Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = isocitrate dehydrogenase 1 (IDH1)-wildtype

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1031 KiB  
Article
IDH1 Mutation Impacts DNA Repair Through ALKBH2 Rendering Glioblastoma Cells Sensitive to Artesunate
by Olivier Switzeny, Stefan Pusch, Markus Christmann and Bernd Kaina
Biomedicines 2025, 13(6), 1479; https://doi.org/10.3390/biomedicines13061479 - 16 Jun 2025
Viewed by 767
Abstract
Background: Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are enzymes that catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate (α-KG), which is essential for many metabolic processes, including some steps in DNA repair. In tumors, notably in gliomas, IDH1 and IDH2 [...] Read more.
Background: Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are enzymes that catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate (α-KG), which is essential for many metabolic processes, including some steps in DNA repair. In tumors, notably in gliomas, IDH1 and IDH2 are frequently mutated. The mutation found in different cancers is functionally active, causing, instead of α-KG, the formation of 2-hydroxyglutarate (2-HG), which inhibits α-KG-dependent enzymes. Gliomas harboring mutated IDH1/2 show a better prognosis than IDH1 wild-type (wt) tumors of the same grade, which might result from the inhibition of DNA repair functions. A DNA repair enzyme dependent on α-KG is alkB homolog 2 (ALKBH2), which removes several lesions from DNA. These findings prompted us to investigate the response of glioma cells to artesunate (ART), a plant ingredient with genotoxic and anticancer activity currently used in several trials. Materials and Methods: We used isogenic glioblastoma cell lines that express IDH1 wild-type or, based on a TET-inducible system, the IDH1 mutant (mt) protein, and treated them with increasing doses of artesunate. We also treated glioblastoma cells with 2-HG, generated ALKBH2 knockout cells, and checked their sensitivity to the cytotoxic effects of artesunate. Results: We show that the cell-killing effect of ART is enhanced if the IDH1 mutant (R132H) is expressed in glioblastoma cells. Further, we show that 2-HG imitates the effect of IDH1mt as 2-HG ameliorates the cytotoxicity of ART. Finally, we demonstrate that the knockout of ALKBH2 causes the sensitization of glioblastoma cells to ART. Conclusions: The data indicate that ALKBH2 protects against the anticancer effect of ART, and the mutation of IDH1/2 commonly occurring in low-grade gliomas sensitizes to ART via an ALKBH2-dependent mechanism. The data support the use of ART in the therapy of IDH1/2-mutated cancers both in combination with chemotherapy and adjuvant treatment. Full article
(This article belongs to the Special Issue Glioma Therapy: Current Status and Future Prospects)
Show Figures

Figure 1

21 pages, 4198 KiB  
Article
Preparation and Preclinical Evaluation of 18F-Labeled Olutasidenib Derivatives for Non-Invasive Detection of Mutated Isocitrate Dehydrogenase 1 (mIDH1)
by Roberta Cologni, Marcus Holschbach, Daniela Schneider, Dirk Bier, Annette Schulze, Carina Stegmayr, Heike Endepols, Johannes Ermert, Felix Neumaier and Bernd Neumaier
Molecules 2024, 29(16), 3939; https://doi.org/10.3390/molecules29163939 - 21 Aug 2024
Cited by 1 | Viewed by 1703
Abstract
Mutations of isocitrate dehydrogenase 1 (IDH1) are key biomarkers for glioma classification, but current methods for detection of mutated IDH1 (mIDH1) require invasive tissue sampling and cannot be used for longitudinal studies. Positron emission tomography (PET) imaging with mIDH1-selective radioligands is a promising [...] Read more.
Mutations of isocitrate dehydrogenase 1 (IDH1) are key biomarkers for glioma classification, but current methods for detection of mutated IDH1 (mIDH1) require invasive tissue sampling and cannot be used for longitudinal studies. Positron emission tomography (PET) imaging with mIDH1-selective radioligands is a promising alternative approach that could enable non-invasive assessment of the IDH status. In the present work, we developed efficient protocols for the preparation of four 18F-labeled derivatives of the mIDH1-selective inhibitor olutasidenib. All four probes were characterized by cellular uptake studies with U87 glioma cells harboring a heterozygous IDH1 mutation (U87-mIDH) and the corresponding wildtype cells (U87-WT). In addition, the most promising probe was evaluated by PET imaging in healthy mice and mice bearing subcutaneous U87-mIDH and U87-WT tumors. Although all four probes inhibited mIDH1 with variable potencies, only one of them ([18F]mIDH-138) showed significantly higher in vitro uptake into U87-mIDH compared to U87-WT cells. In addition, PET imaging with [18F]mIDH-138 in mice demonstrated good in vivo stability and low non-specific uptake of the probe, but also revealed significantly higher uptake into U87-WT compared to U87-mIDH tumors. Finally, application of a two-tissue compartment model (2TCM) to the PET data indicated that preferential tracer uptake into U87-WT tumors results from higher specific binding rather than from differences in tracer perfusion. In conclusion, these results corroborate recent findings that mIDH1-selective inhibition may not directly correlate with mIDH1-selective target engagement and indicate that in vivo engagement of wildtype and mutated IDH1 may be governed by factors that are not faithfully reproduced by in vitro assays, both of which could complicate development of PET probes. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

17 pages, 3578 KiB  
Article
Hotspot DNA Methyltransferase 3A (DNMT3A) and Isocitrate Dehydrogenase 1 and 2 (IDH1/2) Mutations in Acute Myeloid Leukemia and Their Relevance as Targets for Immunotherapy
by Nadine E. Struckman, Rob C. M. de Jong, M. Willy Honders, Sophie-Anne I. Smith, Dyantha I. van der Lee, Georgia Koutsoumpli, Arnoud H. de Ru, Jan-Henrik Mikesch, Peter A. van Veelen, J. H. Frederik Falkenburg and Marieke Griffioen
Biomedicines 2024, 12(5), 1086; https://doi.org/10.3390/biomedicines12051086 - 14 May 2024
Cited by 1 | Viewed by 2053
Abstract
DNA methyltransferase 3A (DNMT3A) and isocitrate dehydrogenase 1 and 2 (IDH1/2) are genes involved in epigenetic regulation, each mutated in 7–23% of patients with acute myeloid leukemia. Here, we investigated whether hotspot mutations in these genes encode neoantigens that [...] Read more.
DNA methyltransferase 3A (DNMT3A) and isocitrate dehydrogenase 1 and 2 (IDH1/2) are genes involved in epigenetic regulation, each mutated in 7–23% of patients with acute myeloid leukemia. Here, we investigated whether hotspot mutations in these genes encode neoantigens that can be targeted by immunotherapy. Five human B-lymphoblastoid cell lines expressing common HLA class I alleles were transduced with a minigene construct containing mutations that often occur in DNMT3A or IDH1/2. From these minigene-transduced cell lines, peptides were eluted from HLA class I alleles and analyzed using tandem mass spectrometry. The resulting data are available via ProteomeXchange under the identifier PXD050560. Mass spectrometry revealed an HLA-A*01:01-binding DNMT3AR882H peptide and an HLA-B*07:02-binding IDH2R140Q peptide as potential neoantigens. For these neopeptides, peptide–HLA tetramers were produced to search for specific T-cells in healthy individuals. Various T-cell clones were isolated showing specific reactivity against cell lines transduced with full-length DNMT3AR882H or IDH2R140Q genes, while cell lines transduced with wildtype genes were not recognized. One T-cell clone for DNMT3AR882H also reacted against patient-derived acute myeloid leukemia cells with the mutation, while patient samples without the mutation were not recognized, thereby validating the surface presentation of a DNMT3AR882H neoantigen that can potentially be targeted in acute myeloid leukemia via immunotherapy. Full article
(This article belongs to the Special Issue Molecular Research on Acute Myeloid Leukemia (AML) Volume II)
Show Figures

Graphical abstract

18 pages, 11408 KiB  
Review
Diagnostic Approaches to Adult-Type Diffuse Glial Tumors: Comparative Literature and Clinical Practice Study
by Vincentas Veikutis, Mindaugas Brazdziunas, Evaldas Keleras, Algidas Basevicius, Andrei Grib, Darijus Skaudickas and Saulius Lukosevicius
Curr. Oncol. 2023, 30(9), 7818-7835; https://doi.org/10.3390/curroncol30090568 - 24 Aug 2023
Viewed by 3703
Abstract
Gliomas are the most frequent intrinsic central nervous system tumors. The new 2021 WHO Classification of Central Nervous System Tumors brought significant changes into the classification of gliomas, that underline the role of molecular diagnostics, with the adult-type diffuse glial tumors now identified [...] Read more.
Gliomas are the most frequent intrinsic central nervous system tumors. The new 2021 WHO Classification of Central Nervous System Tumors brought significant changes into the classification of gliomas, that underline the role of molecular diagnostics, with the adult-type diffuse glial tumors now identified primarily by their biomarkers rather than histology. The status of the isocitrate dehydrogenase (IDH) 1 or 2 describes tumors at their molecular level and together with the presence or absence of 1p/19q codeletion are the most important biomarkers used for the classification of adult-type diffuse glial tumors. In recent years terminology has also changed. IDH-mutant, as previously known, is diagnostically used as astrocytoma and IDH-wildtype is used as glioblastoma. A comprehensive understanding of these tumors not only gives patients a more proper treatment and better prognosis but also highlights new difficulties. MR imaging is of the utmost importance for diagnosing and supervising the response to treatment. By monitoring the tumor on followup exams better results can be achieved. Correlations are seen between tumor diagnostic and clinical manifestation and surgical administration, followup care, oncologic treatment, and outcomes. Minimal resection site use of functional imaging (fMRI) and diffusion tensor imaging (DTI) have become indispensable tools in invasive treatment. Perfusion imaging provides insightful information about the vascularity of the tumor, spectroscopy shows metabolic activity, and nuclear medicine imaging displays tumor metabolism. To accommodate better treatment the differentiation of pseudoprogression, pseudoresponse, or radiation necrosis is needed. In this report, we present a literature review of diagnostics of gliomas, the differences in their imaging features, and our radiology’s departments accumulated experience concerning gliomas. Full article
(This article belongs to the Special Issue Glioblastoma in Adults: Current Management and Future Directions)
Show Figures

Figure 1

12 pages, 742 KiB  
Review
IDH Mutations in Chondrosarcoma: Case Closed or Not?
by Sanne Venneker and Judith V. M. G. Bovée
Cancers 2023, 15(14), 3603; https://doi.org/10.3390/cancers15143603 - 13 Jul 2023
Cited by 10 | Viewed by 3011
Abstract
Chondrosarcomas are malignant cartilage-producing tumours that frequently harbour isocitrate dehydrogenase 1 and -2 (IDH) gene mutations. Several studies have confirmed that these mutations are key players in the early stages of cartilage tumour development, but their role in later stages remains [...] Read more.
Chondrosarcomas are malignant cartilage-producing tumours that frequently harbour isocitrate dehydrogenase 1 and -2 (IDH) gene mutations. Several studies have confirmed that these mutations are key players in the early stages of cartilage tumour development, but their role in later stages remains ambiguous. The prognostic value of IDH mutations remains unclear and preclinical studies have not identified effective treatment modalities (in)directly targeting these mutations. In contrast, the IDH mutation status is a prognostic factor in other cancers, and IDH mutant inhibitors as well as therapeutic strategies targeting the underlying vulnerabilities induced by IDH mutations seem effective in these tumour types. This discrepancy in findings might be ascribed to a difference in tumour type, elevated D-2-hydroxyglutarate levels, and the type of in vitro model (endogenous vs. genetically modified) used in preclinical studies. Moreover, recent studies suggest that the (epi)genetic landscape in which the IDH mutation functions is an important factor to consider when investigating potential therapeutic strategies or patient outcomes. These findings imply that the dichotomy between IDH wildtype and mutant is too simplistic and additional subgroups indeed exist within chondrosarcoma. Future studies should focus on the identification, characterisation, and tailoring of treatments towards these biological subgroups within IDH wildtype and mutant chondrosarcoma. Full article
(This article belongs to the Special Issue Latest Research in Cartilaginous Neoplasms)
Show Figures

Figure 1

13 pages, 2213 KiB  
Article
Mutant Isocitrate Dehydrogenase 1 Expression Enhances Response of Gliomas to the Histone Deacetylase Inhibitor Belinostat
by Chi-Ming Chang, Karthik K. Ramesh, Vicki Huang, Saumya Gurbani, Lawrence R. Kleinberg, Brent D. Weinberg, Hyunsuk Shim and Hui-Kuo G. Shu
Tomography 2023, 9(3), 942-954; https://doi.org/10.3390/tomography9030077 - 4 May 2023
Cited by 3 | Viewed by 2567
Abstract
Histone deacetylase inhibitors (HDACis) are drugs that target the epigenetic state of cells by modifying the compaction of chromatin through effects on histone acetylation. Gliomas often harbor a mutation of isocitrate dehydrogenase (IDH) 1 or 2 that leads to changes in their epigenetic [...] Read more.
Histone deacetylase inhibitors (HDACis) are drugs that target the epigenetic state of cells by modifying the compaction of chromatin through effects on histone acetylation. Gliomas often harbor a mutation of isocitrate dehydrogenase (IDH) 1 or 2 that leads to changes in their epigenetic state presenting a hypermethylator phenotype. We postulated that glioma cells with IDH mutation, due to the presence of epigenetic changes, will show increased sensitivity to HDACis. This hypothesis was tested by expressing mutant IDH1 with a point alteration—converting arginine 132 to histidine—within glioma cell lines that contain wild-type IDH1. Glioma cells engineered to express mutant IDH1 produced D-2-hydroxyglutarate as expected. When assessed for response to the pan-HDACi drug belinostat, mutant IDH1-expressing glioma cells were subjected to more potent inhibition of growth than the corresponding control cells. Increased sensitivity to belinostat correlated with the increased induction of apoptosis. Finally, a phase I trial assessing the addition of belinostat to standard-of-care therapy for newly diagnosed glioblastoma patients included one patient with a mutant IDH1 tumor. This mutant IDH1 tumor appeared to display greater sensitivity to the addition of belinostat than the other cases with wild-type IDH tumors based on both standard magnetic resonance imaging (MRI) and advanced spectroscopic MRI criteria. These data together suggest that IDH mutation status within gliomas may serve as a biomarker of response to HDACis. Full article
(This article belongs to the Special Issue Current Trends in Diagnostic and Therapeutic Imaging of Brain Tumors)
Show Figures

Figure 1

23 pages, 3122 KiB  
Article
Non-Association of Driver Alterations in PTEN with Differential Gene Expression and Gene Methylation in IDH1 Wildtype Glioblastomas
by Mrinmay Kumar Mallik, Kaushik Majumdar and Shiraz Mujtaba
Brain Sci. 2023, 13(2), 186; https://doi.org/10.3390/brainsci13020186 - 23 Jan 2023
Viewed by 2500
Abstract
During oncogenesis, alterations in driver genes called driver alterations (DAs) modulate the transcriptome, methylome and proteome through oncogenic signaling pathways. These modulatory effects of any DA may be analyzed by examining differentially expressed mRNAs (DEMs), differentially methylated genes (DMGs) and differentially expressed proteins [...] Read more.
During oncogenesis, alterations in driver genes called driver alterations (DAs) modulate the transcriptome, methylome and proteome through oncogenic signaling pathways. These modulatory effects of any DA may be analyzed by examining differentially expressed mRNAs (DEMs), differentially methylated genes (DMGs) and differentially expressed proteins (DEPs) between tumor samples with and without that DA. We aimed to analyze these modulations with 12 common driver genes in Isocitrate Dehydrogenase 1 wildtype glioblastomas (IDH1-W-GBs). Using Cbioportal, groups of tumor samples with and without DAs in these 12 genes were generated from the IDH1-W-GBs available from “The Cancer Genomics Atlas Firehose Legacy Study Group” (TCGA-FL-SG) on Glioblastomas (GBs). For all 12 genes, samples with and without DAs were compared for DEMs, DMGs and DEPs. We found that DAs in PTEN were unassociated with any DEM or DMG in contrast to DAs in all other drivers, which were associated with several DEMs and DMGs. This contrasting PTEN-related property of being unassociated with differential gene expression or methylation in IDH1-W-GBs was unaffected by concurrent DAs in other common drivers or by the types of DAs affecting PTEN. From the lists of DEMs and DMGs associated with some common drivers other than PTEN, enriched gene ontology terms and insights into the co-regulatory effects of these drivers on the transcriptome were obtained. The findings from this study can improve our understanding of the molecular mechanisms underlying gliomagenesis with potential therapeutic benefits. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

12 pages, 844 KiB  
Review
Cerebellar High-Grade Glioma: A Translationally Oriented Review of the Literature
by Ashley L. B. Raghu, Jason A. Chen, Pablo A. Valdes, Walid Ibn Essayed, Elizabeth Claus, Omar Arnaout, Timothy R. Smith, E. Antonio Chiocca, Pier Paolo Peruzzi and Joshua D. Bernstock
Cancers 2023, 15(1), 174; https://doi.org/10.3390/cancers15010174 - 28 Dec 2022
Cited by 7 | Viewed by 3476
Abstract
World Health Organization (WHO) grade 4 gliomas of the cerebellum are rare entities whose understanding trails that of their supratentorial counterparts. Like supratentorial high-grade gliomas (sHGG), cerebellar high-grade gliomas (cHGG) preferentially affect males and prognosis is bleak; however, they are more common in [...] Read more.
World Health Organization (WHO) grade 4 gliomas of the cerebellum are rare entities whose understanding trails that of their supratentorial counterparts. Like supratentorial high-grade gliomas (sHGG), cerebellar high-grade gliomas (cHGG) preferentially affect males and prognosis is bleak; however, they are more common in a younger population. While current therapy for cerebellar and supratentorial HGG is the same, recent molecular analyses have identified features and subclasses of cerebellar tumors that may merit individualized targeting. One recent series of cHGG included the subclasses of (1) high-grade astrocytoma with piloid features (HGAP, ~31% of tumors); (2) H3K27M diffuse midline glioma (~8%); and (3) isocitrate dehydrogenase (IDH) wildtype glioblastoma (~43%). The latter had an unusually low-frequency of epidermal growth factor receptor (EGFR) and high-frequency of platelet-derived growth factor receptor alpha (PDGFRA) amplification, reflecting a different composition of methylation classes compared to supratentorial IDH-wildtype tumors. These new classifications have begun to reveal insights into the pathogenesis of HGG in the cerebellum and lead toward individualized treatment targeted toward the appropriate subclass of cHGG. Emerging therapeutic strategies include targeting the mitogen-activated protein kinases (MAPK) pathway and PDGFRA, oncolytic virotherapy, and immunotherapy. HGGs of the cerebellum exhibit biological differences compared to sHGG, and improved understanding of their molecular subclasses has the potential to advance treatment. Full article
Show Figures

Figure 1

12 pages, 2304 KiB  
Article
Hyperthermia as a Potential Cornerstone of Effective Multimodality Treatment with Radiotherapy, Cisplatin and PARP Inhibitor in IDH1-Mutated Cancer Cells
by Mohammed Khurshed, Elia Prades-Sagarra, Sarah Saleh, Peter Sminia, Johanna W. Wilmink, Remco J. Molenaar, Hans Crezee and Cornelis J. F. van Noorden
Cancers 2022, 14(24), 6228; https://doi.org/10.3390/cancers14246228 - 17 Dec 2022
Cited by 8 | Viewed by 2393
Abstract
Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of [...] Read more.
Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG). Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination and renders IDH1MUT cancer cells sensitive to DNA-repair-inhibiting agents, such as poly-(adenosine 5′-diphosphate–ribose) polymerase inhibitors (PARPi). Hyperthermia increases the efficacy of DNA-damaging therapies such as radiotherapy and platinum-based chemotherapy, mainly by inhibition of DNA repair. In the current study, we investigated the additional effects of hyperthermia (42 °C for 1 h) in the treatment of IDH1MUT HCT116 colon cancer cells and hyperthermia1080 chondrosarcoma cancer cells in combination with radiation, cisplatin and/or a PARPi on clonogenic cell survival, cell cycle distribution and the induction and repair of DNA double-strand breaks. We found that hyperthermia in combination with radiation or cisplatin induces an increase in double-strand breaks and cell death, up to 10-fold in IDH1MUT cancer cells compared to IDH1 wild-type cells. This vulnerability was abolished by the IDH1MUT inhibitor AGI-5198 and was further increased by the PARPi. In conclusion, our study shows that IDH1MUT cancer cells are sensitized to hyperthermia in combination with irradiation or cisplatin and a PARPi. Therefore, hyperthermia may be an efficacious sensitizer to cytotoxic therapies in tumors where the clinical application of hyperthermia is feasible, such as IDH1MUT chondrosarcoma of the extremities. Full article
(This article belongs to the Collection Hyperthermia in Cancer Therapy)
Show Figures

Figure 1

20 pages, 2918 KiB  
Article
The Significance of MGMT Promoter Methylation Status in Diffuse Glioma
by Nikola Jovanović, Milica Lazarević, Vladimir J. Cvetković, Vesna Nikolov, Jelena Kostić Perić, Milena Ugrin, Sonja Pavlović and Tatjana Mitrović
Int. J. Mol. Sci. 2022, 23(21), 13034; https://doi.org/10.3390/ijms232113034 - 27 Oct 2022
Cited by 6 | Viewed by 4039
Abstract
A single-institution observational study with 43 newly diagnosed diffuse gliomas defined the isocitrate dehydrogenase 1 and 2 (IDH1/2) gene mutation status and evaluated the prognostic relevance of the methylation status of the epigenetic marker O6-methylguanine-DNA methyltransferase (MGMT). [...] Read more.
A single-institution observational study with 43 newly diagnosed diffuse gliomas defined the isocitrate dehydrogenase 1 and 2 (IDH1/2) gene mutation status and evaluated the prognostic relevance of the methylation status of the epigenetic marker O6-methylguanine-DNA methyltransferase (MGMT). Younger patients (<50 years) with surgically resected glioma and temozolomide (TMZ) adjuvant chemotherapy were associated with better prognosis, consistent with other studies. The methylation status depends on the chosen method and the cut-off value determination. Methylation-specific PCR (MSP) established the methylation status for 36 glioma patients (19 (52.8%) positively methylated and 17 (47.2%) unmethylated) without relevancy for the overall survival (OS) (p = 0.33). On the other side, real-time methylation-specific PCR (qMSP) revealed 23 tumor samples (54%) that were positively methylated without association with OS (p = 0.15). A combined MSP analysis, which included the homogenous cohort of 24 patients (>50 years with surgical resection and IDH1/2-wildtype diffuse glioma), distinguished 10 (41.6%) methylated samples from 14 (58.4%) unmethylated samples. Finally, significant correlation between OS and methylation status was noticed (p ≈ 0.05). The OS of the hypermethylated group was 9.6 ± 1.77 months, whereas the OS of the unmethylated group was 5.43 ± 1.04 months. Our study recognized the MGMT promoter methylation status as a positive prognostic factor within the described homogenous cohort, although further verification in a larger population of diffuse gliomas is required. Full article
(This article belongs to the Special Issue Epigenetic Mechanisms and Human Pathology 3.0)
Show Figures

Figure 1

18 pages, 3899 KiB  
Article
A Head-to-Head Comparison of 18F-Fluorocholine PET/CT and Conventional MRI as Predictors of Outcome in IDH Wild-Type High-Grade Gliomas
by Ana María Garcia Vicente, Julián Pérez-Beteta, Mariano Amo-Salas, Jesús J. Bosque, Edel Noriega-Álvarez, Ángel María Soriano Castrejon and Víctor M. Pérez-García
J. Clin. Med. 2022, 11(20), 6065; https://doi.org/10.3390/jcm11206065 - 14 Oct 2022
Cited by 1 | Viewed by 2034
Abstract
(1) Aim: To study the associations between imaging parameters derived from contrast-enhanced MRI (CE-MRI) and 18F-fluorocholine PET/CT and their performance as prognostic predictors in isocitrate dehydrogenase wild-type (IDH-wt) high-grade gliomas. (2) Methods: A prospective, multicenter study (FuMeGA: Functional and Metabolic Glioma Analysis) [...] Read more.
(1) Aim: To study the associations between imaging parameters derived from contrast-enhanced MRI (CE-MRI) and 18F-fluorocholine PET/CT and their performance as prognostic predictors in isocitrate dehydrogenase wild-type (IDH-wt) high-grade gliomas. (2) Methods: A prospective, multicenter study (FuMeGA: Functional and Metabolic Glioma Analysis) including patients with baseline CE-MRI and 18F-fluorocholine PET/CT and IDH wild-type high-grade gliomas. Clinical variables such as performance status, extent of surgery and adjuvant treatments (Stupp protocol vs others) were obtained and used to discriminate overall survival (OS) and progression-free survival (PFS) as end points. Multilesionality was assessed on the visual analysis of PET/CT and CE-MRI images. After tumor segmentation, standardized uptake value (SUV)-based variables for PET/CT and volume-based and geometrical variables for PET/CT and CE-MRI were calculated. The relationships among imaging techniques variables and their association with prognosis were evaluated using Pearson’s chi-square test and the t-test. Receiver operator characteristic, Kaplan–Meier and Cox regression were used for the survival analysis. (3) Results: 54 patients were assessed. The median PFS and OS were 5 and 11 months, respectively. Significant strong relationships between volume-dependent variables obtained from PET/CT and CE-MRI were found (r > 0.750, p < 0.05). For OS, significant associations were found with SUVmax, SUVpeak, SUVmean and sphericity (HR: 1.17, p = 0.035; HR: 1.24, p = 0.042; HR: 1.62, p = 0.040 and HR: 0.8, p = 0.022, respectively). Among clinical variables, only Stupp protocol and age showed significant associations with OS and PFS. No CE-MRI derived variables showed significant association with prognosis. In multivariate analysis, age (HR: 1.04, p = 0.002), Stupp protocol (HR: 2.81, p = 0.001), multilesionality (HR: 2.20, p = 0.013) and sphericity (HR: 0.79, p = 0.027) derived from PET/CT showed independent associations with OS. For PFS, only age (HR: 1.03, p = 0.021) and treatment protocol (HR: 2.20, p = 0.008) were significant predictors. (4) Conclusions: 18F-fluorocholine PET/CT metabolic and radiomic variables were robust prognostic predictors in patients with IDH-wt high-grade gliomas, outperforming CE-MRI derived variables. Full article
(This article belongs to the Special Issue 10th Anniversary of JCM - Nuclear Medicine & Radiology)
Show Figures

Figure 1

13 pages, 1460 KiB  
Article
Associations of miR-181a with Health-Related Quality of Life, Cognitive Functioning, and Clinical Data of Patients with Different Grade Glioma Tumors
by Indre Valiulyte, Aiste Pranckeviciene, Adomas Bunevicius, Arimantas Tamasauskas, Hanna Svitina, Inessa Skrypkina and Paulina Vaitkiene
Int. J. Mol. Sci. 2022, 23(19), 11149; https://doi.org/10.3390/ijms231911149 - 22 Sep 2022
Cited by 4 | Viewed by 2015
Abstract
Gliomas are central nervous system tumors with a lethal prognosis. Small micro-RNA molecules participate in various biological processes, are tissue-specific, and, therefore, could be promising targets for cancer treatment. Thus, this study aims to examine miR-181a as a potent biomarker for the diagnosis [...] Read more.
Gliomas are central nervous system tumors with a lethal prognosis. Small micro-RNA molecules participate in various biological processes, are tissue-specific, and, therefore, could be promising targets for cancer treatment. Thus, this study aims to examine miR-181a as a potent biomarker for the diagnosis and prognosis of glioma patients and, for the first time, to find associations between the expression level of miR-181a and patient quality of life (QoL) and cognitive functioning. The expression level of miR-181a was analyzed in 78 post-operative II-IV grade gliomas by quantitative real-time polymerase chain reaction. The expression profile was compared with patient clinical data (age, survival time after the operation, tumor grade and location, mutation status of isocitrate dehydrogenase 1 (IDH1), and promoter methylation of O-6-methylguanine methyltransferase). Furthermore, the health-related QoL was assessed using the Karnofsky performance scale and the quality of life questionnaires; while cognitive assessment was assessed by the Hopkins verbal learning test-revised, trail-making test, and phonemic fluency tasks. The expression of miR-181a was significantly lower in tumors of grade III and IV and was associated with IDH1 wild-type gliomas and a worse prognosis of patient overall survival. Additionally, a positive correlation was observed between miR-181a levels and functional status and QoL of glioma patients. Therefore, miR-181a is a unique molecule that plays an important role in gliomagenesis, and is also associated with changes in patients’ quality of life. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Cancer Development and Treatment)
Show Figures

Figure 1

9 pages, 1442 KiB  
Article
Molecular Profile and Prognostic Value of BAP1 Mutations in Intrahepatic Cholangiocarcinoma: A Genomic Database Analysis
by Alessandro Rizzo, Riccardo Carloni, Angela Dalia Ricci, Alessandro Di Federico, Deniz Can Guven, Suayib Yalcin and Giovanni Brandi
J. Pers. Med. 2022, 12(8), 1247; https://doi.org/10.3390/jpm12081247 - 29 Jul 2022
Cited by 7 | Viewed by 3138
Abstract
Background. Recent years have witnessed the advent of molecular profiling for intrahepatic cholangiocarcinoma (iCCA), and new techniques have led to the identification of several molecular alterations. Precision oncology approaches have been widely evaluated and are currently under assessment, as shown by the recent [...] Read more.
Background. Recent years have witnessed the advent of molecular profiling for intrahepatic cholangiocarcinoma (iCCA), and new techniques have led to the identification of several molecular alterations. Precision oncology approaches have been widely evaluated and are currently under assessment, as shown by the recent development of a wide range of agents targeting Fibroblast Growth Factor Receptor (FGFR) 2, Isocitrate Dehydrogenase 1 (IDH-1), and BRAF. However, several knowledge gaps persist in the understanding of the genomic landscape of this hepatobiliary malignancy. Methods. In the current study, we aimed to comprehensively analyze clinicopathological features of BAP1-mutated iCCA patients in public datasets to increase the current knowledge on the molecular and biological profile of iCCA. Results. The current database study, including 772 iCCAs, identified BAP1 mutations in 120 cases (15.7%). According to our analysis, no differences in terms of overall survival and relapse-free survival were observed between BAP1-mutated and BAP1 wild-type patients receiving radical surgery. In addition, IDH1, PBRM1, and ARID1A mutations were the most commonly co-altered genes in BAP1-mutated iCCAs. Conclusions. The genomic characterization of iCCA is destined to become increasingly important, and more efforts aimed to implement iCCA genomics analysis are warranted. Full article
(This article belongs to the Special Issue Frontiers in Pathogenesis and Therapeutics of Cancer)
Show Figures

Figure 1

15 pages, 2073 KiB  
Article
Diffusion Weighted Imaging in Gliomas: A Histogram-Based Approach for Tumor Characterization
by Georg Gihr, Diana Horvath-Rizea, Patricia Kohlhof-Meinecke, Oliver Ganslandt, Hans Henkes, Wolfgang Härtig, Aneta Donitza, Martin Skalej and Stefan Schob
Cancers 2022, 14(14), 3393; https://doi.org/10.3390/cancers14143393 - 13 Jul 2022
Cited by 18 | Viewed by 2504
Abstract
(1) Background: Astrocytic gliomas present overlapping appearances in conventional MRI. Supplementary techniques are necessary to improve preoperative diagnostics. Quantitative DWI via the computation of apparent diffusion coefficient (ADC) histograms has proven valuable for tumor characterization and prognosis in this regard. Thus, this study [...] Read more.
(1) Background: Astrocytic gliomas present overlapping appearances in conventional MRI. Supplementary techniques are necessary to improve preoperative diagnostics. Quantitative DWI via the computation of apparent diffusion coefficient (ADC) histograms has proven valuable for tumor characterization and prognosis in this regard. Thus, this study aimed to investigate (I) the potential of ADC histogram analysis (HA) for distinguishing low-grade gliomas (LGG) and high-grade gliomas (HGG) and (II) whether those parameters are associated with Ki-67 immunolabelling, the isocitrate-dehydrogenase-1 (IDH1) mutation profile and the methylguanine-DNA-methyl-transferase (MGMT) promoter methylation profile; (2) Methods: The ADC-histograms of 82 gliomas were computed. Statistical analysis was performed to elucidate associations between histogram features and WHO grade, Ki-67 immunolabelling, IDH1 and MGMT profile; (3) Results: Minimum, lower percentiles (10th and 25th), median, modus and entropy of the ADC histogram were significantly lower in HGG. Significant differences between IDH1-mutated and IDH1-wildtype gliomas were revealed for maximum, lower percentiles, modus, standard deviation (SD), entropy and skewness. No differences were found concerning the MGMT status. Significant correlations with Ki-67 immunolabelling were demonstrated for minimum, maximum, lower percentiles, median, modus, SD and skewness; (4) Conclusions: ADC HA facilitates non-invasive prediction of the WHO grade, tumor-proliferation rate and clinically significant mutations in case of astrocytic gliomas. Full article
Show Figures

Figure 1

19 pages, 2510 KiB  
Article
Using AI-Based Evolutionary Algorithms to Elucidate Adult Brain Tumor (Glioma) Etiology Associated with IDH1 for Therapeutic Target Identification
by Caitríona E. McInerney, Joanna A. Lynn, Alan R. Gilmore, Tom Flannery and Kevin M. Prise
Curr. Issues Mol. Biol. 2022, 44(7), 2982-3000; https://doi.org/10.3390/cimb44070206 - 2 Jul 2022
Cited by 8 | Viewed by 3910
Abstract
Adult brain tumors (glioma) represent a cancer of unmet need where standard-of-care is non-curative; thus, new therapies are urgently needed. It is unclear whether isocitrate dehydrogenases (IDH1/2) when not mutated have any role in gliomagenesis or tumor growth. Nevertheless, IDH1 is overexpressed in [...] Read more.
Adult brain tumors (glioma) represent a cancer of unmet need where standard-of-care is non-curative; thus, new therapies are urgently needed. It is unclear whether isocitrate dehydrogenases (IDH1/2) when not mutated have any role in gliomagenesis or tumor growth. Nevertheless, IDH1 is overexpressed in glioblastoma (GBM), which could impact upon cellular metabolism and epigenetic reprogramming. This study characterizes IDH1 expression and associated genes and pathways. A novel biomarker discovery pipeline using artificial intelligence (evolutionary algorithms) was employed to analyze IDH-wildtype adult gliomas from the TCGA LGG-GBM cohort. Ninety genes whose expression correlated with IDH1 expression were identified from: (1) All gliomas, (2) primary GBM, and (3) recurrent GBM tumors. Genes were overrepresented in ubiquitin-mediated proteolysis, focal adhesion, mTOR signaling, and pyruvate metabolism pathways. Other non-enriched pathways included O-glycan biosynthesis, notch signaling, and signaling regulating stem cell pluripotency (PCGF3). Potential prognostic (TSPYL2, JAKMIP1, CIT, TMTC1) and two diagnostic (MINK1, PLEKHM3) biomarkers were downregulated in GBM. Their gene expression and methylation were negatively and positively correlated with IDH1 expression, respectively. Two diagnostic biomarkers (BZW1, RCF2) showed the opposite trend. Prognostic genes were not impacted by high frequencies of molecular alterations and only one (TMTC1) could be validated in another cohort. Genes with mechanistic links to IDH1 were involved in brain neuronal development, cell proliferation, cytokinesis, and O-mannosylation as well as tumor suppression and anaplerosis. Results highlight metabolic vulnerabilities and therapeutic targets for use in future clinical trials. Full article
(This article belongs to the Special Issue Advances in Molecular Pathogenesis Regulation in Cancer)
Show Figures

Figure 1

Back to TopTop