Acyclic Cucurbit[n]uril-Enabled Detection of Aflatoxin B1 via Host–Guest Chemistry and Bioluminescent Immunoassay
Abstract
:1. Introduction
2. Results
2.1. Dissolution Enhancement of AFB1 by acCBs
2.2. Spectroscopic Evidence for 1:1 Host–Guest Complex Formation
2.3. Thermodynamic Analysis and Molecular Dynamics Simulations Reveal the Driving Forces of Complex Formation
2.4. Development of acCB6-Enabled Aqueous Detection Assay for AFB1
3. Discussion
4. Materials and Methods
4.1. Synthesis of acCBs
4.2. AFB1 Dissolution Promotion Experiments
4.3. NMR Experiments
4.4. UV–Visible Absorption Spectra
4.5. Fluorescence Emission Spectra
4.6. Isothermal Titration Calorimetry (ITC) Experiments
4.7. SA-BLEIA Procedure
4.8. Molecular Dynamics (MD) Simulations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caceres, I.; AI Khoury, A.; Khoury, R.E.; Lorber, S.; Oswald, I.P.; Khoury, A.E.; Atoui, A.; Puel, O.; Bailly, J.-D. Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins 2020, 12, 150. [Google Scholar] [CrossRef]
- Uka, V.; Cary, J.W.; Lebar, M.D.; Puel, O.; De Saeger, S.; Diana Di Mavungu, J. Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2797–2842. [Google Scholar] [CrossRef]
- Streit, E.; Schatzmayr, G.; Tassis, P.; Tzika, E.; Marin, D.; Taranu, I.; Tabuc, C.; Nicolau, A.; Aprodu, I.; Puel, O.; et al. Current situation of mycotoxin contamination and co-occurrence in animal feed—Focus on Europe. Toxins 2012, 4, 788–809. [Google Scholar] [CrossRef]
- van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Regulations relating to mycotoxins in food: Perspectives in a global and European context. Anal. Bioanal. Chem. 2007, 389, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.Z.; Richard, J.L.; Binder, J. A review of rapid methods for the analysis of mycotoxins. Mycopathologia 2006, 161, 261–273. [Google Scholar] [CrossRef]
- Marroquín-Cardona, A.G.; Johnson, N.M.; Phillips, T.D.; Hayes, A.W. Mycotoxins in a changing global environment—A review. Food Chem. Toxicol. 2014, 69, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Anfossi, L.; Giovannoli, C.; Baggiani, C. Mycotoxin detection. Curr. Opin. Biotechnol. 2016, 37, 120–126. [Google Scholar] [CrossRef]
- Ren, W.; Li, Z.; Xu, Y.; Wan, D.; Barnych, B.; Li, Y.; Tu, Z.; He, Q.; Fu, J.; Hammock, B.D. One-Step Ultrasensitive Bioluminescent Enzyme Immunoassay Based on Nanobody/Nanoluciferase Fusion for Detection of Aflatoxin B1 in Cereal. J. Agric. Food Chem. 2019, 67, 5221–5229. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xu, J.; Chen, W.; Wang, F.; Tan, X.; Zou, X.; Zhou, W.; Huang, W.; Zheng, Y.; Wang, S.; et al. Protein nanoscaffold enables programmable nanobody-luciferase immunoassembly for sensitive and simultaneous detection of aflatoxin B1 and ochratoxin A. J. Hazard. Mater. 2024, 462, 132701. [Google Scholar] [CrossRef] [PubMed]
- Beatty, M.A.; Hof, F. Host–guest binding in water, salty water, and biofluids: General lessons for synthetic, bio-targeted molecular recognition. Chem. Soc. Rev. 2021, 50, 4812–4832. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, Q.; Li, L.; Shangguan, L.; Li, C.; Li, S.; Huang, F.; Zhang, J.; Wang, R. Supramolecular therapeutics to treat the side effects induced by a depolarizing neuromuscular blocking agent. Theranostics 2019, 9, 3107. [Google Scholar] [CrossRef]
- Geng, W.-C.; Sessler, J.L.; Guo, D.-S. Supramolecular prodrugs based on host–guest interactions. Chem. Soc. Rev. 2020, 49, 2303–2315. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Bardelang, D.; Wang, R. Macrocycles and related hosts as supramolecular antidotes. Trends Chem. 2021, 3, 1–4. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, X.; Wei, J.; Lu, S.; Bardelang, D.; Wang, R. Recent advances in supramolecular antidotes. Theranostics 2021, 11, 1513. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-T.; Yu, S.-B.; Liu, Y.; Tian, J.; Zhang, D.-W. Supramolecular organic frameworks: Exploring water-soluble, regular nanopores for biomedical applications. Acc. Chem. Res. 2022, 55, 2316–2325. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zhou, W.; Tian, J.; Ma, D.; Zhang, D.; Li, Z. Host-guest chemistry for the design of drug antagonists. Sci. Sin. Chim. 2023, 53, 2345–2356. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Yu, X.-Y.; Pan, Y.-C.; Yin, H.; Chao, S.; Li, Y.; Ma, H.; Zuo, M.; Teng, K.-X.; Hou, J.-L.; et al. Supramolecular systems for bioapplications: Recent research progress in China. Sci. China Chem. 2024, 67, 1397–1441. [Google Scholar] [CrossRef]
- Zhang, B.; Isaacs, L. Acyclic cucurbit [n] uril-type molecular containers: Influence of aromatic walls on their function as solubilizing excipients for insoluble drugs. J. Med. Chem. 2014, 57, 9554–9563. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Liu, Y.-Y.; Zong, Y.; Lei, Z.; Wu, Y.; Yang, J.; Lin, F.; Qi, Q.-Y.; Li, Q.; Zhuang, S.-Y.; et al. Structure–Activity Relationship Studies Leading to the Discovery of Highly Water-Soluble and Biocompatible Acyclic Cucurbit [n] uril FY-3451 as a Universal Antagonist That Rapidly Reverses Neuromuscular Blocking Agents In Vivo. J. Med. Chem. 2024, 67, 17905–17918. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Zavalij, P.Y.; Isaacs, L. Acyclic cucurbit [n] uril congeners are high affinity hosts. J. Org. Chem. 2010, 75, 4786–4795. [Google Scholar] [CrossRef]
- Liu, H.; Guo, Y.-J. Acyclic cucurbiturils and their applications. J. Incl. Phenom. Macrocycl. Chem. 2022, 102, 723–733. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. IARC Monogr. Eval. Carcinog. Risks Hum. 2002, 82, 1–556. [Google Scholar]
- Armstrong, L.; Chang, S.L.; Clements, N.; Hirani, Z.; Kimberly, L.B.; Odoi-Adams, K.; Suating, P.; Taylor, H.F.; Trauth, S.A.; Urbach, A.R. Molecular recognition of peptides and proteins by cucurbit [n] urils: Systems and applications. Chem. Soc. Rev. 2024, 53, 11519–11556. [Google Scholar] [CrossRef] [PubMed]
- Burrows, J.; Sain, P.; Saunders, G.C. A Variable Temperature Study of the π–π Stacking Interaction in the Co-Crystal Naphthalene-Octafluoronaphthalene. Open Chem. J. 2019, 6, 66–73. [Google Scholar] [CrossRef]
- Nishijima, A.; Osugi, Y.; Uemura, T. Fabrication of Self-Expanding Metal–Organic Cages Using a Ring-Openable Ligand. Angew. Chem. 2024, 136, e202404155. [Google Scholar] [CrossRef]
- Zebaze Ndendjio, S.A.; Isaacs, L. Molecular recognition properties of acyclic cucurbiturils toward amino acids, peptides, and a protein. Supramol. Chem. 2019, 31, 432–441. [Google Scholar] [CrossRef]
- Graña-Suárez, L.; Verboom, W.; Egberink, R.J.; Sarkar, S.; Mahalingam, V.; Huskens, J. Host–Guest and Electrostatic Interactions in Supramolecular Nanoparticle Clusters. Eur. J. Org. Chem. 2016, 2016, 5511–5518. [Google Scholar] [CrossRef]
- Jordan, J.H.; Ashbaugh, H.S.; Mague, J.T.; Gibb, B.C. Buffer and salt effects in aqueous host–guest systems: Screening, competitive binding, or both? J. Am. Chem. Soc. 2021, 143, 18605–18616. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Tang, Z.; Chen, Q.; Liu, X. Development of a biotin-streptavidin-amplified nanobody-based ELISA for ochratoxin A in cereal. Ecotoxicol. Environ. Saf. 2019, 171, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Muheyati, M.; Wu, G.; Li, Y.; Pan, Z.; Chen, Y. Supramolecular nanotherapeutics based on cucurbiturils. J. Nanobiotechnol. 2024, 22, 790. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Gesang, D.; Dong, Z.; Qin, Z.; Li, Q.; Li, J.; Zhou, Q.; Shi, G. Non-organic solvent extraction of capsaicinoids from oil combined with fluorescent lateral flow immunoassay strips for on-site identification of illegally recycled waste cooking oil. Sens. Diagn. 2025, 4, 147–158. [Google Scholar] [CrossRef]
- Niu, J.; Yu, J.; Wu, X.; Zhang, Y.-M.; Chen, Y.; Yu, Z.; Liu, Y. Host–guest binding between cucurbit [8] uril and amphiphilic peptides achieved tunable supramolecular aggregates for cancer diagnosis. Chem. Sci. 2024, 15, 13779–13787. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Deift, P.; Zhou, X. A steepest descent method for oscillatory Riemann--Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 1993, 137, 295–368. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 1980, 45, 1196. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
Syringe | Cell | N | Ka (M−1) | ΔH (kcal/mol) | −TΔS (kcal/mol) | ΔG (kcal/mol) |
---|---|---|---|---|---|---|
0.1 mM acCB6 | 0.01 mM AFB1 | 1.27 ± 0.08 | (3.02 ± 4.7) × 106 | −3.96 ± 0.582 | −4.88 | −8.84 |
Total Energy (kJ/mol) | Potential (kJ/mol) | Coulomb (SR) (kJ/mol) | LJ (SR) (kJ/mol) |
---|---|---|---|
−76,488.2 | −92,910.53333 | −10,6370.0 | 13,364.53333 |
Buffer Conditions | IC50 (ng/mL) | R2 |
---|---|---|
20% methanol | 0.3730 | 0.9837 |
acCB6 | 0.7045 | 0.9814 |
acCB6 + 50 mM NaCl | 0.6460 | 0.9885 |
acCB6 + 100 mM NaCl | 0.5229 | 0.9926 |
acCB6 + 200 mM NaCl | 0.4825 | 0.9924 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Feng, K.; Niu, J.; Xu, J.; Mo, H.; She, X.; Yu, S.-B.; Li, Z.-T.; Yan, S. Acyclic Cucurbit[n]uril-Enabled Detection of Aflatoxin B1 via Host–Guest Chemistry and Bioluminescent Immunoassay. Toxins 2025, 17, 104. https://doi.org/10.3390/toxins17030104
Wu S, Feng K, Niu J, Xu J, Mo H, She X, Yu S-B, Li Z-T, Yan S. Acyclic Cucurbit[n]uril-Enabled Detection of Aflatoxin B1 via Host–Guest Chemistry and Bioluminescent Immunoassay. Toxins. 2025; 17(3):104. https://doi.org/10.3390/toxins17030104
Chicago/Turabian StyleWu, Shaowen, Ke Feng, Jinlu Niu, Jintao Xu, Hualian Mo, Xiaoman She, Shang-Bo Yu, Zhan-Ting Li, and Shijuan Yan. 2025. "Acyclic Cucurbit[n]uril-Enabled Detection of Aflatoxin B1 via Host–Guest Chemistry and Bioluminescent Immunoassay" Toxins 17, no. 3: 104. https://doi.org/10.3390/toxins17030104
APA StyleWu, S., Feng, K., Niu, J., Xu, J., Mo, H., She, X., Yu, S.-B., Li, Z.-T., & Yan, S. (2025). Acyclic Cucurbit[n]uril-Enabled Detection of Aflatoxin B1 via Host–Guest Chemistry and Bioluminescent Immunoassay. Toxins, 17(3), 104. https://doi.org/10.3390/toxins17030104