Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,335)

Search Parameters:
Keywords = isolation by resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 459 KiB  
Case Report
Urinary Multidrug-Resistant Klebsiella pneumoniae: Essential Oil Countermeasures in a One Health Case Report
by Mălina-Lorena Mihu, Cristiana Ştefania Novac, Smaranda Crăciun, Nicodim Iosif Fiţ, Cosmina Maria Bouari, George Cosmin Nadăş and Sorin Răpuntean
Microorganisms 2025, 13(8), 1807; https://doi.org/10.3390/microorganisms13081807 (registering DOI) - 1 Aug 2025
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to [...] Read more.
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to only 5 agents. One month later, repeat testing showed that tetracycline alone remained active, highlighting the strain’s rapidly evolving resistome. Given the scarcity of drug options, we performed an “aromatogram” with seven pure essential oils, propolis, and two commercial phytotherapeutic blends. Biomicin Forte® produced a 30 mm bactericidal halo, while thyme, tea tree, laurel, and palmarosa oils yielded clear inhibition zones of 11–22 mm. These in vitro data demonstrate that carefully selected plant-derived products can target CR-Kp where conventional antibiotics fail. Integrating aromatogram results into One Health’s stewardship plans may therefore help preserve last-line antibiotics and provide adjunctive options for persistent urinary infections. Full article
(This article belongs to the Special Issue Infectious Disease Surveillance in Romania)
Show Figures

Figure 1

20 pages, 1836 KiB  
Article
Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
by Andrea Bonfanti, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, Carlo Giuseppe Rizzello and Cristina Mazzoni
Microorganisms 2025, 13(8), 1804; https://doi.org/10.3390/microorganisms13081804 (registering DOI) - 1 Aug 2025
Abstract
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of [...] Read more.
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of lactic acid bacteria (LAB), including Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus, alongside diverse heat-resistant yeasts such as Cyberlindnera jadinii. Culture-based isolation identified subdominant lactic acid bacteria strains, not detected by sequencing, belonging to Leuconostoc mesenteroides, Enterococcus faecalis, and Enterococcus durans. These strains were further assessed for their probiotic potential. E. faecalis CW1 and E. durans RCEW2 showed tolerance to acidic pH, bile salts, and lysozyme, as well as a strong biofilm-forming capacity and antimicrobial activity against Bacillus cereus and Staphylococcus aureus. Moreover, bile salt resistance suggests potential functionality in cholesterol metabolism. These findings support the potential use of CW and RCEW as reservoirs of novel, autochthonous probiotic strains and underscore the value of regional dairy by-products in food biotechnology and gut health applications. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
18 pages, 695 KiB  
Review
Macromycete Edible Fungi as a Functional Poultry Feed Additive: Influence on Health, Welfare, Eggs, and Meat Quality—Review
by Damian Duda, Klaudia Jaszcza and Emilia Bernaś
Molecules 2025, 30(15), 3241; https://doi.org/10.3390/molecules30153241 (registering DOI) - 1 Aug 2025
Abstract
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina [...] Read more.
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina velutipes, and Inonotus obliquus. These species contain many bioactive compounds, including β-glucans, endo- and exogenous amino acids, polyphenols, terpenoids, sterols, B vitamins, minerals, and lovastatin. The level of some biologically active substances is species-specific, e.g., hericenones and erinacines, which have neuroprotective properties, and supporting the production of nerve growth factor in the brain for Hericium erinaceus. Due to their high health-promoting potential, mushrooms and substances isolated from them have found applications in livestock nutrition, improving their welfare and productivity. This phenomenon may be of particular importance in the nutrition of laying hens and broiler chickens, where an increase in pathogen resistance to antibiotics has been observed in recent years. Gallus gallus domesticus is a key farm animal for meat and egg production, so the search for new compounds to support bird health is important for food safety. Studies conducted to date indicate that feed supplementation with mushrooms has a beneficial effect on, among other things, bird weight gain; bone mineralisation; and meat and egg quality, including the lipid profile and protein content and shell thickness, and promotes the development of beneficial microbiota, thereby increasing immunity. Full article
17 pages, 957 KiB  
Article
Epidemiology of Carbapenem-Resistant Klebsiella Pneumoniae Co-Producing MBL and OXA-48-like in a Romanian Tertiary Hospital: A Call to Action
by Violeta Melinte, Maria Adelina Radu, Maria Cristina Văcăroiu, Luminița Mîrzan, Tiberiu Sebastian Holban, Bogdan Vasile Ileanu, Ioana Miriana Cismaru and Valeriu Gheorghiță
Antibiotics 2025, 14(8), 783; https://doi.org/10.3390/antibiotics14080783 (registering DOI) - 1 Aug 2025
Abstract
Introduction: Carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a critical public health threat due to its rapid nosocomial dissemination, limited therapeutic options, and elevated mortality rates. This study aimed to characterize the epidemiology, carbapenemase profiles, and antimicrobial susceptibility patterns of CRKP isolates, as well as [...] Read more.
Introduction: Carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a critical public health threat due to its rapid nosocomial dissemination, limited therapeutic options, and elevated mortality rates. This study aimed to characterize the epidemiology, carbapenemase profiles, and antimicrobial susceptibility patterns of CRKP isolates, as well as the clinical features and outcomes observed in infected or colonized patients. Materials and Methods: We conducted a retrospective analysis of clinical and microbiological data from patients with CRKP infections or colonization admitted between January 2023 and January 2024. Descriptive statistics were used to assess prevalence, resistance patterns, and patient outcomes. Two binary logistic regression models were applied to identify independent predictors of sepsis and in-hospital mortality. Results: Among 89 CRKP isolates, 45 underwent carbapenemase typing. More than half were metallo-β-lactamase (MBL) producers, with 44.4% co-harbouring NDM and OXA-48-like enzymes. Surgical intervention was associated with a significantly lower risk of sepsis (p < 0.01) and in-hospital mortality (p = 0.045), whereas intensive care unit (ICU) stay was a strong predictor of both outcomes. ICU admission conferred a 10-fold higher risk of sepsis (95%Cl 2.4–41.0) and a 40.8-fold higher risk of in-hospital death (95% Cl 3.5–473.3). Limitations: This single-center retrospective study included a limited number of isolates in certain groups. Additionally, cefiderocol (FDC) susceptibility was assessed by disk diffusion rather than by the broth microdilution method. Conclusions: Our study underscores the increasing prevalence of metallo-beta-lactamase-producing CRKP, particularly strains harbouring dual carbapenemases. Timely recognition of high-risk patients, combined with the implementation of targeted infection control measures and the integration of novel therapeutic options, is crucial to optimize clinical management and reduce mortality associated with CRKP. Full article
19 pages, 9488 KiB  
Article
Proteus mirabilis from Captive Giant Pandas and Red Pandas Carries Diverse Antimicrobial Resistance Genes and Virulence Genes Associated with Mobile Genetic Elements
by Yizhou Yang, Yan Liu, Jiali Wang, Caiwu Li, Ruihu Wu, Jialiang Xin, Xue Yang, Haohong Zheng, Zhijun Zhong, Hualin Fu, Ziyao Zhou, Haifeng Liu and Guangneng Peng
Microorganisms 2025, 13(8), 1802; https://doi.org/10.3390/microorganisms13081802 (registering DOI) - 1 Aug 2025
Abstract
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis [...] Read more.
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis from panda feces to assess AMR and virulence traits, and used whole-genome sequencing (WGS) to evaluate the spread of resistance genes (ARGs) and virulence genes (VAGs). In this study, 37 isolates were obtained, 20 from red pandas and 17 from giant pandas. Multidrug-resistant (MDR) strains were present in both hosts. Giant panda isolates showed the highest resistance to ampicillin and cefazolin (58.8%), while red panda isolates were most resistant to trimethoprim/sulfamethoxazole (65%) and imipenem (55%). Giant panda-derived strains also exhibited stronger biofilm formation and swarming motility. WGS identified 31 ARGs and 73 VAGs, many linked to mobile genetic elements (MGEs) such as plasmids, integrons, and ICEs. In addition, we found frequent co-localization of drug resistance genes/VAGs with MGEs, indicating a high possibility of horizontal gene transfer (HGT). This study provides crucial insights into AMR and virulence risks in P. mirabilis from captive pandas, supporting targeted surveillance and control strategies. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and the Use of Antibiotics in Animals)
Show Figures

Figure 1

18 pages, 2714 KiB  
Article
Assessing the Efficacy of Chemical and Green-Synthesized CuO Nanoparticles in Combatting Clinical Candida Species: A Comparative Study
by Hiba Younis Khalaf, Ferid Ben Nasr, Bashar Sadeq Noomi, Sami Mnif and Sami Aifa
Microbiol. Res. 2025, 16(8), 178; https://doi.org/10.3390/microbiolres16080178 (registering DOI) - 1 Aug 2025
Abstract
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. [...] Read more.
The most prevalent growth of Candida cells is based on biofilm development, which causes the intensification of antifungal resistance against a large range of chemicals. Nanoparticles can be synthesized using green methods via various biological extracts and reducing agents to control Candida biofilms. This study aims to compare copper oxide nanoparticles (CuONPs) synthesized through chemical methods and those synthesized using Cinnamomum verum-based green methods against Candida infections and their biofilms isolated from Iraqi patients, with the potential to improve treatment outcomes. The physical and chemical properties of these nanoparticles were characterized using Fourier-transform infrared spectroscopy (FT-IR,) scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Four strains of Candida were isolated and characterized from Iraqi patients in Tikrit Hospital and selected based on their ability to form biofilm on polystyrene microplates. The activity of green-synthesized CuONPs using cinnamon extract was compared with both undoped and doped (Fe, Sn) chemically synthesized CuONPs. Four pathogenic Candida strains (Candida glabrata, Candida lusitaniae, Candida albicans, and Candida tropicalis) were isolated from Iraqi patients, demonstrating high biofilm formation capabilities. Chemically and green-synthesized CuONPs from Cinnamomum verum showed comparable significant antiplanktonic and antibiofilm activities against all strains. Doped CuONPs with iron or tin demonstrated lower minimum inhibitory concentration (MIC) values, indicating stronger antibacterial activity, but exhibited weaker anti-adhesive properties compared to other nanoparticles. The antiadhesive activity revealed that C. albicans strain seems to produce the most resistant biofilms while C. glabrata strain seems to be more resistant towards the doped CuONPs. Moreover, C. tropicalis was the most sensitive to all the CuONPs. Remarkably, at a concentration of 100 µg/mL, all CuONPs were effective in eradicating preformed biofilms by 47–66%. The findings suggest that CuONPs could be effective in controlling biofilm formation by Candida species resistant to treatment in healthcare settings. Full article
Show Figures

Figure 1

17 pages, 4370 KiB  
Article
PSG and Other Candidate Genes as Potential Biomarkers of Therapy Resistance in B-ALL: Insights from Chromosomal Microarray Analysis and Machine Learning
by Valeriya Surimova, Natalya Risinskaya, Ekaterina Kotova, Abdulpatakh Abdulpatakhov, Anastasia Vasileva, Yulia Chabaeva, Sofia Starchenko, Olga Aleshina, Nikolay Kapranov, Irina Galtseva, Alina Ponomareva, Ilya Kanivets, Sergey Korostelev, Sergey Kulikov, Andrey Sudarikov and Elena Parovichnikova
Int. J. Mol. Sci. 2025, 26(15), 7437; https://doi.org/10.3390/ijms26157437 (registering DOI) - 1 Aug 2025
Abstract
Chromosomal microarray analysis (CMA) was performed for 40 patients with B-ALL undergoing treatment according to the ALL-2016 protocol to investigate the copy number alterations (CNAs) and copy neutral loss of heterozygosity (cnLOH) associated with minimal residual disease (MRD)-positive remission. Aberrations involving over 20,000 [...] Read more.
Chromosomal microarray analysis (CMA) was performed for 40 patients with B-ALL undergoing treatment according to the ALL-2016 protocol to investigate the copy number alterations (CNAs) and copy neutral loss of heterozygosity (cnLOH) associated with minimal residual disease (MRD)-positive remission. Aberrations involving over 20,000 genes were identified, and a random forest approach was applied to isolate a subset of genes whose CNAs and cnLOH are significantly associated with poor therapeutic response. We have assembled the triple matched healthy population data and used that data as a reference, but not as a matched control. We identified a recurrent cluster of cnLOH in the 19q13.2–19q13.31 region, significantly enriched in MRD-positive patients (70% vs. 47% in the reference group vs. 16% in MRD-negative patients). This region includes the pregnancy-specific glycoprotein (PSG) gene family and the oncogene ERF, suggesting a potential role in leukemic persistence and treatment resistance. Additionally, we observed significant deletions involving 7p22.3 and 16q13, often as part of large-scale losses affecting almost the entire chromosomes 7 and 16, indicative of global chromosomal instability. These findings highlight specific genomic regions potentially involved in therapy resistance and may contribute to improved risk stratification in B-ALL. Our findings emphasize the value of high-resolution CMA in diagnostics and risk stratification and suggest that PSG genes and other candidate genes could serve as biomarkers for predicting treatment outcomes. Full article
(This article belongs to the Special Issue Cancer Genomics)
Show Figures

Figure 1

12 pages, 815 KiB  
Article
Profiles of Sensitivity to Antibiotics and Heavy Metals in Strains of Pseudomonas mendocina Isolates from Leachate Pond
by Aura Falco, Alejandra Mondragón-Quiguanas, Laura Burbano, Miguel Ángel Villaquirán-Muriel, Adriana Correa and Carlos Aranaga
Antibiotics 2025, 14(8), 781; https://doi.org/10.3390/antibiotics14080781 (registering DOI) - 1 Aug 2025
Abstract
Background/Objetives: Antimicrobial Resistance (AMR) is a multifaceted issue that the World Health Organization (WHO) identifies as one of the primary threats to global health for humans, animals, and the environment. In Colombia, AMR has been extensively studied at the hospital level; however, [...] Read more.
Background/Objetives: Antimicrobial Resistance (AMR) is a multifaceted issue that the World Health Organization (WHO) identifies as one of the primary threats to global health for humans, animals, and the environment. In Colombia, AMR has been extensively studied at the hospital level; however, there are limited environmental studies, particularly concerning leachates from landfills. The objective of this study was to identify and determine the genetic relationships, as well as the sensitivity profiles to antibiotics and heavy metals, of ten Pseudomonas mendocina isolates from a leachate pond. Methods: Identification was conducted using MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight), while genotyping was performed via rep-PCR. Antibiotic susceptibility to β-lactams, aminoglycosides, and quinolones was assessed using the Kirby-Bauer method. Additionally, sensitivity profile to heavy metals was evaluated using the broth microdilution technique. Results: Rep-PCR analysis indicated that 60% (n = 6/10) of the isolates exhibited a clonal relationship. Sensitivity testing revealed that 30% (n = 3/10) of the isolates displayed reduced sensitivity to aminoglycosides and β-lactams. Finally, the broth microdilution showed that 90% (n = 9/10) of the isolates were tolerant to copper sulfate. Conclusions: These results provide evidence that landfill leachates may serve as a potential reservoir for bacteria harboring antimicrobial resistance determinants. Full article
(This article belongs to the Special Issue Antibiotic Resistance: The Role of Aquatic Environments)
Show Figures

Figure 1

8 pages, 912 KiB  
Article
Methenamine as an Alternative Treatment of Neisseria gonorrhoeae Urethritis? An In Vitro and In Vivo Study in Galleria mellonella
by Izumo Kanesaka, Saïd Abdellati, Sheeba Santhini Manoharan-Basil and Chris Kenyon
Venereology 2025, 4(3), 13; https://doi.org/10.3390/venereology4030013 - 1 Aug 2025
Abstract
Background: There is an urgent need for novel treatment options for Neisseria gonorrhoeae. Methenamine is an interesting urinary antiseptic with a very low propensity to induce antimicrobial resistance. Methods: We assessed the MICs of methenamine-hippurate for 18 N. gonorrhoeae isolates. We then [...] Read more.
Background: There is an urgent need for novel treatment options for Neisseria gonorrhoeae. Methenamine is an interesting urinary antiseptic with a very low propensity to induce antimicrobial resistance. Methods: We assessed the MICs of methenamine-hippurate for 18 N. gonorrhoeae isolates. We then assessed the in vivo efficacy of methenamine-hippurate against N. gonorrhoeae using the Galleria mellonella infection model. Results: We found that all the gonococcal isolates had a methenamine-hippurate MIC of 300 mg/L. This MIC was not higher in isolates with higher ceftriaxone MICs. No toxicity of methenamine at the doses tested was found, and doses as low as 200 mg/kg were effective in the G. mellonella model. Conclusions: Further studies in mice and humans are required to assess if methenamine-hippurate could be used to treat gonococcal urethritis alone or in combination with other agents such as ceftriaxone. Full article
Show Figures

Figure 1

16 pages, 1365 KiB  
Article
Immobilization of Cd Through Biosorption by Bacillus altitudinis C10-4 and Remediation of Cd-Contaminated Soil
by Tianyu Gao, Chenlu Zhang, Xueqiang Hu, Tianqi Wang, Zhitang Lyu and Lei Sun
Microorganisms 2025, 13(8), 1798; https://doi.org/10.3390/microorganisms13081798 - 1 Aug 2025
Abstract
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the [...] Read more.
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the contact time, pH, Cd(II) concentration, and biomass dosage affected the adsorption of Cd(II) by strain C10-4. The adsorption process fit well to the Langmuir adsorption isotherm model and the pseudo-second-order kinetics model, based on the Cd(II) adsorption data obtained from the cells of strain C10-4. This suggests that Cd(II) is adsorbed by strain C10-4 cells via a single-layer homogeneous chemical adsorption process. According to the Langmuir model, the maximum biosorption capacity was 3.31 mg/g for fresh-strain C10-4 biomass. Cd(II) was shown to adhere to the bacterial cell wall through SEM-EDS analysis. FTIR spectroscopy further indicated that the main functional sites for the binding of Cd(II) ions on the cell surface of strain C10-4 were functional groups such as N-H, -OH, -CH-, C=O, C-O, P=O, sulfate, and phosphate. After the inoculation of strain C10-4 into Cd(II)-contaminated soils, there was a significant reduction (p < 0.01) in the exchangeable fraction of Cd and an increase (p < 0.01) in the sum of the reducible, oxidizable, and residual fractions of Cd. The results show that Bacillus altitudinis C10-4 has good potential for use in the remediation of Cd(II)-contaminated soils. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

28 pages, 7617 KiB  
Article
Using Circuit Theory to Identify Important Ecological Corridors for Large Mammals Between Wildlife Refuges
by Büşra Kalleci and Özkan Evcin
Diversity 2025, 17(8), 542; https://doi.org/10.3390/d17080542 (registering DOI) - 1 Aug 2025
Abstract
Habitat fragmentation restricts the movement of large mammals across broad landscapes, leading to isolation of individuals or groups, reduced interaction with other species, and limited access to vital resources in surrounding habitats. In this study, we aimed to determine the wildlife ecological corridors [...] Read more.
Habitat fragmentation restricts the movement of large mammals across broad landscapes, leading to isolation of individuals or groups, reduced interaction with other species, and limited access to vital resources in surrounding habitats. In this study, we aimed to determine the wildlife ecological corridors for five large mammals (Ursus arctos, Cervus elaphus, Capreolus capreolus, Sus scrofa, and Canis lupus) between Kastamonu Ilgaz Mountain Wildlife Refuge and Gavurdağı Wildlife Refuge. In the field studies, we used the transect, indirect observation, and camera-trap methods to collect presence data. Maximum Entropy (MaxEnt) (v. 3.4.1) software was used to create habitat suitability models of the target species, which are based on the presence-only data approach. The results indicated that AUC values varied between 0.808 and 0.835, with water sources, stand type, and slope contributing most significantly to model performance. In order to determine wildlife ecological corridors, resistance surface maps were created using the species distribution models (SDMs), and bottleneck areas were determined. The Circuit Theory approach was used to model the connections between ecological corridors. As a result of this study, we developed connectivity models for five large mammals based on Circuit Theory, identified priority wildlife ecological corridors, and evaluated critical connection points between two protected areas, Ilgaz Mountain Wildlife Refuge and Gavurdağı Wildlife Refuge. These findings highlight the essential role of ecological corridors in sustaining landscape-level connectivity and supporting the long-term conservation of wide-ranging species. Full article
(This article belongs to the Special Issue Habitat Assessment and Conservation Strategies)
Show Figures

Graphical abstract

38 pages, 733 KiB  
Review
Mitochondrial Metabolomics in Cancer: Mass Spectrometry-Based Approaches for Metabolic Rewiring Analysis and Therapeutic Discovery
by Yuqing Gao, Zhirou Xiong and Xinyi Wei
Metabolites 2025, 15(8), 513; https://doi.org/10.3390/metabo15080513 (registering DOI) - 31 Jul 2025
Abstract
Mitochondria, pivotal organelles in cellular metabolism and energy production, have emerged as critical players in the pathogenesis of cancer. This review outlines the progress in mitochondrial profiling through mass spectrometry-based metabolomics and its applications in cancer research. We provide unprecedented insights into the [...] Read more.
Mitochondria, pivotal organelles in cellular metabolism and energy production, have emerged as critical players in the pathogenesis of cancer. This review outlines the progress in mitochondrial profiling through mass spectrometry-based metabolomics and its applications in cancer research. We provide unprecedented insights into the mitochondrial metabolic rewiring that fuels tumorigenesis, metastasis, and therapeutic resistance. The purpose of this review is to provide a comprehensive guide for the implementation of mitochondrial metabolomics, integrating advanced methodologies—including isolation, detection, and data integration—with insights into cancer-specific metabolic rewiring. We first summarize current methodologies for mitochondrial sample collection and pretreatment. Furthermore, we then discuss the recent advancements in mass spectrometry-based methodologies that facilitate the detailed profiling of mitochondrial metabolites, unveiling significant metabolic reprogramming associated with tumorigenesis. We emphasize how recent technological advancements have addressed longstanding challenges in the field and explore the role of mitochondrial metabolism-driven cancer development and progression for novel drug discovery and translational research applications in cancer. Collectively, this review delineates emerging opportunities for therapeutic discovery and aims to establish a foundation for future investigations into the therapeutic modulation of mitochondrial pathways in cancer, thereby paving the way for innovative diagnostic and therapeutic approaches targeting mitochondrial pathways. Full article
(This article belongs to the Topic Overview of Cancer Metabolism)
10 pages, 726 KiB  
Article
Discovery of New Everninomicin Analogs from a Marine-Derived Micromonospora sp. by Metabolomics and Genomics Approaches
by Tae Hyun Lee, Nathan J. Brittin, Imraan Alas, Christopher D. Roberts, Shaurya Chanana, Doug R. Braun, Spencer S. Ericksen, Song Guo, Scott R. Rajski and Tim S. Bugni
Mar. Drugs 2025, 23(8), 316; https://doi.org/10.3390/md23080316 (registering DOI) - 31 Jul 2025
Abstract
During the course of genome mining initiatives, we identified a marine-derived Micromonospora, assigned here as strain WMMD956; the genome of WMMD956 appeared to contain a number of features associated with everninomicins, well-known antimicrobial orthosomycins. In addition, LCMS-based hierarchical clustering analysis and principal [...] Read more.
During the course of genome mining initiatives, we identified a marine-derived Micromonospora, assigned here as strain WMMD956; the genome of WMMD956 appeared to contain a number of features associated with everninomicins, well-known antimicrobial orthosomycins. In addition, LCMS-based hierarchical clustering analysis and principal component analysis (hcapca) revealed that WMMD956 displayed an extreme degree of metabolomic and genomic novelty. Dereplication of high-resolution tandem mass spectrometry (HRMS/MS) and Global Natural Product Social molecular networking platform (GNPS) analysis of WMMD956 resulted in the identification of several analogs of the previously known everninomicin. Chemical structures were unambiguously confirmed by HR-ESI-MS, 1D and 2D NMR experiments, and the use of MS/MS data. The isolated metabolites, 13, were evaluated for their antibacterial activity against methicillin-resistant Staphalococcus aureus (MRSA). Full article
(This article belongs to the Special Issue Bioactive Compounds from Extreme Marine Ecosystems)
Show Figures

Graphical abstract

13 pages, 13107 KiB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 1331 KiB  
Article
Characterization and Antimicrobial Resistance of Non-Typhoidal Salmonella from Poultry Carcass Rinsates in Selected Abattoirs of KwaZulu Natal, South Africa
by Bongi Beatrice Mankonkwana, Evelyn Madoroba, Kudakwashe Magwedere and Patrick Butaye
Microorganisms 2025, 13(8), 1786; https://doi.org/10.3390/microorganisms13081786 - 31 Jul 2025
Abstract
Contaminated poultry is one of the major sources of food-borne non-typhoidal Salmonella (NTS). The aim of this study was to evaluate the presence of Salmonella along the slaughter process in low- and high-throughput poultry abattoirs in South Africa and to determine their characteristics. [...] Read more.
Contaminated poultry is one of the major sources of food-borne non-typhoidal Salmonella (NTS). The aim of this study was to evaluate the presence of Salmonella along the slaughter process in low- and high-throughput poultry abattoirs in South Africa and to determine their characteristics. Samples were collected from 500 chicken carcass rinsates at various processing stages in three abattoirs. Salmonella detection and identification was conducted in accordance with the ISO 6579 methodology. NTS serotyping was performed with serotype-specific PCRs. The Kirby–Bauer disk diffusion method was used to determine antimicrobial resistance in Salmonella. PCR was used to analyze thirteen antimicrobial genes and four virulence genes. Salmonella spp. was detected in 11.8% (59/500; CI: 9.5–15) of the samples tested. The predominant serovars were Salmonella Enteritidis (n = 21/59; 35.59%) and Salmonella Typhimurium (n = 35; 59.32%). Almost all Salmonella isolates were susceptible to all tested antimicrobials except three. Despite the low resistance to tetracyclines at the phenotypic level, approximately half of the strains carried tetA genes, which may be due to “silent” antimicrobial resistance genes. Diverse virulence genes were detected among the confirmed NTS serotypes. We found a predominance of S. Enteritidis and S. Typhimurium from chicken carcasses with diverse virulence and resistance genes. As we detected differences between the slaughterhouses, an in-depth study should be performed on the risk of Salmonella in low- and high-throughput abattoirs. The integrated monitoring and surveillance of NTS in poultry is warranted in South Africa to aid in the design of mitigation strategies. Full article
(This article belongs to the Special Issue Salmonella and Food Safety)
Show Figures

Figure 1

Back to TopTop