DFT Calculations, Pro-Apoptotic Effects, and Anti-Infective Investigations of Alkaloids Isolated from the Stem Bark Extract of Enantia chlorantha
Abstract
:1. Introduction
2. Results
2.1. Inhibition of Cell Proliferation and Viability of MCF-7 and HCT-116 Cells
2.2. Induction of Apoptosis via Bax, Caspase-3, and Cleaved PARP Expression Increase, and Bcl-2 Expression Decrease in Cancer Cells
2.3. Molecular Docking of Compounds (1–4)
2.4. Antiparasitic Activity
2.5. DFT Calculations
2.5.1. Molecular Electrostatic Potential (MEP)
2.5.2. In Silico Study of Physicochemical and ADME Characteristics
3. Discussion
4. Materials and Methods
4.1. Anticancer Assay
4.1.1. Cell Cultures
4.1.2. MTT Assay for Cytotoxicity Evaluation
4.1.3. Determination of Selectivity Index (SI)
4.1.4. Determination of Caspase-3 Activity
4.1.5. Determination of Bax and Bcl-2
4.1.6. Western Blotting
4.2. Antibacterial Activity
4.3. Antiparasitic Activity
4.4. Molecular Docking Study
4.5. DFT Calculations
In Silico Study of Physicochemical and ADME Characteristics
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.M.; Kehm, R.D.; Terry, M.B. Global breast cancer incidence and mortality trends by region, age-groups, and fertility patterns. eClinicalMedicine 2021, 38, 100985. [Google Scholar] [CrossRef]
- Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant derived substances with anticancer activity: From folklore to practice. Front. Plant Sci. 2015, 6, 799. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Bashar, M.A.E.; Rady, I.; El-Naggar, H.A.; Abd El-Maoula, L.M.; Mehany, A.B.M. Antiproliferative Activity, Proapoptotic Effect, and Cell Cycle Arrest in Human Cancer Cells of Some Marine Natural Product Extract. Oxid. Med. Cell. Longev. 2020, 25, 7948705. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, H.A.; Bashar, M.A.E.; Rady, I.; El-Wetidy, M.S.; Suleiman, W.B.; Al-Otibi, F.O.; Al-Rashed, S.A.; Abd El-Maoula, L.M.; Salem, E.S.S.; Attia, E.M.; et al. Two Red Sea Sponge Extracts (Negombata magnifica and Callyspongia siphonella) Induced Anticancer and Antimicrobial Activity. Appl. Sci. 2022, 12, 1400. [Google Scholar] [CrossRef]
- Harvey, A.L. Natural products in drug discovery. Drug Discov. Today 2008, 13, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Last 25 Years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef]
- Yassin, A.M.; El-Deeb, N.M.; Metwaly, A.M.; El Fawal, G.F.; Radwan, M.M.; Hafez, E.E. Induction of Apoptosis in Human Cancer Cells Through Extrinsic and Intrinsic Pathways by Balanites aegyptiaca Furostanol Saponins and Saponin-Coated SilverNanoparticles. Appl. Biochem. Biotechnol. 2017, 182, 1675–1693. [Google Scholar] [CrossRef]
- Imieje, V.O.; Zaki, A.A.; Fasinu, P.S.; Ali, Z.; Khan, I.A.; Tekwani, B.; Khan, S.I.; Nosa, E.O.; Falodun, A. Antiprotozoal and Cytotoxicity Studies of Fractions and Compounds from Enantia chlorantha. Trop. J. Nat. Prod. Res. 2017, 1, 89–94. [Google Scholar] [CrossRef]
- Metwaly, A.M.; Ghoneim, M.M.; Musa, A. Two new antileishmanial diketopiperazine alkaloids from the endophytic fungus Trichosporum sp. Derpharmachemica 2015, 11, 322. [Google Scholar]
- Jalmakhanbetova, R.I.; Suleimen, Y.M.; Oyama, M.; Elkaeed, E.B.; Eissa, I.H.; Suleimen, R.N.; Metwaly, A.M.; Ishmuratova, M.Y. Isolation and In Silico Anti-COVID-19 Main Protease (Mpro) Activities of Flavonoids and a Sesquiterpene Lactone from Artemisia sublessingiana. J. Chem. 2021, 2021, 5547013. [Google Scholar] [CrossRef]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, M.R. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. Biomed. Res. Int. 2022, 2022, 5445291. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, S.; Edrada-Ebel, R.; Fearnley, J.; Igoli, J.O.; Alotaibi, W.; Clements, C.J.; Gray, A.I.; Watson, D.G. Isolation of diterpenes and flavonoids from a new type of propolis from Saudi Arabia. Phytochem. Lett. 2014, 10, 160–163. [Google Scholar] [CrossRef]
- Dhyani, P.; Sati, P.; Sharma, E.; Attri, D.C.; Bahukhandi, A.; Tynybekov, B.; Szopa, A.; Sharifi-Rad, J.; Calina, D.; Suleria, H.A.; et al. Sesquiterpenoid lactones as potential anticancer agents: An update on molecular mechanisms and recent studies. Cancer Cell Int. 2022, 22, 305. [Google Scholar] [CrossRef]
- Zhang, S.; Won, Y.K.; Ong, C.N.; Shen, H.M. Anti-cancer potential of sesquiterpene lactones: Bioactivity and molecular mechanisms. Curr. Med. Chem. Anti-Cancer Agents. 2005, 5, 239–249. [Google Scholar] [CrossRef]
- Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Prachayasittikul, V.; Nantasenamat, C. Classification of P-glycoprotein-interacting compounds using machine learning methods. EXCLI J. 2015, 14, 958–970. [Google Scholar]
- Salam, H.S.; Tawfik, M.M.; Elnagar, M.R.; Mohammed, M.A.; Zarka, M.A.; Awad, N.S. Potential Apoptotic Activities of Hylocereus undatus Peel and Pulp Extracts in MCF-7 and Caco-2 Cancer Cell Lines. Plants 2022, 11, 2192. [Google Scholar] [CrossRef]
- Prayong, P.; Barusrux, S.; Weerapreeyakul, N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia 2008, 79, 598–601. [Google Scholar] [CrossRef]
- Bézivin, C.; Tomasi, S.; Lohézic-Le Dévéhat, F.; Boustie, J. Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomed. Int. J. Phytother. Phytopharm. 2003, 10, 499–503. [Google Scholar] [CrossRef]
- Sanna, V.; Singh, C.K.; Jashari, R.; Adhami, V.M.; Chamcheu, J.C.; Rady, I.; Sechi, M.; Mukhtar, H.; Siddiqui, I.A. Targeted nanoparticles encapsulating (−)-epigallocatechin-3-gallate for prostate cancer prevention and therapy. Sci. Rep. 2017, 7, 41573. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Siddiqui, I.A.; Nihal, M.; Pilla, S.; Rosenthal, K.; Mukhtar, H.; Gong, S. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 2013, 34, 5244–5253. [Google Scholar] [CrossRef] [PubMed]
- Grabarska, A.; Wróblewska-Łuczka, P.; Kukula-Koch, W.; Łuszczki, J.J.; Kalpoutzakis, E.; Adamczuk, G.; Skaltsounis, A.L.; Stepulak, A. Palmatine, a Bioactive Protoberberine Alkaloid Isolated from Berberis cretica, Inhibits the Growth of Human Estrogen Receptor-Positive Breast Cancer Cells and Acts Synergistically and Additively with Doxorubicin. Molecules 2021, 26, 6253. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.S.; Borland, M.; Brain, C.; Chen, C.H.; Cheng, H.; Chopra, R.; Chung, K.; Groarke, J.; He, G.; Hou, Y.; et al. 4-(Pyrazol-4-yl)-pyrimidines as selective inhibitors of cyclin-dependent kinase 4/6. J. Med. Chem. 2010, 53, 7938–7957. [Google Scholar] [CrossRef] [PubMed]
- Klingmüller, U.; Schilling, M.; Depner, S.; D’Alessandro, L.A. Biological foundations of signal transduction, systems biology and aberrations in disease. In Computational Systems Biology: From Molecular Mechanisms to Disease; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 45–64. [Google Scholar]
- Zhang, X.P.; Li, W.X.; Ai, T.S.; Zou, H.; Wu, S.G.; Wang, G.T. The efficacy of four common anthelmintic drugs and traditional Chinese medicinal plant extracts to control Dactylogyrus vastator (Monogenea). Aquaculture 2014, 420, 302–307. [Google Scholar] [CrossRef]
- Dong, J.; Yan, T.; Yang, Q.; Song, Y.; Cheng, B.; Zhou, S.; Liu, Y.; Ai, X. Palmatine Inhibits the Pathogenicity of Aeromonas hydrophila by Reducing Aerolysin Expression. Foods 2022, 11, 3250. [Google Scholar] [CrossRef] [PubMed]
- Ruta, L.L.; Farcasanu, I.C.; Bacalum, M.; Răileanu, M.; Rostas, A.M.; Daniliuc, C.; Chifiriuc, M.C.; Măruțescu, L.; Popa, M.; Badea, M.; et al. Biological activity of triazolopyrimidine copper (II) complexes modulated by an auxiliary NN-chelating heterocycle ligands. Molecules 2021, 26, 6772. [Google Scholar] [CrossRef]
Cpd. No. | GI Absorption | BBB Permeation | Pgp Substrate | Bioavailability Score | Synthetic Accessibility |
---|---|---|---|---|---|
1 | High | Yes | Yes | 0.55 | 3.18 |
2 | High | Yes | Yes | 0.55 | 3.06 |
3 | High | Yes | Yes | 0.55 | 3.05 |
4 | Low | No | No | 0.55 | 6.30 |
Comp. No. | Dipole Moment, μ (Debye) | η | S | χ | EHOMO (eV) | ELUMO (eV) | (LUMO-HOMO) Gaps (eV) |
---|---|---|---|---|---|---|---|
1 | 5.91 | 0.036 | 27.780 | 0.642 | −0.107 | −0.035 | 0.072 |
2 | 5.41 | 0.076 | 15.158 | 0.113 | −0.189 | −0.036 | 0.152 |
3 | 6.68 | 0.036 | 28.169 | 0.071 | −0.107 | −0.035 | 0.071 |
4 | 1.85 | 0.100 | 10.000 | 0.127 | −0.227 | −0.027 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imieje, V.O.; Zaki, A.A.; Bashar, M.A.E.; Rady, I.; El-Tabakh, M.A.M.; Abd El-Aziz, M.A.E.; Abou-Amra, E.S.; Yasser, S.; Gobaara, I.M.M.; Abourehab, M.A.S.; et al. DFT Calculations, Pro-Apoptotic Effects, and Anti-Infective Investigations of Alkaloids Isolated from the Stem Bark Extract of Enantia chlorantha. Drugs Drug Candidates 2024, 3, 291-310. https://doi.org/10.3390/ddc3010017
Imieje VO, Zaki AA, Bashar MAE, Rady I, El-Tabakh MAM, Abd El-Aziz MAE, Abou-Amra ES, Yasser S, Gobaara IMM, Abourehab MAS, et al. DFT Calculations, Pro-Apoptotic Effects, and Anti-Infective Investigations of Alkaloids Isolated from the Stem Bark Extract of Enantia chlorantha. Drugs and Drug Candidates. 2024; 3(1):291-310. https://doi.org/10.3390/ddc3010017
Chicago/Turabian StyleImieje, Vincent O., Ahmed A. Zaki, Mansour A. E. Bashar, Islam Rady, Mohamed A. M. El-Tabakh, Mohamed A. E. Abd El-Aziz, Eman. S. Abou-Amra, Shahd Yasser, Ibraheem M. M. Gobaara, Mohammed A. S. Abourehab, and et al. 2024. "DFT Calculations, Pro-Apoptotic Effects, and Anti-Infective Investigations of Alkaloids Isolated from the Stem Bark Extract of Enantia chlorantha" Drugs and Drug Candidates 3, no. 1: 291-310. https://doi.org/10.3390/ddc3010017
APA StyleImieje, V. O., Zaki, A. A., Bashar, M. A. E., Rady, I., El-Tabakh, M. A. M., Abd El-Aziz, M. A. E., Abou-Amra, E. S., Yasser, S., Gobaara, I. M. M., Abourehab, M. A. S., Samra, R. M., El-Naggar, H. A., & Falodun, A. (2024). DFT Calculations, Pro-Apoptotic Effects, and Anti-Infective Investigations of Alkaloids Isolated from the Stem Bark Extract of Enantia chlorantha. Drugs and Drug Candidates, 3(1), 291-310. https://doi.org/10.3390/ddc3010017