Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (156)

Search Parameters:
Keywords = isothermal titration calorimetry (ITC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3228 KiB  
Article
N-Degron-Based PROTAC Targeting PLK1: A Potential Therapeutic Strategy for Cervical Cancer
by Pethaiah Gunasekaran, Sang Chul Shin, Yeon Sil Hwang, Jihyeon Lee, Yeo Kyung La, Min Su Yim, Hak Nam Kim, Tae Wan Kim, Eunjung Yang, Soo Jae Lee, Jung Min Yoon, Eunice EunKyeong Kim, Seob Jeon, Eun Kyoung Ryu and Jeong Kyu Bang
Pharmaceutics 2025, 17(8), 1027; https://doi.org/10.3390/pharmaceutics17081027 - 7 Aug 2025
Abstract
Background: Cervical cancer remains a major global health concern, with existing chemotherapy facing limited effectiveness owing to resistance. Polo-like kinase 1 (PLK1) overexpression in cervical cancer cells is a promising target for developing novel therapies to overcome chemoresistance and improve treatment efficacy. [...] Read more.
Background: Cervical cancer remains a major global health concern, with existing chemotherapy facing limited effectiveness owing to resistance. Polo-like kinase 1 (PLK1) overexpression in cervical cancer cells is a promising target for developing novel therapies to overcome chemoresistance and improve treatment efficacy. Methods: In this study, we developed a novel PROTAC, NC1, targeting PLK1 PBD via the N-end rule pathway. Results: This PROTAC effectively depleted the PLK1 protein in HeLa cells by inducing protein degradation. The crystal structure of the PBD-NC1 complex identified key PLK1 PBD binding interactions and isothermal titration calorimetry (ITC) confirmed a binding affinity of 6.06 µM between NC1 and PLK1 PBD. NC1 significantly decreased cell viability with an IC50 of 5.23 µM, induced G2/M phase arrest, and triggered apoptosis in HeLa cells. In vivo, NC1 suppressed tumor growth in a HeLa xenograft mouse model. Conclusions: This research highlights the potential of N-degron-based PROTACs targeting the PLK1 protein in cancer therapies, highlighting their potential in future cervical anticancer treatment strategies. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

18 pages, 7202 KiB  
Article
Functionalized Polymeric Nanoparticles for Yttrium Recovery by Chelating Effect
by Pedro Adrián Martínez-Montoya, Hugo Martínez-Gutiérrez, Ángel de Jesús Morales-Ramírez and Mónica Corea
Polymers 2025, 17(15), 2011; https://doi.org/10.3390/polym17152011 - 23 Jul 2025
Viewed by 290
Abstract
Polymethyl methacrylate nanoparticles functionalized with three different compounds, acrylic acid (AA), curcumin (CUR), and fumaramide (FA), were tested in a two-step solid–liquid extraction process (extraction and stripping) for yttrium recovery. In both stages, the best conditions were determined: pH, solid–liquid ratio and the [...] Read more.
Polymethyl methacrylate nanoparticles functionalized with three different compounds, acrylic acid (AA), curcumin (CUR), and fumaramide (FA), were tested in a two-step solid–liquid extraction process (extraction and stripping) for yttrium recovery. In both stages, the best conditions were determined: pH, solid–liquid ratio and the compound with the highest affinity for yttrium recovery, obtaining 90% of efficiency for both stages in a single work cycle. The results obtained by SEM ruled out the growing of nanoparticles by swelling and confirmed the formation of structural arrangements by the addition of the metal to the system. In addition, there is evidence that the recovery process can be selective considering the mixing of rare earth elements through changes in pH. Using isothermal titration calorimetry (ITC), the thermodynamic properties of the extraction process were calculated, understanding the system as the union of a macromolecule and a ligand. The results showed that the extraction process was spontaneous and highly entropic. Full article
Show Figures

Graphical abstract

13 pages, 2581 KiB  
Article
Triazine Calixarene as a Dual-Channel Chemosensor for the Reversible Detection of Cu2+ and I Ions via Water Content Modulation
by Fuyong Wu, Long Chen, Mei Yu, Liang Zhao, Lu Jiang, Tianzhu Shi, Ju Guo, Huayan Zheng, Ruixiao Wang and Mingrui Liao
Molecules 2025, 30(13), 2815; https://doi.org/10.3390/molecules30132815 - 30 Jun 2025
Viewed by 341
Abstract
Rationally designing and synthesizing chemosensors capable of simultaneously detecting both anions and cations via water content modulation is challenging. In this study, we synthesized and characterized a novel triazine calixarene derivative-based iodide and copper ion-selective fluorescent “turn-off” sensor. This dual-channeled fluorescent probe is [...] Read more.
Rationally designing and synthesizing chemosensors capable of simultaneously detecting both anions and cations via water content modulation is challenging. In this study, we synthesized and characterized a novel triazine calixarene derivative-based iodide and copper ion-selective fluorescent “turn-off” sensor. This dual-channeled fluorescent probe is able to recognize Cu2+ and I ions simultaneously in aqueous systems. The fluorescent sensor s4 was synthesized by displacement reaction of acridine with 1, 3-bis (dichloro-mono-triazinoxy) benzene in acetonitrile. Mass spectrometry (MS), UV-vis, and fluorescence spectra were acquired to characterize the fluorescence response of s4 to different cations and anions, while infrared (IR) spectroscopy and isothermal titration calorimetry (ITC) were employed to study the underlying selectivity mechanism of s4 to Cu2+ and I. In detail, s4 displayed extremely high sensitivity to Cu2+ with over 80% fluorescence decrement caused by the paramagnetic nature of Cu2+ in the aqueous media. The reversible fluorescence response to Cu2+ and the responses to Cu2+ in the solution of other potential interferent cations, such as Li+, Na+, K+, Ca2+, Cd2+, Zn2+, Sr2+, Ni2+, Co2+ were also investigated. Probe s4 also exhibited very good fluorescence selectivity to iodide ions under various anion (F, Cl, Br, NO3, HSO4, ClO4, PF6, AcO, H2PO4) interferences. In addition to the fluorescent response to I, s4 showed a highly selective naked-eye-detectable color change from colorless to yellow with the other tested anions. Full article
Show Figures

Figure 1

24 pages, 6370 KiB  
Article
Influence of Peptide Conjugation Sites on Lunatin–Alumina Nanoparticles: Implications for Membrane Interaction and Antimicrobial Activity
by Carolina Silva Ferreira, Lívia Mara Fontes Costa, Lúcio Otávio Nunes, Kelton Rodrigues de Souza, Giovanna Paula Araújo, Evgeniy S. Salnikov, Kelly Cristina Kato, Helen Rodrigues Martins, Adriano Monteiro de Castro Pimenta, Jarbas Magalhães Resende, Burkhard Bechinger and Rodrigo Moreira Verly
Pharmaceuticals 2025, 18(7), 952; https://doi.org/10.3390/ph18070952 - 24 Jun 2025
Viewed by 511
Abstract
Background/Objectives: The increasing prevalence of multidrug-resistant bacteria presents a major global health challenge, prompting a search for innovative antimicrobial strategies. This study aimed to develop and evaluate a novel nanobiostructure combining alumina nanoparticles (NPs) with the antimicrobial peptide lunatin-1 (Lun-1), forming peptide-functionalized nanofilaments. [...] Read more.
Background/Objectives: The increasing prevalence of multidrug-resistant bacteria presents a major global health challenge, prompting a search for innovative antimicrobial strategies. This study aimed to develop and evaluate a novel nanobiostructure combining alumina nanoparticles (NPs) with the antimicrobial peptide lunatin-1 (Lun-1), forming peptide-functionalized nanofilaments. The main objective was to investigate how the site of peptide functionalization (C-terminal vs. N-terminal) affects membrane interactions and antibacterial activity. Methods: NP–peptide conjugates were synthesized via covalent bonding between lun-1 and alumina NP and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), zeta potential analysis, dynamic light scattering (DLS), Fourier-transform infrared (FTIR), and solid-state 13C NMR. Antibacterial activities were assessed against different Gram-positive and Gram-negative strains. Biophysical analyses, including circular dichroism (CD), isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and solid-state 2H NMR, were employed to evaluate peptide–membrane interactions in the presence of membrane-mimetic vesicles composed of POPC:POPG (3:1) and DMPC:DMPG (3:1). Results: Characterization confirmed the successful formation of NP–peptide nanofilaments. Functionalization at the N-terminal significantly influenced both antibacterial activity and peptide conformation compared to C-terminal attachment. Biophysical data demonstrated stronger membrane interaction and greater membrane disruption when lun-1 was conjugated at the N-terminal. Conclusions: The site of peptide conjugation plays a crucial role in modulating the biological and biophysical properties of NP–lunatin-1 conjugates. C-terminal attachment of lunatin-1 retains both membrane interaction and antibacterial efficacy, making it a promising strategy for the design of peptide-based nanotherapeutics targeting resistant pathogens. Full article
Show Figures

Figure 1

10 pages, 1754 KiB  
Article
A Study of the Inclusion Complex Formed Between Cucurbit[8]uril and N,4-Di(pyridinyl)benzamide Derivative
by Zhikang Wang, Mingjie Yang, Weibo Yang, Zhongzheng Gao, Hui Zhao, Gang Wei and Jifu Sun
Organics 2025, 6(2), 26; https://doi.org/10.3390/org6020026 - 17 Jun 2025
Viewed by 353
Abstract
The interaction between cucurbit[8]uril (Q[8]) and the guest 1-methyl-4-(4-(1-methylpyridin-1-ium-4-yl)benzamido)pyridin-1-ium (PB2+) has been thoroughly investigated. Multiple techniques were employed, including 1H NMR spectroscopy, mass spectrometry, isothermal titration calorimetry (ITC), UV–vis absorption spectrophotometry, and quantum chemistry calculations. The experimental results and calculation [...] Read more.
The interaction between cucurbit[8]uril (Q[8]) and the guest 1-methyl-4-(4-(1-methylpyridin-1-ium-4-yl)benzamido)pyridin-1-ium (PB2+) has been thoroughly investigated. Multiple techniques were employed, including 1H NMR spectroscopy, mass spectrometry, isothermal titration calorimetry (ITC), UV–vis absorption spectrophotometry, and quantum chemistry calculations. The experimental results and calculation analysis have clearly shown that in aqueous solution, the host Q[8] preferentially encapsulates the phenylpyridinium salt moiety of the PB2+ guest within its hydrophobic cavity, forming a 1:2 inclusion complex. Full article
Show Figures

Graphical abstract

18 pages, 1302 KiB  
Article
Afil, a Lectin from Aplysina fistularis, Exhibits Antibiofilm and Synergistic Antibacterial Activity Against Resistant Bacteria
by Francisco Regivanio Nascimento Andrade, João Marcelo de Sousa Silva, Jéssica de Assis Duarte, Philippe Lima Duarte, Pedro Arthur Sousa Tabosa, Manoel Ferreira da Costa Filho, Juliana Sampaio Nogueira Marques, Alexandre Lopes Andrade, Renata Pinheiro Chaves, Mayron Alves de Vasconcelos, Elielton Nascimento, Ulisses Pinheiro, Edson Holanda Teixeira, Celso Shiniti Nagano, Alexandre Holanda Sampaio and Rômulo Farias Carneiro
Microorganisms 2025, 13(6), 1349; https://doi.org/10.3390/microorganisms13061349 - 10 Jun 2025
Viewed by 475
Abstract
Lectins from marine sponges have emerged as promising candidates for antimicrobial strategies, particularly against biofilm-forming pathogens. In this study, we report the purification, biochemical characterization, and antibiofilm properties of a new lectin (AfiL) isolated from Aplysina fistularis. AfiL exhibited typical features of [...] Read more.
Lectins from marine sponges have emerged as promising candidates for antimicrobial strategies, particularly against biofilm-forming pathogens. In this study, we report the purification, biochemical characterization, and antibiofilm properties of a new lectin (AfiL) isolated from Aplysina fistularis. AfiL exhibited typical features of sponge lectins, including a β-sheet-rich secondary structure and a predominant oligomeric state in solution. Dynamic light scattering (DLS) analyses confirmed that AfiL predominantly exists as a well-defined oligomer at acidic and neutral pH. Sequence analysis revealed similarity to a putative collectin-like protein from sponge Desydea avara. AfiL selectively agglutinated Staphylococcus aureus strains, correlating with its preferential binding to lipoteichoic acid (LTA). The lectin demonstrated significant antibiofilm activity against S. aureus, S. epidermidis, and Escherichia coli strains, and exhibited synergistic or additive effects when combined with conventional antibiotics against a Methicillin-resistant S. aureus. Isothermal titration calorimetry (ITC) revealed a strong interaction between AfiL and porcine stomach mucin (Kd = 1.71 × 10−6 M), consistent with multivalent carbohydrate recognition. Overall, our findings highlight the potential of AfiL as a novel antibiofilm agent with species-specific modulatory effects on antibiotic activity and provide new insights into the functional versatility of sponge-derived lectins in microbial control strategies. Full article
Show Figures

Figure 1

17 pages, 2188 KiB  
Article
Impact of SARS-CoV-2 RBM Mutations N501Y and E484K on ACE2 Binding: A Combined Computational and Experimental Study
by Agnieszka Rombel-Bryzek, Peicho Petkov, Elena Lilkova, Nevena Ilieva, Leandar Litov, Mariusz Kubus and Danuta Witkowska
Int. J. Mol. Sci. 2025, 26(9), 4064; https://doi.org/10.3390/ijms26094064 - 25 Apr 2025
Cited by 1 | Viewed by 811
Abstract
The SARS-CoV-2 spike receptor-binding motif is crucial for viral entry via interaction with the human ACE2 receptor. Mutations N501Y and E484K, found in several variants of concern, impact viral transmissibility and immune escape, but experimental data on their binding effects remain inconsistent. Using [...] Read more.
The SARS-CoV-2 spike receptor-binding motif is crucial for viral entry via interaction with the human ACE2 receptor. Mutations N501Y and E484K, found in several variants of concern, impact viral transmissibility and immune escape, but experimental data on their binding effects remain inconsistent. Using isothermal titration calorimetry (ITC) and molecular dynamics (MD) simulations, we analyzed the thermodynamic and structural effects of these mutations. ITC confirmed that N501Y increases ACE2 affinity by 2.2-fold, while E484K enhances binding by 5.8-fold. The Beta/Gamma variant (carrying both mutations) showed the strongest affinity, with a 15-fold increase. E484K was enthalpy-driven, while N501Y introduced entropy-driven effects, suggesting hydrophobic interactions and conformational changes. MD simulations revealed distinct binding poses, with Beta/Gamma peptides interacting with a secondary ACE2 site. A strong correlation was found between entropy contributions and hydrophobic contacts. Additionally, a convolutional neural network was used to estimate the free binding energy of these complexes. Our findings confirm that N501Y and E484K enhance ACE2 binding, with the greatest effect when combined, providing insights into SARS-CoV-2 variant evolution and potential therapeutic strategies. Full article
(This article belongs to the Special Issue New Advances in Molecular Research of Coronavirus)
Show Figures

Figure 1

20 pages, 7495 KiB  
Article
New Antioxidant Triphenol-Derived Hydrazide-Hydrazone Thiazole: Formation and Analysis of Inclusion Complex with β-CD Using Experimental and Computational Approaches
by Adrian Pîrnău, Mihaela Mic, Călin G. Floare, Ovidiu Oniga, Smaranda Dafina Oniga, Ovidiu Crișan, Laurian Vlase and Gabriel Marc
Molecules 2025, 30(8), 1842; https://doi.org/10.3390/molecules30081842 - 19 Apr 2025
Viewed by 580
Abstract
A new water-soluble not-colored antioxidant (Z)-N′-(4-(3,4-dihydroxyphenyl)-3-ethylthiazol-2(3H)-ylidene)-4-hydroxybenzohydrazide hydrochloride (DHTH) was obtained and characterized. The interaction between DHTH and β-CD was studied by experimental thermodynamic methods such as isothermal titration calorimetry (ITC) and 1H NMR spectroscopy and confirmed by in silico calculations. Thermodynamic data [...] Read more.
A new water-soluble not-colored antioxidant (Z)-N′-(4-(3,4-dihydroxyphenyl)-3-ethylthiazol-2(3H)-ylidene)-4-hydroxybenzohydrazide hydrochloride (DHTH) was obtained and characterized. The interaction between DHTH and β-CD was studied by experimental thermodynamic methods such as isothermal titration calorimetry (ITC) and 1H NMR spectroscopy and confirmed by in silico calculations. Thermodynamic data indicated that the inclusion process is driven by enthalpy, predominantly as a result of the guest–host hydrophobic interactions. 1H NMR measurements were applied to study the interaction with β-CD by changing the studied compound concentration in the solution. UV-vis titration and in vitro antiradical assay were performed, to study the antioxidant activity of DHTH, free and included in β-CD. A molecular docking study added supplementary insight to the experimental analyses regarding the binding conformation of the new polyphenolic compound to β-CD. Full article
Show Figures

Figure 1

14 pages, 2268 KiB  
Article
Interactions of Laurylated and Myristoylated KR12 Fragment of the LL37 Peptide with Polyoxidovanadates
by Martyna Kapica, Elżbieta Kamysz, Ola Grabowska, Aleksandra Tesmar, Marek Pająk, Katarzyna Chmur, Jakub Brzeski, Sergey A. Samsonov and Dariusz Wyrzykowski
Molecules 2025, 30(7), 1589; https://doi.org/10.3390/molecules30071589 - 2 Apr 2025
Viewed by 565
Abstract
Isothermal titration calorimetry (ITC), circular dichroism (CD) spectroscopy, and molecular dynamics simulations were applied to describe interactions between lipopeptides and decavanadate ions ([V10O28]6−). The selected lipopeptides are conjugates of the amide of the KR12 peptide, the smallest [...] Read more.
Isothermal titration calorimetry (ITC), circular dichroism (CD) spectroscopy, and molecular dynamics simulations were applied to describe interactions between lipopeptides and decavanadate ions ([V10O28]6−). The selected lipopeptides are conjugates of the amide of the KR12 peptide, the smallest antimicrobial peptide derived from human cathelicidin LL-37, with lauric acid (C12-KR12) and myristic acid (C14-KR12). The smaller sizes of C12-KR12 and C14-KR12 compared to proteins allow for the rigorous characterization of their non-covalent interactions with highly negatively charged [V10O28]6− ions. The stoichiometry of the resulting decavanadate–peptide complexes and the thermodynamic parameters (ΔG, ΔH, and TΔS) of the interactions were determined. The ITC results, supported by the MD simulation, showed that the binding of cationic lipopeptides for decavanadate is rather non-specific and is driven by enthalpic contributions resulting from electrostatic interactions between the positively charged residues of the peptides and the anionic decavanadate. Furthermore, the influence of temperature and the interactions with decavanadate ions on the stability of the α-helical structure of the lipopeptides were assessed based on CD spectra. Under the experimental conditions (50 mM sodium cacodylate buffer, pH 5), the peptides adopt an α-helical conformation, with C14-KR12 showing greater thermal stability. The interactions with vanadium species disrupt the α-helical structure and reduce its thermal stability. Full article
Show Figures

Graphical abstract

26 pages, 8825 KiB  
Article
Biochemical Screening of Phytochemicals and Identification of Scopoletin as a Potential Inhibitor of SARS-CoV-2 Mpro, Revealing Its Biophysical Impact on Structural Stability
by Sarika Bano, Jyotishna Singh, Zainy Zehra, Md Nayab Sulaimani, Taj Mohammad, Seemasundari Yumlembam, Md Imtaiyaz Hassan, Asimul Islam and Sanjay Kumar Dey
Viruses 2025, 17(3), 402; https://doi.org/10.3390/v17030402 - 12 Mar 2025
Cited by 1 | Viewed by 1027
Abstract
The main protease (Mpro or 3CLpro or nsp5) of SARS-CoV-2 is crucial to the life cycle and pathogenesis of SARS-CoV-2, making it an attractive drug target to develop antivirals. This study employed the virtual screening of a few phytochemicals, and the [...] Read more.
The main protease (Mpro or 3CLpro or nsp5) of SARS-CoV-2 is crucial to the life cycle and pathogenesis of SARS-CoV-2, making it an attractive drug target to develop antivirals. This study employed the virtual screening of a few phytochemicals, and the resultant best compound, Scopoletin, was further investigated by a FRET-based enzymatic assay, revealing an experimental IC50 of 15.75 µM. The impact of Scopoletin on Mpro was further investigated by biophysical and MD simulation studies. Fluorescence spectroscopy identified a strong binding constant of 3.17 × 104 M⁻1 for Scopoletin binding to Mpro, as demonstrated by its effective fluorescence quenching of Mpro. Additionally, CD spectroscopy showed a significant reduction in the helical content of Mpro upon interaction with Scopoletin. The findings of thermodynamic measurements using isothermal titration calorimetry (ITC) supported the spectroscopic data, indicating a tight binding of Scopoletin to Mpro with a KA of 2.36 × 103 M−1. Similarly, interaction studies have also revealed that Scopoletin forms hydrogen bonds with the amino acids nearest to the active site, and this has been further supported by molecular dynamics simulation studies. These findings indicate that Scopoletin may be developed as a potential antiviral treatment for SARS-CoV-2 by targeting Mpro. Full article
(This article belongs to the Special Issue Coronaviruses Pathogenesis, Immunity, and Antivirals (2nd Edition))
Show Figures

Figure 1

11 pages, 3987 KiB  
Article
Induced Chirality in CuO Nanostructures Using Amino Acid-Mediated Chemical Bath Deposition
by Lama Jabreen and Yitzhak Mastai
Crystals 2025, 15(3), 236; https://doi.org/10.3390/cryst15030236 - 28 Feb 2025
Viewed by 598
Abstract
This study explored the controlled formation of chiral copper(II) oxide (CuO) crystals using chiral amino acids as chirality-inducing agents. Utilizing chemical bath deposition (CBD) as the fabrication method, we achieved simple, reproducible synthesis suitable for industrial-scale applications. Our characterization of the induced chirality [...] Read more.
This study explored the controlled formation of chiral copper(II) oxide (CuO) crystals using chiral amino acids as chirality-inducing agents. Utilizing chemical bath deposition (CBD) as the fabrication method, we achieved simple, reproducible synthesis suitable for industrial-scale applications. Our characterization of the induced chirality through high-performance liquid chromatography (HPLC), circular dichroism (CD), and isothermal titration calorimetry (ITC) revealed distinctive chiral features. These findings not only advance our understanding of chirality control in inorganic nanostructures but also establish CBD as a viable technique for the large-scale production of chiral materials. Full article
(This article belongs to the Topic Advances in Molecular Symmetry and Chirality Research)
Show Figures

Figure 1

12 pages, 2388 KiB  
Article
Acyclic Cucurbit[n]uril-Enabled Detection of Aflatoxin B1 via Host–Guest Chemistry and Bioluminescent Immunoassay
by Shaowen Wu, Ke Feng, Jinlu Niu, Jintao Xu, Hualian Mo, Xiaoman She, Shang-Bo Yu, Zhan-Ting Li and Shijuan Yan
Toxins 2025, 17(3), 104; https://doi.org/10.3390/toxins17030104 - 25 Feb 2025
Viewed by 909
Abstract
Aflatoxin B1 (AFB1), a highly toxic secondary metabolite produced by Aspergillus species, represents a significant health hazard due to its widespread contamination of agricultural products. The urgent need for sensitive and sustainable detection methods has driven the development of diverse analytical approaches, most [...] Read more.
Aflatoxin B1 (AFB1), a highly toxic secondary metabolite produced by Aspergillus species, represents a significant health hazard due to its widespread contamination of agricultural products. The urgent need for sensitive and sustainable detection methods has driven the development of diverse analytical approaches, most of which heavily rely on organic solvents, posing environmental challenges for routine food safety analysis. Here, we introduce a supramolecular platform leveraging acyclic cucurbit[n]uril (acCB) as a host molecule for environmentally sustainable AFB1 detection. Screening various acCB derivatives identified acCB6 as a superior host capable of forming a stable 1:1 complex with AFB1 in an aqueous solution, exhibiting a high binding affinity. Proton nuclear magnetic resonance (1H NMR) spectroscopy confirmed that AFB1 was deeply encapsulated within the host cavity, with isothermal titration calorimetry (ITC) experiments and molecular dynamics simulations further substantiating the stability of the interaction, driven by enthalpic and entropic contributions. This supramolecular host was incorporated into a scaffold-assembly-based bioluminescent enzyme immunoassay (SA-BLEIA), providing a green detection platform that rivals the performance of traditional organic solvent-based assays. Our findings highlight the potential of supramolecular chemistry as a foundation for eco-friendly mycotoxin detection and offer valuable insights into designing environmentally sustainable analytical methods. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

27 pages, 2195 KiB  
Review
Polyphenol–Macromolecule Interactions by Isothermal Titration Calorimetry
by Maarit Karonen
Macromol 2025, 5(1), 2; https://doi.org/10.3390/macromol5010002 - 12 Jan 2025
Cited by 1 | Viewed by 2310
Abstract
Isothermal titration calorimetry (ITC) is a widely used and valuable technique for studying the binding interactions and the formation and dissociation of molecular complexes. ITC directly measures the energetics associated with the interactions and allows for a precise and complete thermodynamic description of [...] Read more.
Isothermal titration calorimetry (ITC) is a widely used and valuable technique for studying the binding interactions and the formation and dissociation of molecular complexes. ITC directly measures the energetics associated with the interactions and allows for a precise and complete thermodynamic description of association and binding processes, thereby providing an understanding of the interaction mechanisms. In this review, the role, practical aspects related to the experimental design and setup, advantages, and challenges of using ITC to evaluate polyphenol–macromolecule binding are discussed in detail. The focus is on the possibilities offered by ITC, but at the same time, its limitations are taken into account, especially in the study of complex biological processes and in the subsequent reliable determination of thermodynamic parameters. Polyphenols and proteins typically exhibit exothermic interactions, producing strong signals and distinctive titration curves that can be fitted by one- or two-site binding models; of course, there are exceptions to this. Tannins and tannin fractions usually have a high binding stoichiometry and stronger interactions with proteins than the smaller polyphenols. The driving forces behind these interactions vary, but in many cases, both hydrogen bonding and hydrophobic interactions have been reported. The interactions between polyphenols and polysaccharides or lipid bilayers have been far less studied by ITC in comparison to polyphenol–protein interactions. ITC could be utilized more extensively to study polyphenol–macromolecule interactions, as it is an excellent tool for evaluating the thermodynamic parameters of these interactions, and when used together with other techniques, ITC can also help understand how these interactions affect bioavailability, food applications, and other uses of polyphenols. Full article
Show Figures

Figure 1

27 pages, 3819 KiB  
Article
The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly
by Mohit Agarwal, Alexander Zika, Müge Yücel, Ralf Schweins, Joachim Kohlbrecher and Franziska Gröhn
Polymers 2025, 17(2), 170; https://doi.org/10.3390/polym17020170 - 11 Jan 2025
Viewed by 1599
Abstract
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic [...] Read more.
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole–dipole interactions provides well-defined assemblies within a broad size range (10 nm–1 μm) with various shapes. The size and shape of these assemblies were determined using dynamic and static light scattering (DLS/SLS) and small-angle neutron scattering (SANS); ζ-potential measurements were performed to elucidate the charge characteristics, revealing the effective surface charge density of the nano-objects as an important parameter in the size and shape control. UV–vis spectroscopy and isothermal titration calorimetry (ITC) were employed to investigate the interaction on a molecular level and from a thermodynamic point of view. The results show that the amount of isomerized cis dye depends on the dendrimer generation because of a photoprotective effect through electrostatics for lower generations and through dipole–dipole interactions for higher generations; as the cis dye and trans dye bind with different strength, the amount of cis dye then again encodes the charge density and thereby the particle size and shape. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

19 pages, 2309 KiB  
Article
Micellization and Physicochemical Properties of CTAB in Aqueous Solution: Interfacial Properties, Energetics, and Aggregation Number at 290 to 323 K
by Bappaditya Naskar
Colloids Interfaces 2025, 9(1), 4; https://doi.org/10.3390/colloids9010004 - 9 Jan 2025
Cited by 2 | Viewed by 3045
Abstract
This work reports a detailed investigation of the micellization of the cationic surfactant cetyltrimethylammonium bromide (CTAB) over the temperature range of 290–313 K. Conductometry, tensiometry, fluorimetry, and isothermal titration calorimetry (ITC) were used to study the overall solution behavior of amphiphilic self-aggregation. The [...] Read more.
This work reports a detailed investigation of the micellization of the cationic surfactant cetyltrimethylammonium bromide (CTAB) over the temperature range of 290–313 K. Conductometry, tensiometry, fluorimetry, and isothermal titration calorimetry (ITC) were used to study the overall solution behavior of amphiphilic self-aggregation. The CMC values showed a trend of first declining and then rising with a minimum temperature of 298 K. The adsorption at the air–water interface and micellization processes of CTAB are both spontaneous. The enthalpy of CTAB micellization is negative at 290 K and increases negatively as the temperature rises. The interfacial parameters—maximum surface excess concentration (Γmax), minimum area per molecule (Amin), standard free energy of adsorption (Amin), and surface pressure at CMC (ΠCMC)—were calculated using surface tension data. The aggregation numbers (N) of CTAB micelles and others (SDS and CHAPS) determined at different [surfactant]>CMC by the static fluorescence quenching method were used to find out the N values at CMC (or NCMC). The results revealed that the NCMC values were 48, 54, and 4 for CTAB, SDS, and CHAPS micelles, respectively. Temperature-dependent NCMC by the ITC method was also examined for the studied surfactants. Additionally, the ITC-determined specific heat of micellization was used to find out the extent of water penetration into the micelle interior of up to 8, 7, and 3 hydrocarbons for CTAB, SDS, and CHAPS, respectively. Full article
Show Figures

Graphical abstract

Back to TopTop