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Simple Summary: High-grade glial cancers typically arise in the cerebral hemispheres and only
rarely elsewhere in the brain. Historically, such tumors arising in the cerebellum have been handled
clinically as per their cerebral counterparts. However, recent epidemiological research and molecular
analyses have demonstrated that these tumors are different in ways that are likely to be relevant with
regard to therapeutic intervention(s). Accordingly, this review charts the landscape of this evidence
and highlights emerging translational opportunities for treatments of high-grade cerebellar gliomas.

Abstract: World Health Organization (WHO) grade 4 gliomas of the cerebellum are rare entities
whose understanding trails that of their supratentorial counterparts. Like supratentorial high-grade
gliomas (sHGG), cerebellar high-grade gliomas (cHGG) preferentially affect males and prognosis
is bleak; however, they are more common in a younger population. While current therapy for
cerebellar and supratentorial HGG is the same, recent molecular analyses have identified features
and subclasses of cerebellar tumors that may merit individualized targeting. One recent series of
cHGG included the subclasses of (1) high-grade astrocytoma with piloid features (HGAP, ~31% of
tumors); (2) H3K27M diffuse midline glioma (~8%); and (3) isocitrate dehydrogenase (IDH) wildtype
glioblastoma (~43%). The latter had an unusually low-frequency of epidermal growth factor receptor
(EGFR) and high-frequency of platelet-derived growth factor receptor alpha (PDGFRA) amplification,
reflecting a different composition of methylation classes compared to supratentorial IDH-wildtype
tumors. These new classifications have begun to reveal insights into the pathogenesis of HGG in
the cerebellum and lead toward individualized treatment targeted toward the appropriate subclass
of cHGG. Emerging therapeutic strategies include targeting the mitogen-activated protein kinases
(MAPK) pathway and PDGFRA, oncolytic virotherapy, and immunotherapy. HGGs of the cerebellum
exhibit biological differences compared to sHGG, and improved understanding of their molecular
subclasses has the potential to advance treatment.

Keywords: cerebellum; glioblastoma (GBM); high-grade glioma (HGG); immunotherapy; experimen-
tal therapeutics

1. Introduction

Cerebellar high-grade gliomas (cHGG) (WHO grade 4) account for ~1% of central
nervous system HGG [1]. This is disproportionately less frequent relative to the number of
glial cells in the cerebellar parenchyma as compared to their supratentorial counterparts [2],
and suggests a relative biological resistance for cerebellar cells to undergo malignant
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transformation. Indeed, over past decades the primary question regarding cHGG has
been: in what way are cHGGs biologically different as compared to supratentorial high-
grade gliomas (sHGG)? Unfortunately, treatments have not differed between cHGG and
sHGG and neither have outcomes been obviously different. However, entering a time
of genomically targeted treatments, in which the uniformity of tumors is conceptually
discarded and each malignancy is considered as its own disease, the unique molecular
characteristics of cHGG have come into perspective. Recognizing this, we present a review
on the epidemiology, molecular characteristics, and treatment of cHGG as new therapeutic
avenues diverge from sHGG.

1.1. Clinical Epidemiology

Up to the mid-20th century, the very existence of cHGG was questioned, due to its
low incidence [3], and likely due to suboptimal visualization of posterior fossa structures
by CT. Subsequent estimates of prevalence in this region are that approximately 1% of
all HGG are principally cerebellar in location (Figure 1) [1]. A small number of modern
papers provide relevant epidemiological information comparing sHGG to cHGG (Table 1).
Major differences in male-female ratio and overall survival are not evident; however, the
average age is lower for cerebellar patients. For example, analysis of the US Surveillance,
Epidemiology, and End Results (SEER) registry—offering the largest adult cohort of these
tumors—finds 36% of patients are over 65 and 24% below 40 years-of-age, compared
to 46% and 7%, respectively, in supratentorial locations [4]. Although multifocality has
been observed at a high rates (21–33%) in cHGG [5,6], other reports find a similar rate to
sHGG [7], where an incidence of 5% is typical. Greater overall survival at 2 years has been
reported for cHGG (e.g., 22 vs. 8%) [4]. However, this is controversial as other authors
report worse prognosis (e.g., 12 vs. 32% at 2 years) [5]. This finding may be a composite
of an increased propensity for brainstem invasion but less aggressive tumor progression,
which may partially offset each other [6,8].

Table 1. Comparative summary of cerebellar and supratentorial high grade glioma epidemiology.

Author Study Location Male/% Age/Years MOS/Months

Babu et al. [9]

SEER database
analysis

Supratentorial 59.5 µ = 61.8 * 7

Cerebellar 58.1 µ = 56.6 * 8

Adams et al. [1]
Supratentorial n.s.

p = 0.87
µ (σ) = 61 (13) * 8 †

Cerebellar µ (σ) = 58 (16) * 9 †

Jeswani et al. [4]
Supratentorial n.r. 7.4% < 40 * 8 †

Cerebellar 62 23.5% < 40 * 7 †

Cho et al. [10] Single cohort
Supratentorial 54.5 η = 55.3 16

Cerebellar 64.1 η = 56.9 21

Picart et al. [5] Single cohort
Supratentorial 60 * µ (σ) = 63.2 (13.3) * 14 *

Cerebellar 52.9 * µ (σ) = 53.4 (15.7) * 6 *

* Significant difference between supratentorial and cerebellar. † Marginally significant difference calculated after
adjusting for stratification variables. MOS = median overall survival, SEER = surveillance epidemiology and end
results program, n.s. = not significant, n.r. = not reported, µ = mean, σ = standard deviation, η = median.
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Figure 1. Epidemiology of cerebellar high-grade glioma. Reports are plotted against publication 
date and identified by the first author. (A) median age. (B) percentage of high-grade glioma tumors 
which are cerebellar. (C) median overall survival. (D) percentage of male patients. Older reports 
where high-grade glioma explicitly includes grade 3 and 4 tumors are noted. For (B,D), a pooled 
average (sky blue) of the reports is given at year 2022. N = number of patients; SEER = Surveillance, 
Epidemiology, and End Results; HGG = high-grade glioma. * Weighted average of Adams et al. [1], 
Jeswani et al. [4], and Babu et al. [9]. 
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Figure 1. Epidemiology of cerebellar high-grade glioma. Reports are plotted against publication
date and identified by the first author. (A) median age. (B) percentage of high-grade glioma tumors
which are cerebellar. (C) median overall survival. (D) percentage of male patients. Older reports
where high-grade glioma explicitly includes grade 3 and 4 tumors are noted. For (B,D), a pooled
average (sky blue) of the reports is given at year 2022. N = number of patients; SEER = Surveillance,
Epidemiology, and End Results; HGG = high-grade glioma. * Weighted average of Adams et al. [1],
Jeswani et al. [4], and Babu et al. [9].

1.2. Molecular Characterization and Features

The rarity of HGG in the cerebellum has stimulated authors to reflect further on bio-
logical differences. Several theories have been advanced to explain this relative resistance
to gliomagenesis in the cerebellum, such as the depletion of substance P in the adult cerebel-
lum [11]. Some have even argued that most of these tumors are not genuinely cerebellar in
origin, but instead, represent metastases from an occult supratentorial or brainstem site [12].
However, there is no robust evidence for this hypothesis. Recent molecular evidence,
namely the absence of the FOX1 telencephalic marker and other signature gene expression,
clearly shows that cHGGs are genuinely cerebellar and not cerebral in origin [10]. The
relative resistance to typical pathways of gliomagenesis and rarity of cHGG suggests that
alternative pathways may have greater importance among cHGG compared to sHGG, a
hypothesis which is now being borne out in the data.

Historically, it was believed that primary HGGs or glioblastomas (GBM) arose de novo
as grade 4 lesions, whereas secondary HGGs (currently, removed from the category of
GBM) could be traced clinically to a prior lower grade tumor. Compared to primary sHGG,
secondary sHGGs are characterized by a high frequency of p53 mutations, absence of epi-
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dermal growth factor receptor (EGFR) amplification, a bias toward younger patients, [13,14]
and in particular, isocitrate dehydrogenase (IDH) mutations [15]. Clinically, secondary
HGGs are identifiable in approximately 10% of supratentorial and cerebellar cases [6,7,15].
However, molecular genetic evidence has revealed that cHGGs have a mix of features of
both primary and secondary HGG (defined by the supratentorial molecular framework);
IDH mutation is uncommon (primary feature—although rare mutations are typically not
tested) as is EGFR amplification (secondary feature), and a moderate frequency of p53
mutations (Figure 2) [16]. Certainly, the near absence of EGFR mutations is in contrast
to the supratentorial population of tumors [17,18]. The regular observation of a mixed
primary–secondary pattern in cHGGs led authors to postulate that these cerebellar tumors
tend to develop through a different collection of processes or pathways to their supratento-
rial comparators [19–21]. This now seems well justified, and indeed, compared to sHGG,
there are many genetic differences between the two cohorts. For example, there is a higher
incidence of neurofibromatosis 1 (NF1) mutations [5,10], unusual RAS mutations [10,16],
and a larger population of H3K27M mutated tumors within this cohort [5], otherwise
known as grade 4 diffuse midline glioma (DMG) [22–24].
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Figure 2. Frequency of gene alteration in cerebellar high-grade glioma. Reports (blue) are identified
by first author and plotted by both publication date and the percentage gene prevalence in the
respective cohorts. For each gene, a pooled average (red) of the reports is given at year 2022. Cohort
size is represented by circle size. N = number of patients.

Detailed molecular analysis on histological cHGG has been performed by three groups:
in Seoul [10], Heidelberg [25], and Tokyo [26]. This research, particularly the work of Cho
et al. and Reinhardt et al. which both provide a supratentorial comparator [10,25], is
definitive in re-casting cHGG as a meaningfully separate tumor population to sHGG.
As a population, they are most similar to proneural-sHGG, and upregulation of genes
such as SOX 10, CSPG4, and OLIG2 strongly suggest a dominant oligodendrocyte lin-
eage [10,26]. Interestingly, topological transcriptome and DNA methylome cluster analysis
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locates cHGG within the sHGG cluster but polarized toward the pilocytic astrocytoma
cluster—a predominantly cerebellar tumor [10]. These malignant cerebellar tumors express
a set of signature genes and are populated by a set of HGG subclasses that may each
merit a different therapeutic approach (Box 1). Most notably, these include high-grade
astrocytoma with piloid features (HGAP) [22,27,28], H3K27-altered DMG, and particular
methylation subclasses (midline and RTK I) of IDH-wildtype GBMs (Figure 3). Ultimately,
what was initially observed in cHGG as a mixed primary–secondary genetic pattern was
in fact the manifestation of the predominance of these HGG subclasses. Comparison of
pediatric and adult cHGG is tenuous due to sparse data but DMG H3K27 and GBM IDH-wt
subclass midline may be more prevalent and HGAP may be less prevalent than in adults
(Figure 3) [25].
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Box 1. Cerebellar high-grade glioma population features.

• IDH mutation is uncommon
• EGFR amplification is rare
• Substantive HGAP subpopulation (~1 in 3)
• Substantive DMG H3K27 subpopulation (~1 in 10)
• More frequent RAS mutations, ATRX alteration, PDGFRA amplification, CDK2A/B loss, and

CDK4 amplification than sHGG
• Less frequent TERT promotor mutations than sHGG
• Methylation classes predominantly:

o (1) high-grade astrocytoma with piloid features (HGAP),
o (2) GBM IDH-wildtype subclass midline (GBM-MID),
o (3) GBM IDH-wildtype subclass RTK I,
o (4) diffuse midline glioma H3K27-altered (DMG H3K27).

• Scant expression of telencephalic marker (FOX1)
• Widespread expression of cerebellar marker (PAX3)
• Widespread expression of oligodendrocyte progenitor marker (CSPG4)
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2. Therapeutic Approaches
2.1. Classic Therapy

Therapy for cHGG has not meaningfully deviated from that for sHGG: maximal
resection followed by radiotherapy and, since 2005, concurrent chemotherapy with temo-
zolomide (TMZ). Adjuvant TMZ or carmustine chemotherapy regimens are also often
employed. While there is no class 1 evidence to support this approach specifically for
cHGG, some retrospective cohort analyses have corroborated the efficacy of radiotherapy
and surgical resection. Namely, Weber et al. show an association of additional treatment
after surgery with longer survival [6]; the analysis of SEER by Babu et al. shows an as-
sociation of resection (8 vs. 4 months) and radiotherapy (11 vs. 3 months) with longer
survival [9]; and Yang et al. show an association of radiotherapy (15 vs. 6 months) and de-
gree of resection (15 vs. 6 months) with longer survival [8]. Despite TMZ being considered
part of the gold-standard of treatment, direct cohort-based evidence for efficacy of current
chemotherapy is limited to one series demonstrating a modest benefit that did not reach
statistical significance [29]. However, it is perhaps relevant that since its institution, median
overall survival has tended to be longer (Figure 1C, note that SEER includes patients from
1973 with only 35% diagnosed since 2005, and Picart et al. [5] reports a 35% rate of TMZ use).
There remains a lack of consensus on whether radiotherapy should be delivered locally,
to the whole brain, or with a craniospinal distribution. For example, some authors cite
craniospinal treatment as important for minimizing metastasis [30]. It has been postulated
that radiotherapy is particularly relevant to cHGG given the high frequency of unamplified
EGFR [20]. The grounds for this assertion are the association of radio-resistance and EGFR+

in sHGG [31,32], and the anecdotal finding of longer survival of radiotherapy-treated EGFR-

cHGG [20].

2.2. Emerging Molecular and Cellular Therapies

Translational approaches to cHGG cover a range of therapeutic classes and are specific
to the properties of the tumor subclass (Box 2).

Box 2. Translational approaches for cerebellar high-grade glioma.

• cHGG is likely comprised of different proportions of distinct molecular subclasses compared
to sHGG (GBM IDH-wt, HGAP, and DMG).

• Distinct approaches are engaged for major subclasses:

o HGAP: MAPK kinase inhibitors, PI3K/mTOR inhibitors, cyclin-dependant kinase
inhibitors, ATR inhibitors

o DMG: GD2-CAR T cell therapy
o GBM IDH-wt: PDGFRA inhibitors, cyclin-dependant kinase inhibitors, combination

immunotherapies

• Unfavourable GBM IDH-wt immunological environment hampers many immunotherapies
• Oncolytic viruses are likely cerebellum-safe and promote favourable immunological environ-

ment, opening a gate for additional therapies.
• Oncolytic virus-based multi-modal immunotherapy is an attractive strategy for cerebellar

GBM IDH-wt.
• Greater knowledge of cerebellar glioblastoma immunology is needed, particularly HGAP and

GBM IDH-wt.

2.2.1. High-Grade Astrocytoma with Piloid Features

HGAP is a recently defined, IDH-wt glioma that predominantly originates in the
cerebellum and is a large and important subclass of cHGG (Figure 3) that expresses a
number of features that advocate for a targeted approach [28]. The low-grade pilocytic
astrocytoma (PA) is a common tumor preferentially effecting the cerebellum in children. It
is essentially a single pathway disease that involves a BRAF-KIAA1549 fusion, particularly
when the tumor is located in the cerebellum [33,34]. HGAP was initially classified from a
unique methylation signature from cases of PA with anaplastic histological features that
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exhibited more aggressive behavior [28]. While PA rarely transforms to HGG, particularly
when the BRAF fusion is present [35], a considerable number of HGAP (~20%) have been
identified with this fusion, which suggests an origin secondary to prior PA or at least
some biological similarity [25,36]. This fusion abnormally drives the mitogen-activated
protein kinase (MAPK) pathway. Indeed, up to 75% of HGAP possess either this fusion or
other MAPK pathway alterations, such as NF1 mutation/deletion, fibroblast growth factor
receptor (FGFR) mutation/fusion, KRAS mutation, or BRAF-V600E mutation [28]. Drug
testing of subclass-undifferentiated cHGG demonstrates a higher sensitivity of cHGG to
MAPK kinase inhibitors (MEKi) than sHGG [10]. This can presumably be attributed to the
considerable representation of HGAP among cHGG. In PA BRAF-KIAA1549 fusion models,
a credible role for RAF inhibitors, such as PLX8394 [37], or MEKi, such a trametinib, has
been demonstrated [38]. Escape to these agents develops via the PI3K/mTOR pathways,
and as such can be frustrated with mTOR inhibitor dual-therapy, such as everolimus [38,39].
As NF1 is a negative regulator of RAS, RAS inhibitors such as tipifarnib or downstream
MEKi may be of therapeutic value. Many FGFR tyrosine kinase inhibitors are available,
and indeed PD173074 has shown in vitro efficacy in retarding HGG growth [40]. Alpha
thalassemia/mental retardation syndrome X-linked (ATRX) is a gene involved in telomere
maintenance, and loss/mutation is observed in ~45% of HGAP [28]. Tumors harboring this
alteration have been noted to have greater sensitivity to DNA damaging agents, such as
TMZ [41]. Failure of normal telomere maintenance, via compromise of ATRX, is associated
with an alternative lengthening of telomeres (ALT) pathway via a recombination-based
process, thereby overcoming replicative mortality. However, inhibition of protein kinase
ATR—a regulator of the ALT process—by VE-821 disrupts this pathway and triggers
apoptosis [42]. Lastly, the tumor suppressors cyclin-dependent kinase inhibitor 2A and B
(CDKN2A/B) are found to be deleted/mutated in ~80% of HGAP. Palbociclib is a cyclin-
dependent kinase inhibitor, and in such altered gliomas it may have therapeutic potential,
particularly in the ‘proneural subclass’ [43]. This is the gene set which is highly enriched
in cHGG [10]. A phase-II clinical study failed to demonstrate benefit of palbociclib in
recurrent HGG [44], but in light of pre-clinical evidence that concurrent radiotherapy is
required for efficacy [45,46], further clinical study is warranted, including in HGAP-cHGG.

2.2.2. Diffuse Midline Glioma, H3K27M

The defining feature of DMG-H3K27M is abnormal histone modifications leading to
epigenetic derangements [22,23]. Preclinical work has investigated histone deacetylase
inhibition and histone demethylase inhibition [47], and immunologic targeting of the mu-
tated histone 3 [48], which are entering early-stage clinical trials. The disialoganglioside
GD2 is highly expressed by DMG-H3K27M cells, which has been utilized as the basis of
chimeric antigen receptor (CAR) T-cell therapy in pontine and spinal cord locations [49,50].
This comprehensive phase I report underlines the promise of this therapy, which could
extend to cerebellar DMG. The STAT3 transcription factor has been found to be highly
upregulated in DMG and high relative expression is associated with shorter patient sur-
vival [51]. Inhibition of this pathway with the kinase inhibitor WP1066 results in stasis of
tumor growth, confirming its potential as an avenue of treatment.

2.2.3. Glioblastoma, IDH-wt

Emerging treatments targeted to cerebellar GBM IDH-wt can in general be considered
alongside the majority of primary sHGG and are reviewed elsewhere [52,53]. While these
populations are largely comparable, they demonstrate less frequent EGFR amplification
and more frequent CDKN2A/B loss and PDGFRA amplification than the supratentorial
entities [25], as well as enrichment of PDGFRA-associated genes [26]. Consistent with
this, in vitro, molecules targeted to inhibit PDGFR, namely tivozanib and tandutinib, have
shown a greater impact on cell viability in cHGG than sHGG [10]. Similarly, inhibitors
targeted to EGFR were substantively less effective in cHGG. As such, these examples serve
as a caveat to transposing emerging treatments from supratentorial to cerebellar IDH-wt
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GBM. Treatments targeted to or favored by the proneural subclass or either midline or RTK
I methylation classes of IDH-wt GBM are probably most suitable for translation to cHGG.

2.2.4. Immunotherapies

Immunotherapies have already led to dramatic successes for a range of hematological
and solid malignancies. This extent of response has not been reproduced in brain malignan-
cies such as HGG. This is attributed in large part to the dearth of tumor-associated T cells,
typically described as immunologically ‘cold’ [54]. Furthermore, lymphotoxic TMZ and
potent corticosteroids used to control edema likely contribute to blunted immune activation.
These tumors are also characterized by great intratumoral heterogeneity [55–57], and ability
to evolve antigen escape [58]. As such, a plausible strategy involves an attempt to (1)
convert HGG to a ‘hot’ tumor with an expanded and active lymphocytic compartment, and
(2) deliver combinations of immunotherapies, leveraging the immune system to eliminate
malignant cells and organized to close down avenues of clonal escape.

Oncolytic immunovirotherapy is a potentially attractive platform to achieve these
goals, utilizing neurotropic neurovirulence-attenuated viruses, such as oncolytic herpes
simplex 1 (oHSV) G207 [59]. In addition to direct oncolysis, they can markedly alter the
tumor microenvironment [60] in a way that is likely to promote susceptibility to other
immunotherapies such as CAR T-cells, checkpoint inhibitors, and dendritic cell-based
vaccines (DCV). In consideration of cHGG, our group has established pre-clinical safety of
cerebellar inoculation of oHSV-G270 [61], demonstrated safety and immunological response
in pediatric sHGG [62], and are carrying out a phase I study in recurrent pediatric cerebellar
tumors including cHGG. This trial will prove to be the first ever use of an oncolytic virus in
the cerebellum [63].

Immune checkpoints serve as a physiological mechanism of self-tolerance but are
utilized by malignancies to evade lymphocytic attention. Immune checkpoint inhibitors
(ICIs) work to stymie this process by handicapping the agents promoting this mechanism
(most notably CTLA-4 and PD-1), thereby unencumbering the immune system to treat
the malignant cells as foreign. Despite promising pre-clinical work, phase III trials of
PD-1 checkpoint blockade (Checkmate 134 [64], 498, and 548) have not yet yielded success
in sHGG, although other trials are ongoing (see Mende et al., 2021 for summary) [65],
and neoadjuvant, as opposed to adjuvant, timing may be favorable [66]. The tumor’s
immunological microenvironment is recognized as a major factor in response to ICI ther-
apy [66,67], so ultimately cHGG is likely to require immunological priming before ICIs
can play a decisive role [68]. Oncolytic viruses offer an apposite pairing, with exciting
pre-clinical evidence to support this concept of use [69,70]. Little is known about the
differential characteristics of HGAP immunology, therefore at present conclusions drawn
from sHGG are not directly commutable. DCVs comprise autologous DCs, matured ex
vivo with tumor-specific antigens, which can then be re-introduced intradermally with the
aim of educating T cells to recognize tumor epitopes as foreign. Preliminary median overall
survival results of a phase III trial are promising but remain blinded at present, therefore
requiring equipoise [71]. Similarly to ICI, this therapy may well be a complementary
companion to oncolytic immunovirotherapy [68]. Surgical resection and viral treatment of
the tumor bed can be followed by processing of the tumor sample as part of generating a
DCV, which can then be introduced to an immunologically ‘hot’ tumor environment.

The ‘cold’ tumor microenvironment is comprised of abundant myeloid-derived sup-
pressor cells and regulatory T cells, and low numbers of activated lymphocytes and NK
cells [67]. Indeed, 30–50% of HGG cells are macrophages or microglia [72,73]. Tumor and
macrophages have a complex relationship (see Yu et al., 2021 for summary [53] and Ander-
sen et al., 2021 for in-depth review [74]), but ultimately generate an anti-inflammatory and
pro-tumorigenic condition that is hostile to treatment. Arguably the most investigated ex-
ample of targeting this compartment is by CSF-1 inhibition, which is particularly amenable
to the ‘proneural’ subclass (to which most cerebellar GBM IDH-wt belong) [75]. However,
resistance develops quickly via the PI3K pathway [76], and clinical evaluation has failed to
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show efficacy [77]. A number of other targets, such as STAT3 and IDO1 are the subject of
current clinical trials [74].

The crucial role of the tumor immunological microenvironment in treatment resistance
of HGG is well-established, but also identifies alternative avenues [74]. This understand-
ing is mostly borne from the study of DMG and supratentorial or supratentorial-type
HGG [74,78]. While many mechanisms and features are shared, important differences exist
between IDH-mut, IDH-wt, and DMG. Furthermore, genes such as NF1 that regulate the im-
mune microenvironment are differentially altered in cHGG and sHGG populations [5,10,79].
It follows from this, to best rationalize and select prospective immunotherapies for cHGG
tumors, cultivating a specific understanding of cerebellar GBM IDH-wt and HGAP mi-
croenvironment immunology is a sensible endeavour.

3. Conclusions

The cerebellum appears to be a privileged site that is resistant to developing HGG, with
cHGG harboring different molecular characteristics compared to sHGG. The treatment of
cHGG is beginning to diverge with the recognition that a substantial portion of these tumors
may actually represent HGAP or DMG-H3K27M. Further understanding of the mechanisms
of gliomagenesis in this region and of targeted treatments toward the molecular drivers of
individual tumors and their immunologic milieu will be the next step toward personalized
and efficacious treatment options for cHGG.
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