVECs, downregulated phosphorylations of Akt at Ser473 and eNOS at Ser1177 and enhanced ER stress in mouse aortas and HUVECs, and these impairments were reversed by cotreatment with JAT. JAT increased NO release in high-glucose-treated mouse aortas and HUVECs. In addition, chronic JAT treatment restored endothelial function with EDRs comparable to the control, increased Akt/eNOS phosphorylation, and attenuated ER stress and oxidative stress in aortas from DIO mice. Blood pressure, glucose sensitivity, fatty liver and its morphological change, as well as plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and plasma lipid profile, were also normalized by JAT treatment. Collectively, our data may be the first to reveal the vasoprotective effect of JAT that ameliorates endothelial dysfunction in diabetes and obesity through enhancement of the Akt/eNOS pathway and NO bioavailability, as well as suppression of ER stress and oxidative stress. Full article
(This article belongs to the Special Issue Lipids and Cardiovascular Disease)
Show Figures

Figure 1

8 pages, 1819 KiB  
Article
Inhibitory Activity of Quaternary Isoquinoline Alkaloids on Soluble Epoxide Hydrolase
by Jang Hoon Kim, Chong Woon Cho, Mok Hur, Woo Tae Park, Youn-Ho Moon, Sung-Cheol Koo, Yun-Chan Hur, Jong Seong Kang and Ik Soo Lee
Curr. Issues Mol. Biol. 2022, 44(9), 4282-4289; https://doi.org/10.3390/cimb44090294 - 16 Sep 2022
Cited by 3 | Viewed by 2334
Abstract
The quaternary isoquinoline alkaloids of palmatine (1), berberine (2), and jatrorrhizine (3) were evaluated in terms of their ability to inhibit soluble epoxide hydrolase (sEH). They had similar inhibitory activities, with IC50 values of 29.6 ± [...] Read more.
The quaternary isoquinoline alkaloids of palmatine (1), berberine (2), and jatrorrhizine (3) were evaluated in terms of their ability to inhibit soluble epoxide hydrolase (sEH). They had similar inhibitory activities, with IC50 values of 29.6 ± 0.5, 33.4 ± 0.8, and 27.3 ± 0.4 μM, respectively. Their respective Ki values of 26.9, 46.8, and 44.5 μM—determined by enzyme kinetics—indicated that they inhibited the catalytic reaction by binding noncompetitively with sEH. The application of computational chemistry to the in vitro results revealed the site of the receptor to which the ligand would likely bind. Accordingly, three alkaloids were identified as having a suitable basic skeleton for lead compound development of sEH inhibitors. Full article
(This article belongs to the Special Issue New Sight: Enzymes as Targets for Drug Development)
Show Figures

Figure 1

25 pages, 4990 KiB  
Article
Isoquinoline Alkaloids from Coptis chinensis Franch: Focus on Coptisine as a Potential Therapeutic Candidate against Gastric Cancer Cells
by Sylwia Nakonieczna, Aneta Grabarska, Kinga Gawel, Paula Wróblewska-Łuczka, Arkadiusz Czerwonka, Andrzej Stepulak and Wirginia Kukula-Koch
Int. J. Mol. Sci. 2022, 23(18), 10330; https://doi.org/10.3390/ijms231810330 - 7 Sep 2022
Cited by 29 | Viewed by 4255
Abstract
Gastric cancer (GC) has high incidence rates and constitutes a common cause of cancer mortality. Despite advances in treatment, GC remains a challenge in cancer therapy which is why novel treatment strategies are needed. The interest in natural compounds has increased significantly in [...] Read more.
Gastric cancer (GC) has high incidence rates and constitutes a common cause of cancer mortality. Despite advances in treatment, GC remains a challenge in cancer therapy which is why novel treatment strategies are needed. The interest in natural compounds has increased significantly in recent years because of their numerous biological activities, including anti-cancer action. The isolation of the bioactive compounds from Coptis chinensis Franch was carried out with the Centrifugal Partition Chromatography (CPC) technique, using a biphasic solvent system composed of chloroform (CHCl3)—methanol (MeOH)—water (H2O) (4:3:3, v/v) with an addition of hydrochloric acid and trietylamine. The identity of the isolated alkaloids was confirmed using a high resolution HPLC-MS chromatograph. The phytochemical constituents of Coptis chinensis such as berberine, jatrorrhizine, palmatine and coptisine significantly inhibited the viability and growth of gastric cancer cell lines ACC-201 and NCI-N87 in a dose-dependent manner, with coptisine showing the highest efficacy as revealed using MTT and BrdU assays, respectively. Flow cytometry analysis confirmed the coptisine-induced population of gastric cancer cells in sub-G1 phase and apoptosis. The combination of coptisine with cisplatin at the fixed-ratio of 1:1 exerted synergistic and additive interactions in ACC-201 and NCI-N87, respectively, as determined by means of isobolographic analysis. In in vivo assay, coptisine was safe for developing zebrafish at the dose equivalent to the highest dose active in vitro, but higher doses (greater than 10 times) caused morphological abnormalities in larvae. Our findings provide a theoretical foundation to further studies on more detailed mechanisms of the bioactive compounds from Coptis chinensis Franch anti-cancer action that inhibit GC cell survival in in vitro settings. Full article
(This article belongs to the Special Issue Natural Compounds in Cancer Therapy and Prevention)
Show Figures

Figure 1

19 pages, 4409 KiB  
Article
Mosquitocidal Activity of the Methanolic Extract of Annickia chlorantha and Its Isolated Compounds against Culex pipiens, and Their Impact on the Non-Target Organism Zebrafish, Danio rerio
by Tharwat A. Selim, Ibrahim E. Abd-El Rahman, Hesham A. Mahran, Hamza A. M. Adam, Vincent Imieje, Ahmed A. Zaki, Mansour A. E. Bashar, Hossam Hwihy, Abdelaaty Hamed, Ahmed A. Elhenawy, Eman S. Abou-Amra, Samia E. El-Didamony and Ahmed I. Hasaballah
Insects 2022, 13(8), 676; https://doi.org/10.3390/insects13080676 - 27 Jul 2022
Cited by 10 | Viewed by 2788
Abstract
In this study, the crude extract and its isolated compounds from the stem bark of Annickia chlorantha were tested for their larvicidal, developmental, and repellent activity against the mosquito vector, Culex pipiens, besides their toxicity to the non-target aquatic organism, the zebrafish [...] Read more.
In this study, the crude extract and its isolated compounds from the stem bark of Annickia chlorantha were tested for their larvicidal, developmental, and repellent activity against the mosquito vector, Culex pipiens, besides their toxicity to the non-target aquatic organism, the zebrafish (Danio rerio). The acute larvicidal activity of isolated compounds; namely, palmatine, jatrorrhizine, columbamine, β-sitosterol, and Annickia chlorantha methanolic extract (AC), was observed. Developmentally, the larval duration was significantly prolonged when palmatine and β-sitosterol were applied, whereas the pupal duration was significantly prolonged for almost all treatments except palmatine and jatrorrhizine, where it shortened from those in the control. Acetylcholinesterase (AChE) enzyme showed different activity patterns, where it significantly increased in columbamine and β-sitosterol, and decreased in (AC), palmatine, and jatrorrhizine treatments, whereas glutathione S-transferase (GST) enzyme was significantly increased when AC methanolic extract/isolated compounds were applied, compared to the control. The adult emergence percentages were significantly decreased in all treatments, whereas tested compounds revealed non-significant (p > 0.05) changes in the sex ratio percentages, with a slight female-to-male preference presented in the AC-treated group. Additionally, the tested materials revealed repellence action; interestingly, palmatine and jatrorrhizine recorded higher levels of protection, followed by AC, columbamine, and β-sitosterol for 7 consecutive hours compared to the negative and positive control groups. The non-target assay confirms that the tested materials have very low toxic activity compared to the reported toxicity against mosquito larvae. A docking simulation was employed to better understand the interaction of the isolated compounds with the enzymes, AChE and GST. Additionally, DFT calculations revealed that the reported larvicidal activity may be due to the differing electron distributions among tested compounds. Overall, this study highlights the potential of A. chlorantha extract and its isolated compounds as effective mosquitocidal agents with a very low toxic effect on non-target organisms. Full article
(This article belongs to the Special Issue Botanical Control of Insect Pests)
Show Figures

Figure 1

11 pages, 452 KiB  
Article
Simultaneous Analysis of 19 Marker Components for Quality Control of Oncheong-Eum Using HPLC–DAD
by Chang-Seob Seo and Hyeun-Kyoo Shin
Molecules 2022, 27(9), 2992; https://doi.org/10.3390/molecules27092992 - 6 May 2022
Cited by 7 | Viewed by 2389
Abstract
Oncheong-eum (OCE) is a traditional herbal prescription made by combining Samul-tang and Hwangryunhaedok-tang. It is primarily used to treat gynecological disorders such as metrorrhagia and metrostaxis. In the present study, we focused on developing and validating a simultaneous assay for the quality control [...] Read more.
Oncheong-eum (OCE) is a traditional herbal prescription made by combining Samul-tang and Hwangryunhaedok-tang. It is primarily used to treat gynecological disorders such as metrorrhagia and metrostaxis. In the present study, we focused on developing and validating a simultaneous assay for the quality control of OCE using 19 marker components (gallic acid, 5-(hydroxymethyl)furfural, chlorogenic acid, geniposide, coptisine chloride, jatrorrhizine chloride, paeoniflorin, berberine chloride, palmatine chloride, ferulic acid, nodakenin, benzoic acid, baicalin, benzoylpaeoniflorin, wogonoside, baicalein, wogonin, decursin, and decursinol angelate). This analysis was performed using high-performance liquid chromatography coupled with a diode array detector, and chromatographic separation of the 19 markers was carried out using a SunFireTM C18 reversed-phase column and gradient elution conditions with two mobile phases (0.1% aqueous formic acid–0.1% formic acid in acetonitrile). The developed analytical method was validated through linearity, limits of detection and quantification, recovery, and precision. Under this assay, 19 markers in OCE samples were detected at not detected–9.62 mg/g. The analytical methods developed and validated in our research will have value as basic data for the quality control of related traditional herbal prescriptions as well as OCE. Full article
(This article belongs to the Special Issue Analytical Techniques in Pharmaceutical and Biomedical Analysis)
Show Figures

Figure 1

Back to TopTop