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Abstract: Adult brain tumors (glioma) represent a cancer of unmet need where standard-of-care is
non-curative; thus, new therapies are urgently needed. It is unclear whether isocitrate dehydroge-
nases (IDH1/2) when not mutated have any role in gliomagenesis or tumor growth. Nevertheless,
IDH1 is overexpressed in glioblastoma (GBM), which could impact upon cellular metabolism and
epigenetic reprogramming. This study characterizes IDH1 expression and associated genes and path-
ways. A novel biomarker discovery pipeline using artificial intelligence (evolutionary algorithms) was
employed to analyze IDH-wildtype adult gliomas from the TCGA LGG-GBM cohort. Ninety genes
whose expression correlated with IDH1 expression were identified from: (1) All gliomas, (2) primary
GBM, and (3) recurrent GBM tumors. Genes were overrepresented in ubiquitin-mediated prote-
olysis, focal adhesion, mTOR signaling, and pyruvate metabolism pathways. Other non-enriched
pathways included O-glycan biosynthesis, notch signaling, and signaling regulating stem cell pluripo-
tency (PCGF3). Potential prognostic (TSPYL2, JAKMIP1, CIT, TMTC1) and two diagnostic (MINK1,
PLEKHM3) biomarkers were downregulated in GBM. Their gene expression and methylation were
negatively and positively correlated with IDH1 expression, respectively. Two diagnostic biomarkers
(BZW1, RCF2) showed the opposite trend. Prognostic genes were not impacted by high frequencies
of molecular alterations and only one (TMTC1) could be validated in another cohort. Genes with
mechanistic links to IDH1 were involved in brain neuronal development, cell proliferation, cytokine-
sis, and O-mannosylation as well as tumor suppression and anaplerosis. Results highlight metabolic
vulnerabilities and therapeutic targets for use in future clinical trials.

Keywords: glioblastoma; brain cancer; glioma; biomarker; artificial intelligence; evolutionary
algorithm; isocitrate dehydrogenase 1; TCGA

1. Introduction

Although regarded as “rare”, primary brain tumors (gliomas) are in fact the most
common cause of cancer-related deaths in people under the age of 40 years [1]. The most
prevalent and malignant type of primary brain tumor is a central nervous system (CNS)
WHO Grade IV Glioblastoma (GBM) IDH-wildtype. GBM was formerly designated as
either IDH-wildtype or IDH-mutant; however, the latter subtype has since been reclassified
as Grade IV Astrocytoma IDH-mutant [2]. GBM accounts for 49.1% of all primary malig-
nant brain and CNS tumors in adults [3]. Despite treatment, GBM has one of the lowest
survival rates of all cancers [3]. Standard-of-care for GBM has not changed significantly
since 2005. Therapy is non-curative and involves surgery (maximal safe tumor resection),
radiotherapy, and alkylating chemotherapy with temozolomide (TMZ) [4]. New treatments
trialed for GBM have all failed to markedly improve patient survival [5]. This is due in part
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to the complex biological characteristics of GBM and the diffuse nature of infiltration at the
time of first presentation. Whilst a gross total or macroscopic resection is possible, this is
not a complete microscopic resection. Thus, any post-operative remaining tumor volume
inevitably leads to recurrence. Surgical resection is improving, however, with the wide
adoption of intra-operative real-time tumor visualization using fluorescence [6]. Secondly,
brain tumors are difficult to treat due to the blood–brain barrier (BBB), which separates
the brain from the general blood circulation. Most therapeutic agents cannot diffuse across
the BBB in sufficient quantities to achieve the free brain-to-plasma concentration ratios
required for clinical efficacy [7]. Lastly, gliomas exhibit high levels of inter- and intra-tumor
heterogeneity, including variability at the functional level [8–11]. Consequently, suscepti-
bility of the tumor to treatment is uneven, leading to recurrence driven by radioresistant
glioma stem cell populations [12]. Improved knowledge of glioma tumorigenesis has led to
more precise tumor classification and personalized therapies; however, patient outcomes
have not significantly improved. Thus, glioma remains a cancer of unmet need, and new
targeted therapies are urgently needed.

In cancers including glioma, altered genes in metabolic pathways are key drivers of dis-
ease progression, providing the energy and building blocks for tumor cells to grow [13,14].
Amongst these are the isocitrate dehydrogenases (IDH), enzymes that are involved in cellu-
lar metabolism and DNA repair. As part of the citric acid cycle (TCA), IDH1 and IDH2/3
catalyze the conversion of isocitrate to alpha-ketoglutarate (also known as 2-oxoglutarate)
in the cytoplasm and mitochondrial matrix, respectively. This cycle is completed by the
transfer of electrons from NAD+ to NADPH. Alpha-ketoglutarate (α-KG) also enters into
the TCA cycle as the metabolite of glutamine, whose utilization is enhanced to provide
energy for cancer as part of aerobic glycolysis (i.e., the Warburg effect). Glioma tumors that
are IDH-mutant and IDH-wildtype are biologically distinct, differing in their chromatin
structure, gene expression, disease development and progression, and even prognosis,
where IDH-wildtype status is associated with worse overall survival [15]. For IDH-mutant
tumors, mutations in the active site of IDH1 (R132) and IDH2 (R172, R140) occur early and
are maintained during glioma disease progression. IDH1/2 mutations cause the conversion
of α-KG to the oncometabolite, D-2-hydroxyglutarate (D-2-HG) [16]. Accumulation of D-2-
HG prevents DNA and histone demethylation and impairs cell differentiation and DNA
repair, which all contribute to tumorigenesis in the IDH-mutant glioma phenotype [17,18].
It is not clear if IDH-wildtype (i.e., not mutated) has a role in gliomagenesis; however,
IDH1 overexpression has been demonstrated in silico [10,19,20]. This pattern has also been
confirmed in vivo using immunohistochemical analysis of protein [19]. In vivo studies
have linked IDH1 to disease progression in primary GBM IDH-wildtype [19,20]. Inhibition
of IDH1 using short hairpin (sh)RNAs or chemical molecules hindered GBM cell growth
in vivo and extended the survival of xenograft mice models [19]. Tumor progression and
resistance to cell death are potentially promoted by IDH1 via its efficient fatty acid synthesis
and ROS scavenging activities [21]. In IDH-wildtype gliomas, α-KG is an obligatory co-
factor of dioxygenase enzymes which are important in responses to hypoxia and chromatic
modifications. In particular, α-KG is required for demethylases controlling chromatin
modifications and DNA methylation, which exert effects on cell fate [22]. High intracellular
concentrations of α-KG impact the histone and DNA methylation status of the embryonic
stem cells to maintain their self-renewal and pluripotency. In vivo, primary GBM cell
migration significantly increased after treatments with α-KG [20]. The PI3K/AKT/mTor
pathway was also promoted by α-KG, suggesting that it may rely on an IDH1-α-KG axis.
Lastly, α-KG can transaminate to glutamate, and increased levels of glutamate may pro-
mote tumor progression and invasion in glioma [23,24]. Conversely, in another study,
overexpression of IDH1 in glioma IDH-wildtype did not cause changes in the cell cycle,
apoptosis, and invasion ability; however, it did result in chemotherapy resistance to TMZ
in vivo and in vitro [25]. Thus, improving our knowledge around IDH1 biology could
be important.
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Therapeutic advances to exploit metabolic vulnerabilities via Poly(ADP-ribose) gly-
cohydrolase (PARG), which catalyzes the oligomerization of the essential cofactor NAD+,
are being explored in IDH-mutant cancers. In glioma, PARG inhibition together with TMZ
depletes NAD+ and leads to IDH-mutant cell death [18]. Strategies to target metabolic vul-
nerabilities are even more urgently required in IDH-wildtype GBM. Improving knowledge
around IDH biology and mechanistic links with other genes is an area worthy of study
as it could assist with the identification of new therapeutic targets. In vivo studies have
demonstrated that aerobic glycolysis is insufficient to contribute to cellular anaplerosis and
support GBM tumor cell growth. Therefore, GBM may selectively induce IDH1 mRNA,
protein, and enzymatic activity to support high-grade glioma cells with macromolecules
for rapid expansion [19]. The α-KG produced could lead to epigenetic reprogramming,
altering the expression of metabolic genes supporting tumor growth or tumor suppressors
and oncogenes. To this end, this study aimed to investigate IDH1 expression patterns in
GBM and to further identify genes whose expression is associated with this gene. The study
harnesses the power of artificial intelligence (AI) and “big data” gathered by the Cancer
Genome Atlas (TCGA) as a large assembly of molecular profiles for glioma [8]. AI can
recognize complex patterns in empirical data in a short amount of time and has previously
been successfully applied to large cancer datasets for biomarker discovery [26,27]. Here, we
utilize Atlas Correlation Explorer (ACE) software, which implements AI-based evolution-
ary algorithms for pattern recognition in an exploratory analysis of data [28]. Evolutionary
algorithms apply Darwin’s evolutionary theory of natural selection for problem solving,
quickly extracting new associations from big data. Genes identified as correlated with IDH1
expression were further explored for their biology and their utility as diagnostic and/or
prognostic biomarkers. Biomarkers have a key role in drug development and in person-
alized medicine for patient diagnosis, outcome prediction for therapies, and informing
about disease progression. Results expand our understanding of glioma etiology associ-
ated with IDH1 and altered cellular metabolism, identifying new mechanistic links and
vulnerabilities, which could be targeted in future clinical trials for glioma IDH-wildtype.

2. Materials and Methods
2.1. In Silico Exploration of IDH1 Gene Expression in GBM

IDH1 expression in GBM was investigated using the web-based bioinformatics tool
GlioVis [29]. Overexpression of IDH1 has been previously demonstrated in silico and
in vivo in GBM [10,19,20]. Nevertheless, we sought to confirm this trend and explore it
further. Thus, IDH1 expression in GBM was compared to non-tumor tissue in five published
expression datasets [30–34] (see Supplementary Materials). Furthermore, IDH1 expression
data were examined to determine whether copy number variation and IDH mutation status
could explain the observed patterns in GBM using the TCGA-GBM dataset (RNA-seq) [8].
Lastly, IDH1 expression was compared within the GBM tumor to examine if there were
differences between the leading edge, infiltrating tumor, cellular tumor, microvascular
proliferation, and pseudopalisading cells around necrosis. Tissue for the five different
anatomic structural features was collected using laser microdissection and underwent RNA-
seq as part of the Ivy Glioblastoma Atlas Project (Ivy GAP) [35]. Statistical comparisons
were implemented using t-tests with p-values corrected for multiple hypothesis testing
using the Bonferroni method.

2.2. Data Description and Biomarker Identification Using ACE Software

ACE was used to identify genes with expression that was highly correlated with the
glioma-associated gene, IDH1. Public data from the TCGA-LGG-GBM cohort warehoused
within ACE and labelled as “GBL” were analyzed [8]. Samples were filtered based on age
and IDH status using IDH1/2 mutation data. Only adults (>20 years) with IDH-wildtype
gliomas, that have a worse overall prognosis, were included. Clinical information for
“Cancer Type” and “Sample Type” were used to define three separate analyses: (1) All
gliomas, (2) primary GBM, and (3) recurrent GBM (Table S1). An overview of the glioma
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subtypes based on the 2016 WHO classification system that were analyzed is provided
in Table 1. The majority of tumors were primary, while only 14 were recurrent tumors.
TCGA data for gene expression from the mRNASeq_RSEM_genes_normalized pipeline
was analyzed. All genes were selected as the source measure, and IDH1 as the target.
The ACE evolutionary algorithm analyzes an initial population of random “organisms”
of source and target measures. Several data transformations (natural logarithm, arcsine,
square root) are tested on each measure for their linear regression calculation. The fittest
“individuals” are then selected based on their linear regression (R-squared) and used as the
offspring for the next generation of the model. Additionally, random mutations are carried
out on each organism and if the mutant organism has a higher fitness score than the original
organism, it replaces it in the leaderboard. This process continues for many cycles, until the
leaderboard of top-hits remains mostly consistent. By such time, the evolutionary algorithm
has achieved 100% coverage, which means it has tested every data permutation at least
twice. ACE was run for 12 hours per analysis. This ensured that it achieved 100% coverage
and continued analysis for several hours thereafter. The leaderboard of top-hit genes,
including their linear regression outputs (R-squared, line intercept, line slope) was saved.
Correlations with a higher R-squared indicate a stronger association between target and
source measures. The line slope, depending on its sign, distinguishes between negative or
positive correlations between the source and the target. Results for top-hits were compared
between analyses using Venny 2.1 [36]. The ACE algorithm, like real-world evolution, is
based on randomness at every analytical stage (generation of new individuals, mating, and
mutation). Given that each stage is random, consistent results between repeated analyses
cannot be expected. Nevertheless, each ACE analysis was repeated and the overlap in
top-hit gene lists was examined using Venny 2.1 [36].

Table 1. Overview of the Grade II–IV gliomas (IDH-wildtype) analyzed in this study. The subtypes
listed are from the 2016 WHO classification system used at the time of initial diagnosis recorded by
TCGA. In this study, IDH status was determined using TCGA mutation data for IDH1/2. Also listed,
for comparative purposes only, is the clinical information for IDH status determined using the TCGA
classifier approach (see Supplementary Materials of Ceccarelli et al., 2016 [11]).

IDH Status (Classifier)

Cancer Type Primary/Recurrent Grade N % Wildtype Mutant Unknown

Oligoastrocytoma Primary II 16 2.40 16 0 0
Anaplastic Oligoastrocytoma Primary III 10 1.50 10 0 0
Oligodendroglioma Primary II 10 1.50 10 1 0
Oligodendroglioma Recurrent II 1 0.15 1 0 0
Astrocytoma Primary II 9 1.35 9 0 0
Astrocytoma Recurrent II 1 0.15 1 0 0
Anaplastic Astrocytoma Primary III 47 7.04 47 0 0
Glioblastoma Primary IV 562 84.13 428 23 111
Glioblastoma Recurrent IV 12 1.80 9 3 0

Total 668 100 531 27 111

2.3. Investigation of Genes as Potential Biomarkers and Validation Using GlioVis

The top-hit genes were investigated for their potential as diagnostic and/or prognos-
tic biomarkers in primary and recurrent GBM using the web-based bioinformatics tool
GlioVis [29]. Firstly, the mRNA expression of each gene was compared between non-
tumor and GBM tissue samples using the TCGA-GBM dataset (RNA-seq). Next, mRNA
expression was compared between different glioma subtypes according to the 2016 WHO
classification system (oligodendroglioma, oligoastrocytoma, astrocytoma, GBM) using the
TCGA LGG-GBM dataset (RNA-seq). For both analyses, pairwise t-tests were applied to
compare mRNA expression between group levels with corrections for multiple hypothesis
testing using the Bonferroni method. Potential diagnostic biomarkers were identified as
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having non-overlapping mRNA expression data points between GBM and non-tumor. A
survival analysis was implemented to determine the prognostic potential of top-hit genes
in primary and recurrent GBM (IDH-wildtype). High vs. low mRNA expression was
compared in a Kaplan–Meier curve, using a median split and data from the TCGA-GBM
(RNA-seq/Agilent 4502A). Results of both the Log-rank and Wilcoxon tests were examined
for evidence of statistical significance (p-value < 0.05). The GBM datasets analyzed were
limited to IDH-wildtype status and primary or recurrent depending on which analysis the
gene was identified from.

For those genes identified as prognostic in TCGA-GBM, subsequent survival analyses were
carried out to validate the biomarkers in five additional GBM cohorts in GlioVis [30,31,34,37,38].

2.4. Investigation of Gene Pathways Using DAVID Bioinformatic Resources

Database for Annotation, Visualization, and Integrated Discovery (DAVID) is a
bioinformatics web-based tool for gene-enrichment and functional annotation analysis
(GEFA) [39]. Analyses were carried out on the gene lists obtained from each analysis (All,
GBM NR, GBM R) to measure gene enrichment in annotation terms using DAVID 6.8.
Entrez accession numbers were used as the identifiers for genes. GEFA was implemented
for KEGG pathways using a modified Fisher exact p-value (EASE score) with the default
value of 0.1 for significance. The p-values adjusted for multiple hypothesis testing using
the Bonferroni method were also estimated. All KEGG pathways associated with the genes
in each analysis were also noted from the functional annotation tables.

2.5. Further Investigation of the Potential Biomarkers for Gene Alterations with cBioPortal

The genes identified as potential biomarkers were further investigated for any genetic
alterations that might explain their aberrant expression patterns in GBM compared to non-
tumor tissue. Using cBioPortal [40], an oncoprint was plotted to explore the frequencies
and types of gene mutations, amplifications, and deletions in the genes using the TCGA
Glioblastoma (PanCancer Atlas) dataset (N = 378).

2.6. Further Investigations for Correlations between IDH1 mRNA Expression and Methylation,
and with Protein Expression in GBM Using GlioVis

Using ACE, IDH1 mRNA expression (RSEM normalized) was compared against
methylation by mean data from TCGA. Methylation by mean is estimated as the mean
detection level of CpG methylation probes across a gene. For each potential biomarker gene,
a plot including the linear regression and R-squared was examined to determine if there
was a correlation. In addition, correlations between IDH1 mRNA expression (RNA-seq)
and protein expression in GBM were further examined using GlioVis [29]. Reverse-phase
protein array (RPPA) data from TCGA-GBM were analyzed by comparing two patient
groups split based on the mRNA expression (Log2) data for the specified gene of interest,
IDH1. The average protein expression of the high versus the low mRNA IDH1 expression
groups was examined using the 50% and 75% quartile cut-offs and statistically compared
using a t-test with p-values adjusted for multiple hypothesis testing using the Bonferroni
method. Results for the gene’s proteins (n = 202) are ranked comparing the RPPA scores
with high IDH1 mRNA expression, versus the low group.

3. Results
3.1. IDH1 Expression Patterns in GBM

IDH1 gene expression (mean ± stdev) was significantly overexpressed in adult pri-
mary GBM (11.52 ± 0.59) compared to non-tumor (8.85 ± 0.27) in the TCGA-GBM dataset
(Figure S1a; p-value = 5.4 × 10−16), as previously reported [10,19]. This pattern of IDH1
overexpression in GBM compared to non-tumor was confirmed in five additional GBM
datasets (p-values < 0.05), where fold increases of between 1.15 and 1.3 were observed (see
Table S2). Overexpression of IDH1 in GBM did not appear to be due to copy number varia-
tion, as only 6.62% of GBM had gains (n = 10; Figure S1c). IDH1 expression was significantly
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higher in GBM IDH-wildtype (11.56 ± 0.58) compared to IDH-mutant (10.93 ± 0.43), now
reclassified as grade IV astrocytoma IDH-mutant (Figure S1b, p-value = 2.6 × 10−3). Across
the GBM tumor, IDH1 was differentially expressed, with higher levels observed in the
cellular tumor (6.2 ± 0.69) and lower levels in the leading edge (4.85 ± 0.66; p-values < 0.05;
Table S3). Equivalent levels of IDH1 gene expression were observed for infiltrating tumor
(5.7 ± 0.7), microvascular proliferation (5.56 ± 0.39), and pseudopalisading cells around
necrosis (5.56 ± 0.64; Figure S2).

3.2. Overview of the Gliomas Analyzed by ACE

In total, 668 glioma samples were analyzed (Tables 1 and S1). According to the 2016
WHO classification system used at the time of initial diagnosis, most were primary tumors
that were oligoastrocytoma (N = 16; 2.4%), anaplastic oligoastrocytoma (N = 10; 1.5%),
oligodendroglioma (N = 10; 1.5%), astrocytoma (N = 9; 1.35%), anaplastic astrocytoma
(N = 47; 7.04%), and glioblastoma (N = 562; 84.13%). A smaller number were recurrent
tumors that included oligodendroglioma (N = 1; 0.15), astrocytoma (N = 1; 0.15), and
glioblastoma (N = 12; 1.8%). Using the available TCGA mutation data to filter samples,
all tumors were identified as IDH-wildtype. However, because a large amount of TCGA
LGG-GBM data lacks mutation data for IDH1 (75.8%), it is likely that some mutant samples
could not be excluded from the analysis. This number should have been small, however,
given that only ~12.5% of GBMs are IDH1/2-mutant. These tumors are now reclassified as
Grade IV Astrocytoma IDH-mutant according to the 2021 WHO classification system [2].
For comparative purposes only, we examined TCGA LGG-GBM clinical information for
IDH status from their classifier. In total, 27 tumors were IDH-mutant, while 111 had an
unknown status (Table 1). Thus, there was disagreement between our filtering using the
TCGA mutation data and the classifier information in 20.65% of cases (N = 138).

3.3. Genes Associated with IDH1 in All Gliomas (IDH-Wildtype)

Analysis 1 included both primary and recurrent gliomas from Grades II to IV
(Tables 1 and S1). Of the 668 (85.9%) adult IDH-wildtype tumors analyzed, only 94 (14.1%)
were not GBM. However, this may be an underestimate as some tumors may have been
misdiagnosed/misclassified at the time due to a lack of molecular profiling information
and/or the tumor being assessed on unrepresentative tissue. Nevertheless, the majority of
adult gliomas that are of lower grades are IDH-mutant, so filtering using IDH1/2 mutation
data reduced their number.

In total, 35 genes whose expression correlated with IDH1 expression were identified in
analysis 1 (Table S4). Some 22 genes were downregulated and 13 upregulated in comparison
to IDH1 expression. Top-hits for downregulated genes included TSPYL2 and KIAA1377,
while BZW1 and RFC2 were the top-hits for upregulated genes. Analysis 1 was repeated
and there was an overlap of 56% observed between leaderboards, with many of the top-hit
genes such as TSPYL2, MINK1, EZH1, and JAKMIP1 identified again (results not shown).
GEFA identified pyruvate metabolism as being overrepresented (Table 2). Nine of the other
genes were associated with a range of pathways already established to be linked to cancer.
These included the following KEGG pathways: cell cycle; Hippo signaling pathway; tight
junction; HIF-1 signaling pathway; circadian rhythm; RNA transport, mRNA surveillance
pathway, spliceosome; aminoacyl-tRNA biosynthesis, metabolic pathways; ErbB signaling
pathway; and DNA replication, nucleotide excision repair, and mismatch repair (Table S7).



Curr. Issues Mol. Biol. 2022, 44 2988

Table 2. Results of the gene-enrichment and functional annotation analyses for All gliomas, GBM
NR, and GBM R gene lists. The genes in KEGG pathways that were considered to be “enriched”
were identified using a p-value (EASE score) cut-off of 0.1 for significance. The p-values adjusted
for multiple hypothesis testing using the Bonferroni method are also provided. KEGG terms, the
identifier for each pathway used by the KEGG database are listed from the functional annotation
clustering report. Count is the number of genes involved in the enriched pathway.

Analysis KEGG
Term

KEGG
Pathway Count Gene Name

Entrez
Accession
Numbers

p-Value
(EASE
Score)

p-Value
Adjusted

(Bonferroni)

1. All hsa00620 Pyruvate
metabolism 2 GLO1, PC 5091, 2739 0.057 0.65

2. GBM NR hsa04120 Ubiquitin-mediated
proteolysis 3 FBXO4, UBE2F,

UBE3B

26,272,
140,739,
89,910

0.023 0.69

2. GBM NR hsa04510 Focal adhesion 3
COL4A6,
PPP1CA,
PDPK1

1288, 5499,
5170 0.048 0.92

2. GBM NR hsa04150 mTOR signaling
pathway 2 PDPK1, ULK1 5170, 8408 0.097 0.99

3. GBM R hsa04150 mTOR signaling
pathway 2 PDPK1, ULK1 5170, 8408 0.089 0.99

3.4. Genes Associated with IDH1 in Primary GBM (IDH-Wildtype)

Analysis 2 examined 562 primary non-recurrent GBMs (GBM NR). According to the
TCGA clinical information for IDH status from a classifier, 76.15% (N = 428) were identified
as IDH-wildtype (Table 1). A total of 35 genes were identified to be correlated with IDH1
expression in analysis 2 (Table S5). Some 26 genes were negatively correlated with IDH1,
while 9 genes were positively correlated. Top-hits for downregulated genes included
TSPYL2 and C20orf194, whilst PSMA3 and SNX6 were the top-hits for upregulated genes.
There was an overlap of 75% between the genes in the leaderboard when analysis 2 was
repeated (results not shown). GEFA identified three pathways as being overrepresented:
ubiquitin-mediated proteolysis, focal adhesion, and mTOR signaling pathway (Table 2). Six
of the other genes were associated with some of the following pathways: cytokine–cytokine
receptor interaction; Jak-STAT signaling pathway; viral carcinogenesis; cholinergic synapse;
proteasome; endocytosis; and microRNAs in cancer (Table S8).

3.5. Genes Associated with IDH1 in Recurrent GBM (IDH-Wildtype)

Analysis 3 examined 12 recurrent GBMs (GBM R), 9 of which were also confirmed as
having IDH-wildtype status based on the classifier (75%; Table 1). A total of 34 genes were
found to be associated with IDH1 (Table S6). Some 22 genes were negatively correlated
and 12 genes were positively correlated with IDH1 expression. Top-hits for negatively
correlated genes included MYH15 and C1orf198. Top-hits for positively correlated genes
included TNFAIP6 and FKBP3. The oncogene PDGFA (subunit A of PDGF) was also
found to be correlated with IDH1 in recurrent GBMs (Figure S3). There was little overlap
between results of a repeated analysis (8.8%). Only three genes were identified in the
leaderboard again (PLEKHM3, ULK1, TNFAIP6). GEFA revealed that the mTOR signaling
pathway was also overrepresented by the gene list of GBM recurrent results, similar to
GBM non-recurrent results (Table 2). Other pathways identified to be associated with
the genes included other types of O-glycan biosynthesis, Notch signaling pathway, and
signaling pathways regulating pluripotency of stem cells (PCGF3), for example (Table S9).
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3.6. Further Analysis of Top-Hit Genes Associated with IDH1 as Potential Biomarkers

A total of 90 different genes were identified to be associated with IDH1 expression
across the three ACE analyses. Comparison of the top-hits between all analyses revealed
no genes common to all (Figure S4; Table 3). Ten genes were common between primary and
recurrent GBM results. Only two genes were common between All and both the primary
GBMs and the recurrent GBMs. Genes exclusive to the different analyses are also listed.
For example, TSPYL2, PLEKHM3, and RFC2 were each identified in two analyses, while
CIT and TMTC1 were exclusively identified when examining primary and recurrent GBMs,
respectively (Table 3).

Table 3. Comparisons of the gene lists between the different analyses (All, GBM NR, GBM R)
identified genes common between analyses and those exclusive to each analysis. Genes identified as
potential biomarkers after further analysis are highlighted in bold.

Genes Common Between: Genes Exclusive To:

All
&

GBM NR

All
&

GBM R

GBM NR
&

GBM R
All GBM NR GBM R

TSPYL2
C9orf45

RFC2
PPIA

C20orf194
MECP2

PLEKHM3
C1orf198
MLLT6
HDAC5

ULK1
PDPK1
PSMA3
FKBP3

MYH7B
MINK1
EZH1

TOM1L2
GABPB1

NRG3
CRY2

GRAMD1
JAKMIP1

PC
C5orf53
PLCXD3
SYNE1

TCEAL3
FNBP1
TBRG1
LLGL2

C10orf28
QRSL1

ZNF224
BZW1
DBF4

MED20
ILF2

C6orf153
ZNF410
EIF4A3
TIMP1

ZNF277
GLO1

MPL
LPAL2

FAM189A1
COL4A6
COLQ

CIT
UBE3B
FBRS

KCNQ5
PDZD8

FAM53C
FAT3

IQCF1
MYOD1
DENND
MFSD4
SNX6

C2orf80
NCRNA
PPP1CA
UBE2F
FBXO4
ZEB1

MYH15
HSFX2

ANKRD24
ZDHHC11

TMTC1
EDA

FLYWCH1
TULP4
PER3

PCGF3
ABCC5

KIAA0355
MFNG
FEZF1

TNFAIP6
PDGFA
MEMO1
FAM3C

COMMD1
FAM32A
FAM98C
FAM131B

Further investigations revealed four genes each as potential diagnostic and prognostic
biomarkers (Figures 1–3, S5 and S6). Potential diagnostic biomarkers MINK1, PLEKHM3,
BZW1, and RCF2 had mRNA expression that differed significantly between GBM and
the other glioma subtypes (p-values < 0.001; Figure S5). MINK1 and PLEKHM3 were
significantly downregulated in GBM compared to non-tumor (p-values < 0.001; Figure
S5B,C). The expression of these two genes was negatively correlated to IDH1 expression,
while methylation was positively correlated (Figure S6B,C). BZW1 and RCF2 displayed
the opposite trends; their expression was significantly upregulated in GBM compared to
non-tumor (p-values < 0.001; Figure S5A,D). The expression of these two genes was posi-
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tively correlated with IDH1 expression, while methylation was also positively correlated
(Figure S6A,D).

Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 9 
 

 

Further investigations revealed four genes each as potential diagnostic and prognos-
tic biomarkers (Figures 1–3 and Figures S5 and S6). Potential diagnostic biomarkers 
MINK1, PLEKHM3, BZW1, and RCF2 had mRNA expression that differed significantly 
between GBM and the other glioma subtypes (p-values < 0.001; Figure S5). MINK1 and 
PLEKHM3 were significantly downregulated in GBM compared to non-tumor (p-values 
< 0.001; Figure S5B,C). The expression of these two genes was negatively correlated to 
IDH1 expression, while methylation was positively correlated (Figure S6B,C). BZW1 and 
RCF2 displayed the opposite trends; their expression was significantly upregulated in 
GBM compared to non-tumor (p-values < 0.001; Figure S5A,D). The expression of these 
two genes was positively correlated with IDH1 expression, while methylation was also 
positively correlated (Figure S6A,D). 

Results of the survival analyses identified four potential prognostic biomarkers as 
TSPYL2, JAKMIP1, CIT and TMTC1. Kaplan–Meier curves revealed that the expression 
of these genes significantly affected the survival outcome of GBM (IDH-wildtype) patients 
(p < 0.05; Log-rank test; Figure 2) in the TCGA-GBM cohort. TMTC1 expression was also 
found to be potentially prognostic in recurrent GBM (IDH-wildtype) patients (p < 0.05; 
Log-rank test); however, sample sizes in comparative groups were below the minimum 
of ten required for a valid survival analysis. 

The four genes identified as prognostic in the TCGA cohort were further tested in 
five independent GBM cohorts for validation (Table S10). Only TMTC1 was validated as 
prognostic in another GBM cohort. In five cases, the genes were not represented on the 
microarray so could not be tested. 

TSPYL2, JAKMIP1, CIT, and TMTC1 were all significantly downregulated in GBM 
compared to non-tumor samples (p < 0.001; Figure 1). In addition, their expression in GBM 
was significantly different from the other glioma subtypes (p < 0.05; Figure 1). IDH1 ex-
pression was negatively correlated to TSPYL2, JAKMIP1, CIT, and TMTC1 expression, 
and positively correlated with their methylation for those genes tested (Figure 3). 

Seven of the eight potential diagnostic and prognostic biomarkers were only affected 
by low frequencies of genetic alterations in GBM (>4%; Figure S7). Four were impacted by 
gene amplifications, while seven were impacted by missense mutations. 

  

(a) (b) 

Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 10 
 

 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 1. All pairwise comparisons of mRNA expression between GBM and non-tumor samples 
and also the other glioma subtypes were significantly different (p < 0.001; t-tests) for each of the 
potential prognostic genes: testis-specific protein Y-encoded 2; (a,b) (TSPYL2), Janus kinase and mi-
crotubule-interacting protein 1; (c,d) (JAKMIP1), citron rho-interacting serine/threonine kinase; (e,f) 
(CIT), and transmembrane O-mannosyltransferase targeting cadherins 1; (g,h) (TMTC1). 

Figure 1. All pairwise comparisons of mRNA expression between GBM and non-tumor samples
and also the other glioma subtypes were significantly different (p < 0.001; t-tests) for each of the
potential prognostic genes: testis-specific protein Y-encoded 2; (a,b) (TSPYL2), Janus kinase and
microtubule-interacting protein 1; (c,d) (JAKMIP1), citron rho-interacting serine/threonine kinase;
(e,f) (CIT), and transmembrane O-mannosyltransferase targeting cadherins 1; (g,h) (TMTC1).



Curr. Issues Mol. Biol. 2022, 44 2991Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 11 
 

 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 2. Results of the survival analysis with risk tables and Kaplan–Meier curves comparing over-
all survival of patients with high vs. low mRNA expression (median split). Each of the genes (a) 
TSPYL2; (b) JAKMIP1; (c) CIT; and (d) TMTC1 were prognostic for GBM (IDH-wildtype; p < 0.001; 
Log-rank test). TMTC1 was also prognostic for recurrent GBM (IDH-wildtype; p < 0.05; Log-rank 
test; not shown). 

 

 

(a) (b) 

  

(c) (d) 

Figure 2. Results of the survival analysis with risk tables and Kaplan–Meier curves comparing
overall survival of patients with high vs. low mRNA expression (median split). Each of the genes (a)
TSPYL2; (b) JAKMIP1; (c) CIT; and (d) TMTC1 were prognostic for GBM (IDH-wildtype; p < 0.001;
Log-rank test). TMTC1 was also prognostic for recurrent GBM (IDH-wildtype; p < 0.05; Log-rank test;
not shown).

Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 11 
 

 

 

 

(a) (b) 

 

 

(c) (d) 

Figure 2. Results of the survival analysis with risk tables and Kaplan–Meier curves comparing over-
all survival of patients with high vs. low mRNA expression (median split). Each of the genes (a) 
TSPYL2; (b) JAKMIP1; (c) CIT; and (d) TMTC1 were prognostic for GBM (IDH-wildtype; p < 0.001; 
Log-rank test). TMTC1 was also prognostic for recurrent GBM (IDH-wildtype; p < 0.05; Log-rank 
test; not shown). 

 

 

(a) (b) 

  

(c) (d) 

Figure 3. Cont.



Curr. Issues Mol. Biol. 2022, 44 2992Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 12 
 

 

 
 

(e) (f) 

 
 

(g) (h) 

Figure 3. Correlations of IDH1 gene expression with expression and methylation data for TSPYL2 
(a) and TSPYL1* (b); JAKMIP1 (c,d); CIT (e,f); and TMTC1 (g,h). The linear regression line is pro-
vided as well as the R-squared “Score”. Parentheses indicate that transformed data (natural loga-
rithm (l), arcsine (a), or square root (s)) provided a higher correlation in ACE. *Methylation data 
were not available for TSPYL2 in TCGA-GBM dataset, so TSPYL1 is presented instead. 

3.7. Genes whose Protein Expression is Associated with IDH1 Gene Expression 
No protein results overlapped with the gene results from the ACE analysis. In addi-

tion to the methods differing fundamentally, the GBM cohort tested in the protein analysis 
was not IDH-wildtype-specific and only ~1% of genes/proteins were tested compared to 
the ACE analysis (n = 202). Thus, there were technical differences. Nevertheless, the top 
ten proteins that correlated with IDH1 mRNA expression in order were EGFR, Bax, S6, 
Chk2_pT68, eEF2K, GATA6, N.Cadherin, Stathmin, Rictor_pT1135, and Cyclin_D1 (Table 
S11). The top two proteins, EGFR and Bax, were significantly correlated with IDH1 mRNA 
expression (p-value adjusted < 0.05) when examining a 75% quartile cut-off between 
groups. Also listed within the top 33 proteins were beta.Catenin which may be associated 
with JAKMIP1, and P.Cadherin and E.Cadherin, which may be associated with TMTC1 
(see Discussion). 

4. Discussion 
Brain tumor patients with GBM have a short survival rate; treatments are non-cura-

tive and consequently, tumors almost always recur. New therapeutic options are therefore 
urgently needed. Overexpression of IDH1 has been linked to disease progression in pri-
mary GBMs IDH-wildtype in vivo [20]. This study provides additional in silico evidence 
of IDH overexpression in GBM, which did not appear to be related to copy number gains 
and was comparatively higher in GBM IDH-wildtype compared to Grade IV Astrocytoma 
IDH-mutant. It was also interesting to note that IDH1 was differentially expressed across 
regions of the GBM tumor. Higher levels were observed in the cellular tumor and lower 
levels in the leading edge, which is involved in migration and invasion. In this study, a 
novel AI approach was applied to TCGA data to elucidate etiology associated with IDH1 
and advance biomarker discovery in GBM. Expression measures for over 20,000 

Figure 3. Correlations of IDH1 gene expression with expression and methylation data for TSPYL2 (a)
and TSPYL1 * (b); JAKMIP1 (c,d); CIT (e,f); and TMTC1 (g,h). The linear regression line is provided
as well as the R-squared “Score”. Parentheses indicate that transformed data (natural logarithm (l),
arcsine (a), or square root (s)) provided a higher correlation in ACE. * Methylation data were not
available for TSPYL2 in TCGA-GBM dataset, so TSPYL1 is presented instead.

Results of the survival analyses identified four potential prognostic biomarkers as
TSPYL2, JAKMIP1, CIT and TMTC1. Kaplan–Meier curves revealed that the expression of
these genes significantly affected the survival outcome of GBM (IDH-wildtype) patients
(p < 0.05; Log-rank test; Figure 2) in the TCGA-GBM cohort. TMTC1 expression was also
found to be potentially prognostic in recurrent GBM (IDH-wildtype) patients (p < 0.05;
Log-rank test); however, sample sizes in comparative groups were below the minimum of
ten required for a valid survival analysis.

The four genes identified as prognostic in the TCGA cohort were further tested in
five independent GBM cohorts for validation (Table S10). Only TMTC1 was validated as
prognostic in another GBM cohort. In five cases, the genes were not represented on the
microarray so could not be tested.

TSPYL2, JAKMIP1, CIT, and TMTC1 were all significantly downregulated in GBM
compared to non-tumor samples (p < 0.001; Figure 1). In addition, their expression in
GBM was significantly different from the other glioma subtypes (p < 0.05; Figure 1). IDH1
expression was negatively correlated to TSPYL2, JAKMIP1, CIT, and TMTC1 expression,
and positively correlated with their methylation for those genes tested (Figure 3).

Seven of the eight potential diagnostic and prognostic biomarkers were only affected
by low frequencies of genetic alterations in GBM (>4%; Figure S7). Four were impacted by
gene amplifications, while seven were impacted by missense mutations.

3.7. Genes Whose Protein Expression Is Associated with IDH1 Gene Expression

No protein results overlapped with the gene results from the ACE analysis. In addition
to the methods differing fundamentally, the GBM cohort tested in the protein analysis
was not IDH-wildtype-specific and only ~1% of genes/proteins were tested compared
to the ACE analysis (n = 202). Thus, there were technical differences. Nevertheless, the
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top ten proteins that correlated with IDH1 mRNA expression in order were EGFR, Bax,
S6, Chk2_pT68, eEF2K, GATA6, N.Cadherin, Stathmin, Rictor_pT1135, and Cyclin_D1
(Table S11). The top two proteins, EGFR and Bax, were significantly correlated with IDH1
mRNA expression (p-value adjusted < 0.05) when examining a 75% quartile cut-off between
groups. Also listed within the top 33 proteins were beta.Catenin which may be associated
with JAKMIP1, and P.Cadherin and E.Cadherin, which may be associated with TMTC1
(see Section 4).

4. Discussion

Brain tumor patients with GBM have a short survival rate; treatments are non-curative
and consequently, tumors almost always recur. New therapeutic options are therefore ur-
gently needed. Overexpression of IDH1 has been linked to disease progression in primary
GBMs IDH-wildtype in vivo [19]. This study provides additional in silico evidence of IDH
overexpression in GBM, which did not appear to be related to copy number gains and was
comparatively higher in GBM IDH-wildtype compared to Grade IV Astrocytoma IDH-
mutant. It was also interesting to note that IDH1 was differentially expressed across regions
of the GBM tumor. Higher levels were observed in the cellular tumor and lower levels in
the leading edge, which is involved in migration and invasion. In this study, a novel AI
approach was applied to TCGA data to elucidate etiology associated with IDH1 and ad-
vance biomarker discovery in GBM. Expression measures for over 20,000 genes/transcripts
from 668 glioma IDH-wildtype tumors were analyzed in an exhaustive search using evolu-
tionary algorithms. ACE software identified the strongest correlations (positive/negative)
in expression between IDH1 and all other genes within this large dataset. By applying
Darwin’s evolutionary theory of natural selection for problem solving, results for three
analyses using IDH-wildtype subsets (All gliomas, Primary GBM, Recurrent GBM) were
obtained in a relatively short amount of time. In all, 90 genes that correlated with IDH1
expression were identified and those common or exclusive to the different subsets are
reported. Genes that show potential as informative biomarkers and were common between
analyses could potentially be used in diagnostic tests for early detection and as general
targets for therapies. Genes exclusive to particular disease stages could be specific targets
for therapies. All genes were further explored for their biology. Only nine genes were
enriched in four core pathways, despite thirty-one genes being associated with KEGG
pathways (see Supplementary Materials). Of these, only one gene (PDGFA) was a member
of the known pathways involved in glioma disease development, according to DAVID
(Figure S3). Thus, the majority of genes identified as being correlated with IDH1 expression
were not associated with particular KEGG pathways.

Genes associated with IDH1 in both primary and recurrent GBMs IDH-wildtype
were enriched for mTOR signaling (PDPK1, ULK1). In GBM, IDH1 overexpression leads
to increased α-KG and primary GBM cell migration in vivo, which then promotes the
PI3K/AKT/mTOR pathway [20]. Glycolytic reprogramming and GBM progression via
PDPK1-dependent activation of PI3K/AKT/mTOR pathway is regulated by the tran-
scription factor POU class homeobox 2 (POU2F2) [41]. The second gene highlighted was
Unc-51-like autophagy-activating kinase 1 (ULK1). ULK1 is involved in autophagy (i.e.
cell degradation) induction and has been linked to the development of neurogenerative
disease [42]. In glioma, autophagy induces TMZ resistance but phosphorylation of ULK1
by T-LAK cell-originated protein kinase (TOPK), an upstream oncokinase, reduced au-
tophagy and increased sensitivity of glioma cells to TMZ [43]. Inhibition of ULK1 restored
radiosensitivity in human IDH-mutant but not IDH-wildtype glioma [44].

Analysis of All glioma tumors highlighted two genes involved in pyruvate metabolism
that were associated with IDH1; these were glyoxalase I (GLO1) and pyruvate carboxy-
lase (PC). Overexpression of GLO1 in glioma cell lines was associated with tumor cell
proliferation, migration, and invasion [45]. Inhibition of GLO1 in GBM cell lines increased
DNA-AGEs, stimulated RAGE expression, and induced apoptosis [46]. GBM relies on PC
for the glucose-dependent replenishment of the TCA cycle with intermediates, a process
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known as anaplerosis [47]. The tumor suppressor NDRG2 inhibits PC expression in IDH-
mutant and suppresses glioma growth but this was not observed for IDH-wildtype [48].
Furthermore, NDRG2 induces the ubiquitination and degradation of PC under glutamine
deficiency, and NDRG2 loss leads to increased PC and PC-dependent anaplerosis and
glioma tumorigenesis [48]. In vivo studies have demonstrated that aerobic glycolysis is
insufficient to contribute to cellular anaplerosis and support GBM tumor cell growth [19].
Therefore, GBM may selectively induce IDH1 mRNA, protein, and enzymatic activity
to support high-grade glioma cells with macromolecules for rapid expansion via these
genes and pyruvate metabolism. These genes may represent metabolic vulnerabilities for
targeting to inhibit anaplerosis and consequently inhibit GBM tumor growth.

Genes identified for primary GBM were enriched for several focal adhesions (COL4A6,
PPP1CA, PDPK1), which can involve signaling molecules as well as structural links between
membrane receptors (integrins) and the actin cytoskeleton. PDPK1 was also identified as a
gene enriched in the mTOR signaling pathway. In zebrafish, collagen type IV alpha 6 chain
(COL4A6) controls axon formation in glutamergic neurons (that produce glutamate) in the
cerebellum by establishing and maintaining the integrity of the basement membrane [49].
In humans, perhaps a similar process occurs, influenced by IDH1 overexpression and
increased α-KG levels; however, this would need to be experimentally investigated. Protein
phosphatase 1 catalytic subunit alpha (PPP1CA) is a cell cycle regulator in the P53 network.
In neuroblastoma cells, PPP1CA was repressed by miR-125b while its antisense RNA
derepressed PPP1CA expression in human neural progenitor cells [50]. NF-κB pathway is
constitutively activated by miR-125b, which in turn confers TMZ resistance in GBM [51].

For primary GBM, genes identified were also enriched for ubiquitin-mediated pro-
teolysis (FBXO4, UBE2F, UBE3B), which plays an important role in cellular processes via
selective protein degradation. F-box protein 4 (FBXO4) is one of the four subunits that
make up the ubiquitin protein ligase complex, while ubiquitin-conjugating enzyme E2
F (putative) (UBE2F) and ubiquitin protein ligase E3B (UBE3B) are enzymes involved in
the transfer and acceptance of ubiquitin to the targeted substrate. In esophageal cancer,
dysregulation of the FBXO4-cyclin D1-RB axis promotes glutamine addiction and high-
lights a therapeutic weakness for overcoming CDK4/6 inhibitor resistance [52]. Thus, in
GBM there may be a link between FBXO4 and α-KG that contributes to the TCA via glu-
tamine metabolism. Regardless, E3 ubiquitin ligases are involved in apoptosis, maintaining
glioma stem cells, and are emerging as abundant and promising targets for therapeutic
interventions in GBM [53]. Other genes correlated with IDH1 identified in the recurrent
GBM include polycomb group ring finger 3 (PCGF3). This gene is involved in signaling
pathways regulating stem cells. PCGF3/5 positively regulates transcriptional activity in
embryonic stem cells impacting the pluripotency factor TEX10 and they are also necessary
for proper mesodermal lineage differentiation [54]. As high concentration levels of α-KG
serve to maintain self-renewal of embryonic stem cells [22], perhaps they also influence
PCGF3 in IDH-wildtype glioma stem cells.

Amongst the 90 genes identified in the biomarker discovery, eight displayed signifi-
cant differences in mRNA expression in GBM compared to non-tumor and other glioma
subtypes. The mRNA expression levels of four genes (TSPYL2, JAKMIP1, CIT, and TMTC1)
significantly affected GBM patient outcome in the TCGA, as revealed by survival analyses
(Figure 2). Only TMTC1 could be validated as prognostic in another GBM dataset, despite
testing all genes in five independent datasets. Each of these potential prognostic biomarkers
was negatively correlated with IDH1 and significantly downregulated in GBM compared
to non-tumor. The methylation of JAKMIP1, CIT, and TMTC1 was positively correlated to
IDH1 expression, suggesting that they are epigenetically reprogrammed in GBM. Methy-
lation data were not available for testing TSPYL2; however, methylation of TSPYL1 was
also positively correlated with IDH1 expression and it is documented for TSPYL2 also
(see later). Two diagnostic (MINK1, PLEKHM3) biomarkers showed similar trends in
expression while a further two potential diagnostic biomarkers (BZW1, RCF2) showed the
opposite trend. Adopting a precision medicine approach, these genes may prove useful for
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patient stratification for determining treatment options. Given that the prognostic genes
have aberrantly downregulated mRNA expression that negatively impacts patient survival,
targeting these gene’s core pathways to revert mRNA back to normal levels perhaps could
be a future treatment strategy.

Testis-specific protein Y-encoded 2 (TSPYL2) was the top-hit gene most negatively
correlated with IDH1 expression in the All gliomas and primary GBM analyses. Survival
analysis indicated that TSPYL2 is prognostic in GBM (IDH-wildtype). The TSPYL family is
made up of nucleosome assembly proteins that are linked to several neurodevelopmental
disorders [55]. TSPYL2 is recruited to promoters of specific EZH2 target genes in neu-
rons, and enhances their expression for proper neuronal maturation and function [56].
When DNA is damaged, TSPYL2 plays an important role in inhibiting cell proliferation
by stimulating P53 acetylation and P53-dependent cell death [57]. In gliomas, some mem-
bers including TSPYL2 are downregulated due to epigenetic silencing and inhibit tumor
growth [58]. Similarly, in the TCGA data, TSPYL2 mRNA expression was significantly
downregulated in GBM compared to non-tumor. TSPYL2 is an essential component of
the REST complex which is a tumor suppressor regulated by TGF-β signaling, which in
turn can induce proliferative cell arrest [59]. Thus, downregulation of TSPYL2 may cause
resistance to proliferative arrest in GBM tumors. TSPYL2 could potentially be an important
target for therapies to slow the growth of GBM tumors.

Janus kinase and microtubule-interacting protein 1; marlin-1 (JAKMIP1) was identified
as being associated with IDH1 expression in the All gliomas analysis. This microtubule-
associated protein is normally highly expressed in the brain and is involved in the neuronal
cytoskeleton [60]. However, in GBM, JAKMIP1 is downregulated, which can lead to
abnormal formation of the brain cortex [61]. Dysregulation of microtubule-associated
proteins such as JAKMIP1 is associated with neurodevelopmental diseases (see Lasser
et al. for review) [62]. In lung cancer, JAKMIP1 overexpression has been implicated in cell
proliferation through activating the Wnt/β-catenin pathway [63]. β-catenin was amongst
the top proteins correlated with IDH1 expression. Further studies are needed to investigate
the association of JAKMIP1 and IDH1 in GBM.

Citron rho-interacting serine/threonine kinase; CIT-K (CIT) was identified as being
associated with IDH1 expression in the primary GBM analysis. CIT was downregulated in
GBM and is prognostic for survival. CIT is involved in cell division to promote efficient
cytokinesis. Silencing of CIT with microRNAs inhibits growth of medulloblastoma cells and
induces cytokinesis failure, leaving the tumor cells more susceptible to chemotherapy [64].
CIT may be a promising target for a new therapy to slow GBM tumor growth. Experiments
involving CIT gene silencing in GBM cell lines and in gene-knockout mice could be carried
out to understand what effect the gene has on brain tumor growth or other.

Lastly, TMTC1 was identified as being associated with IDH1 expression in the recur-
rent GBM analysis. TMTC1 was downregulated in GBM and is prognostic for survival.
TMTCs are enzymatically active sugar transferases belonging to the GT-C/PMT super-
family [65]. They are involved in the post-translational modification of cadherins, with
O-linked mannose glycans, a process known as O-mannosylation [66]. Dysregulation of
the tumor suppressor E-cadherin is an early molecular event in cancer and the interplay be-
tween O-mannosylation and N-glycosylation is a new mechanism responsible [67]. Genetic
variants of TMTC1 have been linked to brain disorders such as schizophrenia, and their
altered glycosylation may contribute to disease development [68]. Similarly, mutations
in TMTC3 can cause severe brain malformation that affects neurons and glial cells [69].
The murine homolog of TMTC3, mSMILE, results in altering of the TGF-β signaling in
embryonic fibroblasts [70]. TMTC3 acts as a binding partner for protein disulfide isomerase
family A member 3 (PDIA3) and this gene’s expression plays a role in GBM-mediated pro-
tumor activation of microglia [71]. P.Cadherin and E.Cadherin, which may be associated
with TMTC1, were amongst the top proteins correlated with IDH1 expression. TMTC1
and the O-mannosylation pathway could be further explored to understand whether this
pathway is involved in gliomagenesis.
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Results of the analysis presented here identified basic leucine zipper and W2 domains
1 (BZW1), misshapen-like kinase 1 (MINK1), pleckstrin homology domain containing M3
(PLEKHM3), and replication factor C subunit 2 (RFC2) as potential diagnostic biomarkers
in GBM. These genes may be useful for non-invasive liquid-biopsy testing for GBM. RFC2
to our knowledge has not been previously associated with glioma. This gene is involved in
DNA replication and mismatch repair and is thought to have a role in the proliferation and
metastasis of cancer cells [72]. In this study, PLEKHM3 was significantly downregulated
in GBM compared to non-tumor, and its expression and methylation were negatively and
positively correlated, respectively, with IDH1 expression. PLEKHM3 may act as a scaffold
protein for AKT1. In ovarian cancer, PLEKHM3 is similarly downregulated, where it
forms circular RNAs (circ-PLEKHM3) that regulate gene expression (similar to microRNAs)
and act as a tumor suppressor [73]. Previously in GBM, the pleckstrin homology domain
interacting protein (PHIP) was localized in the tumor leading edge and was identified as a
key driver of migration, invasion, and angiogenesis [74]. Here, a comparison of gene ex-
pression between PLEKHM3 and IDH1 across the GBM tumor revealed the opposite trends,
whereby PLEKHM3 was upregulated in the leading edge and downregulated in the cellular
tumor (see Supplementary Materials). Potentially, PLEKHM3 may have a similar tumor
suppressor role in GBM that is influenced by IDH1 or α-ketoglutarate; however, this would
need to be experimentally investigated. From a translational perspective, experiments
have shown that curcumin (turmeric’s active component) can restrain proliferation and
facilitate apoptosis in ovarian cancer by regulating the circ-PLEKHM3/miR-320a/SMG21
axis [75]. Curcumin has previously been suggested to have a potential therapeutic role in
GBM; however, no delivery system exists for testing it on brain tumors.

Lastly, it was interesting to note that EGFR protein levels correlated most strongly with
IDH1 mRNA expression in GBM. EGFR is often genetically altered (amplified, mutated)
in GBM. Whilst pre-clinical tests of EGRF inhibitors against GBM were promising, they
lacked efficacy in GBM clinical trials but were effective in lung cancer trials. Perhaps their
utility in combinatorial therapies targeting both the EGFR and STAT3 signaling pathways
may hold better therapeutic promise for GBM [76]. The approach taken in this study has
a number of limitations. The analysis of recurrent GBM IDH-wildtype tumors herein
involved 12 samples, as TCGA data only have a very small proportion of recurrent GBM
samples (2.1%). Thus, larger datasets are needed for recurrent GBM in order to facilitate
translational discoveries. Results obtained here for recurrent GBM should be confirmed
in a larger cohort. Lastly, in the GEFA analysis, only half of the genes analyzed were
associated with a KEGG pathway. Those genes identified which have not been functionally
characterized may be of interest for further GBM studies.

In conclusion, this study highlights a novel pipeline for biomarker discovery imple-
menting AI-based evolutionary algorithms. Results provide new information on IDH-
wildtype glioma etiology. The potential prognostic and diagnostic markers identified
should be explored pre-clinically as targets for GBM therapies. Amongst these, CIT and
TMTC1 have not been previously proposed for clinical utility. In addition, the mTOR sig-
naling pathway was highlighted in this study. mTOR inhibitors are used as a maintenance
treatment to control subependymal giant cell astrocytoma (SEGA) tumors in tuberous
sclerosis [77]. Given that these drugs are in clinical use in this patient cohort, future
pre-clinical studies could try to unlock these potential mechanisms of vulnerability in
GBM patients to enable their use. Testing of inhibitors against the identified biomarker
genes could be achieved using pre-clinical tumor models for glioma as in vivo and in vitro
experiments [78]. For example, patient-derived GBM cell lines can be grown as 3D neuro-
spheres and these can be tested in assays to determine if the gene inhibitors can reduce
tumor cellular proliferation and facilitate apoptosis. Similarly, experimentation using
pre-clinical animal models such as murine xenograft models can be established using
patient-derived GBM tumors and tested to determine whether the inhibitors can reduce
tumor growth and prolong overall survival of the pre-clinical models. These models
may provide limited insight compared to patient-derived cancer organoid models (PDOs),
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which can more closely recapitulate the parental tumor tissue. In future, PDOs will be
more routinely utilized for testing for precision oncology [79]. All assays could also be
carried out with radiation together with radiosensitizers and/or other combinations of
chemotherapies such as TMZ that are already used in the standard-of-care of brain tumors.
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