The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Light Scattering
2.4. Small-Angle Neutron Scattering
2.5. ζ-Potential Measurements
2.6. UV–vis Spectroscopy
2.7. Isothermal Titration Calorimetry (ITC)
3. Results
3.1. Structural Characterization
3.1.1. Light Scattering: Size Distributions Before and After Irradiation
3.1.2. LS-SANS: Assembly Shapes Before and After Irradiation
3.2. Charge Characteristics Before and After Irradiation
3.3. Elucidating Interactions Before and After Irradiation by UV–vis Spectroscopy
3.4. Thermodynamic Analysis of the Assembly Formation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rehm, T.; Schmuck, C. How to Achieve Self-Assembly in Polar Solvents Based on Specific Interactions? Some General Guidelines. Chem. Commun. 2008, 801–813. [Google Scholar] [CrossRef] [PubMed]
- Luong, D.X.; Bets, K.V.; Algozeeb, W.A.; Stanford, M.G.; Kittrell, C.; Chen, W.; Salvatierra, R.V.; Ren, M.; McHugh, E.A.; Advincula, P.A.; et al. Gram-Scale Bottom-up Flash Graphene Synthesis. Nature 2020, 577, 647–651. [Google Scholar] [CrossRef]
- Discher, D.E.; Eisenberg, A. Polymer Vesicles. Science 2002, 297, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, J.; Yu, T.; Chen, C.; Cheng, Q.; Sengupta, K.; Huang, Y.; Li, H.; Liu, C.; Wang, Y.; et al. Adaptive Amphiphilic Dendrimer-Based Nanoassemblies as Robust and Versatile SiRNA Delivery Systems. Angew. Chem. Int. Ed. 2014, 53, 11822–11827. [Google Scholar] [CrossRef] [PubMed]
- Honnigfort, C.; Campbell, R.A.; Droste, J.; Gutfreund, P.; Hansen, M.R.; Ravoo, B.J.; Braunschweig, B. Unexpected Monolayer-to-Bilayer Transition of Arylazopyrazole Surfactants Facilitates Superior Photo-Control of Fluid Interfaces and Colloids. Chem. Sci. 2020, 11, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Tazawa, T.; Yagai, S.; Kikkawa, Y.; Karatsu, T.; Kitamura, A.; Ajayaghosh, A. A Complementary Guest Induced Morphology Transition in a Two-Component Multiple H-Bonding Self-Assembly. Chem. Commun. 2010, 46, 1076–1078. [Google Scholar] [CrossRef]
- Faul, C.F.J.; Antonietti, M. Facile Synthesis of Optically Functional, Highly Organized Nanostructures: Dye-Surfactant Complexes. Chem.–A Eur. J. 2002, 8, 2764–2768. [Google Scholar] [CrossRef]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-marza, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef]
- Willerich, I.; Li, Y.; Gröhn, F. Influencing Particle Size and Stability of Ionic Dendrimer-Dye Assemblies. J. Phys. Chem. B 2010, 114, 15466–15476. [Google Scholar] [CrossRef]
- Faul, C.F.J. Ionic Self-Assembly for Functional Hierarchical Nanostructured Materials. Acc. Chem. Res. 2014, 47, 3428–3438. [Google Scholar] [CrossRef]
- Grzybowski, B.A.; Winkleman, A.; Wiles, J.A.; Brumer, Y.; Whitesides, G.M. Electrostatic Self-Assembly of Macroscopic Crystals Using Contact Electrification. Nat. Mater. 2003, 2, 241–245. [Google Scholar] [CrossRef]
- Willerich, I.; Gröhn, F. Photoswitchable Nanoassemblies by Electrostatic Self-Assembly. Angew. Chem. Int. Ed. 2010, 49, 8104–8108. [Google Scholar] [CrossRef] [PubMed]
- Kostiainen, M.A.; Hiekkataipale, P.; Laiho, A.; Lemieux, V.; Seitsonen, J.; Ruokolainen, J.; Ceci, P. Electrostatic Assembly of Binary Nanoparticle Superlattices Using Protein Cages. Nat. Nanotechnol. 2013, 8, 52–56. [Google Scholar] [CrossRef]
- Liljeström, V.; Mikkilä, J.; Kostiainen, M.A. Self-Assembly and Modular Functionalization of Three-Dimensional Crystals from Oppositely Charged Proteins. Nat. Commun. 2014, 5, 4445. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Moosa, B.A.; Croissant, J.G.; Khashab, N.M. Electrostatic Assembly/Disassembly of Nanoscaled Colloidosomes for Light-Triggered Cargo Release. Angew. Chem. Int. Ed. 2015, 54, 6804–6808. [Google Scholar] [CrossRef]
- Krieger, A.; Zika, A.; Gröhn, F. Functional Nano-Objects by Electrostatic Self-Assembly: Structure, Switching, and Photocatalysis. Front. Chem. 2022, 9, 779360. [Google Scholar] [CrossRef]
- Li, L.; Wu, R.; Guang, S.; Su, X.; Xu, H. The Investigation of the Hydrogen Bond Saturation Effect during the Dipole-Dipole Induced Azobenzene Supramolecular Self-Assembly. Phys. Chem. Chem. Phys. 2013, 15, 20753–20763. [Google Scholar] [CrossRef]
- Sun, P.; Li, L.; Guang, S.; Xu, H. The Investigation of the Dipole-Dipole Action Direction and Molecular Space Configuration Effect during the Dipole–Dipole Induced Azobenzene Supramolecular Self-Assembly. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123742. [Google Scholar] [CrossRef]
- Agarwal, M.; Zika, A.; Schweins, R.; Gröhn, F. Controlling the Morphology in Electrostatic Self-Assembly via Light. Polymers 2023, 16, 50. [Google Scholar] [CrossRef] [PubMed]
- Willerich, I.; Gröhn, F. Thermodynamics of Photoresponsive Polyelectrolyte-Dye Assemblies with Irradiation Wavelength Triggered Particle Size. Macromolecules 2011, 44, 4452–4461. [Google Scholar] [CrossRef]
- Mariani, G.; Moldenhauer, D.; Schweins, R.; Gröhn, F. Elucidating Electrostatic Self-Assembly: Molecular Parameters as Key to Thermodynamics and Nanoparticle Shape. J. Am. Chem. Soc. 2016, 138, 1280–1293. [Google Scholar] [CrossRef] [PubMed]
- Mariani, G.; Krieger, A.; Moldenhauer, D.; Schweins, R.; Gröhn, F. Light-Responsive Shape: From Micrometer-Long Nanocylinders to Compact Particles in Electrostatic Self-Assembly. Macromol. Rapid Commun. 2018, 39, 1700860. [Google Scholar] [CrossRef]
- Park, J.; Sun, L.B.; Chen, Y.P.; Perry, Z.; Zhou, H.C. Azobenzene-Functionalized Metal-Organic Polyhedra for the Optically Responsive Capture and Release of Guest Molecules. Angew. Chem. Int. Ed. 2014, 53, 5842–5846. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Schalley, C.A. Exploring Macrocycles in Functional Supramolecular Gels: From Stimuli Responsiveness to Systems Chemistry. Acc. Chem. Res. 2014, 47, 2222–2233. [Google Scholar] [CrossRef]
- Engel, S.; Möller, N.; Stricker, L.; Peterlechner, M.; Ravoo, B.J. A Modular System for the Design of Stimuli-Responsive Multifunctional Nanoparticle Aggregates by Use of Host–Guest Chemistry. Small 2018, 14, 1704287. [Google Scholar] [CrossRef] [PubMed]
- Willerich, I.; Gröhn, F. Switchable Nanoassemblies from Macroions and Multivalent Dye Counterions. Chem.–A Eur. J. 2008, 14, 9112–9116. [Google Scholar] [CrossRef] [PubMed]
- Willerich, I.; Gröhn, F. Molecular Structure Encodes Nanoscale Assemblies: Understanding Driving Forces in Electrostatic Self-Assembly. J. Am. Chem. Soc. 2011, 133, 20341–20356. [Google Scholar] [CrossRef] [PubMed]
- Kundu, P.K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-Controlled Self-Assembly of Non-Photoresponsive Nanoparticles. Nat. Chem. 2015, 7, 646–652. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q. Photochromism into Nanosystems: Towards Lighting up the Future Nanoworld. Chem. Soc. Rev. 2018, 47, 1044–1097. [Google Scholar] [CrossRef]
- Ikeda, T.; Mamiya, J.I.; Yu, Y. Photomechanics of Liquid-Crystalline Elastomers and Other Polymers. Angew. Chem. Int. Ed. 2007, 46, 506–528. [Google Scholar] [CrossRef]
- Koga, T.; Ushirogochi, M.; Higashi, N. Regulation of Self-Assembling Process of a Cationic β-Sheet Peptide by Photoisomerization of an Anionic Azobenzene Derivative. Polym. J. 2007, 39, 16–17. [Google Scholar] [CrossRef]
- Ghoreishi, S.M.; Behpour, M.; Shabani-Nooshabadi, M. Interaction of Anionic Azo Dye and TTAB—Cationic Surfactant. J. Braz. Chem. Soc. 2009, 20, 460–465. [Google Scholar] [CrossRef]
- Percec, V.; Rudick, J.G.; Peterca, M.; Wagner, M.; Obata, M.; Mitchell, C.M.; Cho, W.D.; Balagurusamy, V.S.K.; Heiney, P.A. Thermoreversible Cis-Cisoidal to Cis-Transoidal Isomerization of Helical Dendronized Polyphenylacetylenes. J. Am. Chem. Soc. 2005, 127, 15257–15264. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, B.A.; Wilmer, C.E.; Kim, J.; Browne, K.P.; Bishop, K.J.M. Self-Assembly: From Crystals to Cells. Soft Matter 2009, 5, 1110–1128. [Google Scholar] [CrossRef]
- Guo, Y.; Gong, Y.; Gao, Y.; Xiao, J.; Wang, T.; Yu, L. Multi-Stimuli Responsive Supramolecular Structures Based on Azobenzene Surfactant-Encapsulated Polyoxometalate. Langmuir 2016, 32, 9293–9300. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Wang, L.; Liu, X.; Du, Z.; Li, Y.; Li, B.; Wu, L.; Li, W. Light-Powered and Transient Peptide Two-Dimensional Assembly Driven by: Trans -to- Cis Isomerization of Azobenzene Side Chains. Chem. Commun. 2020, 56, 1867–1870. [Google Scholar] [CrossRef]
- Fathalla, M.; Sinatra, L. PH-Responsive Porphyrin-Silica Nanoparticles Conjugate via Ionic Self-Assembly. J. Porous Mater. 2021, 28, 183–189. [Google Scholar] [CrossRef]
- Fischer, W.; Quadir, M.A.; Barnard, A.; Smith, D.K.; Haag, R. Controlled Release of DNA from Photoresponsive Hyperbranched Polyglycerols with Oligoamine Shells. Macromol. Biosci. 2011, 11, 1736–1746. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz, G.; Pakulski, D.; Galanti, A.; Patroniak, V.; Ciesielski, A.; Stefankiewicz, A.R.; Samorì, P. Photoisomerisation and Light-Induced Morphological Switching of a Polyoxometalate-Azobenzene Hybrid. Chem. Commun. 2017, 53, 7278–7281. [Google Scholar] [CrossRef] [PubMed]
- Tomalia, D.A.; Naylor, A.M.; Goddard, W.A. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angew. Chem. Int. Ed. Engl. 1990, 29, 138–175. [Google Scholar] [CrossRef]
- Prosa, T.J.; Bauer, B.J.; Amis, E.J.; Tomalia, D.A.; Scherrenberg, R. A SAXS Study of the Internal Structure of Dendritic Polymer Systems. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 2913–2924. [Google Scholar] [CrossRef]
- Maiti, P.K.; Çaǧin, T.; Wang, G.; Goddard, W.A. Structure of PAMAM Dendrimers: Generations 1 through 11. Macromolecules 2004, 37, 6236–6254. [Google Scholar] [CrossRef]
- Tomalia, D.A. Dendritic Effects: Dependency of Dendritic Nano-Periodic Property Patterns on Critical Nanoscale Design Parameters (CNDPs). New J. Chem. 2012, 36, 264–281. [Google Scholar] [CrossRef]
- Gröhn, F.; Bauer, B.J.; Akpalu, Y.A.; Jackson, C.L.; Amis, E.J. Dendrimer Templates for the Formation of Gold Nanoclusters. Macromolecules 2000, 33, 6042–6050. [Google Scholar] [CrossRef]
- Katsoulis, D.; Argyrakis, P.; Pimenov, A.; Vitukhnovsky, A. Diffusion and Trapping in Dendrimer Structures. Chem. Phys. 2002, 275, 261–269. [Google Scholar] [CrossRef]
- Lorén, N.; Shtykova, L.; Kidman, S.; Jarvoll, P.; Nyden, M.; Hermansson, A.M. Dendrimer Diffusion in κ-Carrageenan Gel Structures. Biomacromolecules 2009, 10, 275–284. [Google Scholar] [CrossRef]
- Willerich, I.; Schindler, T.; Gröhn, F. Effect of Polyelectrolyte Architecture and Size on Macroion-Dye Assemblies. J. Phys. Chem. B 2011, 115, 9710–9719. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Baker, H.; Hall, M.; Kallos, G.; Martin, S.; Ryder, J.; Smith, P. Dendritic Macromolecules:1 Synthesis of Starburst Dendrimers. Macromolecules 1986, 19, 2466–2468. [Google Scholar] [CrossRef]
- Robinson, C.; Mills, H.A.T. The Colloid Chemistry of Dyes: The Aqueous Solutions of Benzopurpurine 4B and Its Isomer Prepared from m-Tolidine. Part I. Proc. R. Soc. London. Ser. A 1931, 131, 576–595. [Google Scholar]
- Krȩzel, A.; Bal, W. A Formula for Correlating PKa Values Determined in D2O and H2O. J. Inorg. Biochem. 2004, 98, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Schärtl, W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–24. ISBN 9783540719519. [Google Scholar]
- Provencher, S.W. A Constrained Regularization Method for Inverting Data Represented by Linear Algebraic or Integral Equations. Comput. Phys. Commun. 1982, 27, 213–227. [Google Scholar] [CrossRef]
- Provencher, S.W. Contin: A General Purpose Constrained Regularization Program for Inverting Noisy Linear Algebraic and Integral Equations. Comput. Phys. Commun. 1982, 27, 229–242. [Google Scholar] [CrossRef]
- Zimm, B.H. The Scattering of Light and the Radial Distribution Function of High Polymer Solutions. J. Chem. Phys. 1948, 16, 1093–1099. [Google Scholar] [CrossRef]
- Guinier, A.; Fournet, G.; Walker, C.B.; Yudowitch, K.L. Small Angle Scattering of X-Rays; Wiley: New York, NY, USA, 1955; Volume 594. [Google Scholar]
- Arnold, O.; Bilheux, J.C.; Borreguero, J.M.; Buts, A.; Campbell, S.I.; Chapon, L.; Doucet, M.; Draper, N.; Ferraz Leal, R.; Gigg, M.A.; et al. Mantid—Data Analysis and Visualization Package for Neutron Scattering and μ SR Experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 764, 156–166. [Google Scholar] [CrossRef]
- Feigin, L.A.; Svergun, D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering; Plenum Press: New York, NY, USA, 1987. [Google Scholar]
- Onsager, L. The Effects of Shape on the Interaction of Colloidal Particles. Ann. N. Y. Acad. Sci. 1949, 51, 627–659. [Google Scholar] [CrossRef]
- Pedersen, J.S. Analysis of Small-Angle Scattering Data from Colloids and Polymer Solutions: Modeling and Least-Squares Fitting. Adv. Colloid Interface Sci. 1997, 70, 171–210. [Google Scholar] [CrossRef]
- Isihara, A. Determination of Molecular Shape by Osmotic Measurement. J. Chem. Phys. 1950, 18, 1446–1449. [Google Scholar] [CrossRef]
- Smoluchowski, M.V. Molekular-Kinetische Theorie Der Opaleszenz von Gasen Im Kritischen Zustande, Sowie Einiger Verwandter Erscheinungen. Ann. Phys. 1908, 330, 205–226. [Google Scholar] [CrossRef]
- Polaczyk, A.L.; Amburgey, J.E.; Alansari, A.; Poler, J.C.; Propato, M.; Hill, V.R. Calculation and Uncertainty of Zeta Potentials of Microorganisms in a 1:1 Electrolyte with a Conductivity Similar to Surface Water. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124097. [Google Scholar] [CrossRef]
- Kadu, P.J.; Kushare, S.S.; Thacker, D.D.; Gattani, S.G. Enhancement of Oral Bioavailability of Atorvastatin Calcium by Self-Emulsifying Drug Delivery Systems (SEDDS). Pharm. Dev. Technol. 2011, 16, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Zika, A.; Agarwal, M.; Schweins, R.; Gröhn, F. Joining Two Switches in One Nano-object: Photoacidity and Photoisomerization in Electrostatic Self-assembly. Chem.–A Eur. J. 2022, 29, e202203373. [Google Scholar] [CrossRef] [PubMed]
- Sinn, C.G.; Dimova, R.; Antonietti, M. Isothermal Titration Calorimetry of the Polyelectrolyte/Water Interaction and Binding of Ca2+: Effects Determining the Quality of Polymeric Scale Inhibitors. Macromolecules 2004, 37, 3444–3450. [Google Scholar] [CrossRef]
- Gummel, J.; Cousin, F.; Boué, F. Counterions Release from Electrostatic Complexes of Polyelectrolytes and Proteins of Opposite Charge: A Direct Measurement. J. Am. Chem. Soc. 2007, 129, 5806–5807. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Schlenoff, J.B. Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic. J. Am. Chem. Soc. 2016, 138, 980–990. [Google Scholar] [CrossRef]
PAMAM Generation | cis% | RH% |
---|---|---|
G2 | 59.2 | 411 |
G3 | 73.2 | 808 |
G4 | 74.8 | 461 |
G5 | 75.0 | 478 |
G6 | 82.3 | 1524 |
G7 | 80.2 | 1318 |
G8 | 61.2 | 1098 |
PAMAM Generation | G3 | G5 | G6 | G7 | G8 |
---|---|---|---|---|---|
N1/sites | 15 | 51 | 68 | 186 | 256 |
ΔH1 per site/kJ mol−1 | 89.2 | 6.7 | 30.3 | 58.9 | 28.4 |
ΔS1/kJ mol−1 | 4.4 | 1.3 | 69,036 | 367.7 | 24.5 |
ΔG1 per site/ kJ mol−1 | −2.3 | −1.1 | −0.8 | −0.3 | −0.2 |
N2/sites | 47 | 217 | 239 | 442 | 599 |
ΔH2 per site/kJ mol−1 | −11.3 | −34.6 | −79.3 | −43.1 | −32.4 |
ΔS2/kJ mol−1 | −1.6 | −24.8 | −63.2 | −63.6 | −64.8 |
ΔG2 per site/kJ mol−1 | −1.1 | −0.3 | −0.2 | −0.1 | −0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, M.; Zika, A.; Yücel, M.; Schweins, R.; Kohlbrecher, J.; Gröhn, F. The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly. Polymers 2025, 17, 170. https://doi.org/10.3390/polym17020170
Agarwal M, Zika A, Yücel M, Schweins R, Kohlbrecher J, Gröhn F. The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly. Polymers. 2025; 17(2):170. https://doi.org/10.3390/polym17020170
Chicago/Turabian StyleAgarwal, Mohit, Alexander Zika, Müge Yücel, Ralf Schweins, Joachim Kohlbrecher, and Franziska Gröhn. 2025. "The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly" Polymers 17, no. 2: 170. https://doi.org/10.3390/polym17020170
APA StyleAgarwal, M., Zika, A., Yücel, M., Schweins, R., Kohlbrecher, J., & Gröhn, F. (2025). The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly. Polymers, 17(2), 170. https://doi.org/10.3390/polym17020170