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Abstract: Gliomas are the most frequent intrinsic central nervous system tumors. The new 2021 WHO
Classification of Central Nervous System Tumors brought significant changes into the classification of
gliomas, that underline the role of molecular diagnostics, with the adult-type diffuse glial tumors now
identified primarily by their biomarkers rather than histology. The status of the isocitrate dehydroge-
nase (IDH) 1 or 2 describes tumors at their molecular level and together with the presence or absence
of 1p/19q codeletion are the most important biomarkers used for the classification of adult-type
diffuse glial tumors. In recent years terminology has also changed. IDH-mutant, as previously known,
is diagnostically used as astrocytoma and IDH-wildtype is used as glioblastoma. A comprehensive
understanding of these tumors not only gives patients a more proper treatment and better prognosis
but also highlights new difficulties. MR imaging is of the utmost importance for diagnosing and
supervising the response to treatment. By monitoring the tumor on followup exams better results
can be achieved. Correlations are seen between tumor diagnostic and clinical manifestation and
surgical administration, followup care, oncologic treatment, and outcomes. Minimal resection site
use of functional imaging (fMRI) and diffusion tensor imaging (DTI) have become indispensable
tools in invasive treatment. Perfusion imaging provides insightful information about the vascularity
of the tumor, spectroscopy shows metabolic activity, and nuclear medicine imaging displays tumor
metabolism. To accommodate better treatment the differentiation of pseudoprogression, pseudore-
sponse, or radiation necrosis is needed. In this report, we present a literature review of diagnostics
of gliomas, the differences in their imaging features, and our radiology’s departments accumulated
experience concerning gliomas.
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1. Introduction

The expansion of knowledge in the central nervous system (CNS) tumor’s molec-
ular alterations has been massive in the last decade. Former tumors have been defined
histologically. Molecular information only provided complementary data [1]. However,
despite having equivalent histological patterns, treatment outcomes for IDH-wildtype and
IDH-mutant diffuse gliomas were substantially different [2].

Molecular diagnostics in recent years have changed not only clinical outcomes but
also the whole classification of glial tumors. The most recent alterations were made in 2021.
The biggest changes include the distinctive features that are seen in adults and children.
Gliomas and other neuronal tumors are divided into six finer groups, but adult-type diffuse
gliomas are the most relevant in clinical practice. Adult-type diffuse gliomas now are
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identified primarily by their biomarkers rather than histology. This family includes three
types of tumors: astrocytoma (IDH-mutant), oligodendroglioma (IDH-mutant, and 1p/19q-
codeleted), and glioblastoma (IDH-wildtype). All diffuse adult-type astrocytomas, IDH-
mutants, are considered a single type and are graded as 2, 3, or 4; oligodendroglioma, IDH-
mutant, and 1p/19q-codeleted are graded as 2, 3; and glioblastomas comprise only IDH-
wildtype tumors and are graded as 4. Therefore, being IDH-wildtype tumors, glioblastomas
are now a separate diagnosis from astrocytomas, IDH-mutant tumors. However, for a
astrocytic glioma to be able to qualify as glioblastoma the tumor should at least have
microvascular proliferation, a site of necrosis, mutation of the TERT promoter, EGFR gene
amplification, or changes in the copy number of +7/−10 chromosomes [3].

A contemporary approach to preoperative diagnosis, better patient care, and post-
treatment imaging set new perspectives for glial tumor diagnostics [4]. This article aims to
evaluate the literature about the radiological approach to diagnostics of adult-type glioma
imaging as it is one of the most fatal outcomes for CNS tumors in adults and compare our
department’s experience, containing over 200 cases of adult-type diffuse glioma patients.

2. Biomolecular Diagnostics

Conventionally histological verification for CNS tumor grading is needed for di-
agnosis. The advances in molecular markers have implemented them in diagnostics
and treatment decision making, including findings of ATRX, TP53, or CDKN2A/B sig-
nals of astrocytoma [3]. In the following paragraphs, we will be discussing the most
relevant markers.

2.1. Isocitrate Dehydrogenase (IDH)

IDH mutations are considered important in glioma genesis, determining a more
favorable outcome and longer survival with mutated IDH, than patients with wild-type
IDH; therefore, IDH-1 status can also be used as a clinical prognosis indicator [5–8]. The
presence of IDH mutations excludes glioblastomas according to the 2021 Classification of
CNS Tumors, as all glioblastomas are IDH-wildtype.

By combining radiological features with genetic signatures, a wider view of glial
tumors can be achieved [9]. A study of 280 patients who were diagnosed with glioblastoma
and underwent surgical treatment showed that tumor contrast enhancement [10], multi-
focality [11], tumor location [12,13], edema [11], and cysts [14] can be linked with genetic
attributes and survival outcome in glioblastoma patients. In our hospital, patients are
routinely checked for IDH when a glial tumor is suspected. IDH-1 mutations are identified
by using DNA pyrosequencing [15,16]. A link between IDH-1 and contrast accumula-
tion in the site of the lesion, cysts or locating in the frontal cortex, vibrant margins, and
homogenous signals are observed equivalent data to be found in other publications also.

However, it is important to make decisions based on collective knowledge combined
with radiographic imaging. For example, tumor-induced edema could be used to predict the
survival outcomes of glioblastoma patients based on MGMT promoter methylation, not the
IDH-1 status [8]. Genetic alterations provide biological data on the tumor, supplementing
radiological imaging, and, hence, more accurate treatment decisions [17]. Nevertheless, a
IDH-mutant variant tumor does not always ensure a better outcome [18].

2.2. 1p19q Codeletion

1p19q codeletion together with IDH mutation decides the course of treatment for oligo-
dendroglioma. It is an evident biomarker concerning long-term survival after aggressive
multimodal treatment [19]. Such courses can be considered by combining surgical resection,
followed by radiotherapy and chemotherapy with procarbazine, CCNU (lomustine), and
vincristine (PCV) [20]. IDH-mutant and 1p/19q codeleted grade-3 oligodendrogliomas
have a dramatically longer overall survival median when treated with radiotherapy and
PCV in comparison to only radiotherapy treatment. In contrast, survival rates are signifi-
cantly shorter for patients with 1p/19q intact grade-3 gliomas. No statistically meaningful



Curr. Oncol. 2023, 30 7820

(p > 0.05) disparity was observed comparing survival rates for radio-chemotherapy and
radiotherapy treatments. By testing patients for 1p/19q codeletion not only a more accurate
classification can be achieved but it also has a clinical meaning, and more precise treatment
can be adapted [21].

2.3. MGMT Promoter

O (6)-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that
can neutralize its alkylation when chemotherapy is administered. Hypermethylation of
the MGMT promoter results in gene silencing [22,23]; therefore, gliomas with methylated
MGMT promoters are more susceptible to the effects of alkylating agent therapy, such as
temozolomide. In our hospital, the evaluation of MGMT promoter status is performed
for all glioma patients when chemotherapy with temozolomide is considered. MGMT has
been the biomarker with the most meaningful influence in clinical decision making for
resilient glioblastomas since its discovery [24]. Patients with methylated tumors with little
or no edema have particularly longer survival [8]. While MGMT promoter methylation
predicts a more favorable treatment response, in some malignant glioma patients treated
with radiotherapy in combination with temozolomide it is shown to be associated with
pseudoprogression, a pathological feature that can imitate true tumor progression on
followup diagnostic imaging. Imaging features were found to poorly predict MGMT
promoter methylation in one study [8].

3. Imaging Techniques for the Guidance of Glioma Diagnostic
3.1. Computed Tomography

While most glial tumors can be diagnosed on computed tomography, it is a less
comprehensive imaging modality when compared to MRI; therefore, it plays a secondary
role in the diagnostic imaging of gliomas. As a routine in our clinical hospital, it is used for
immediate postoperative followups to check for possible bleeding or other complications.
CT imaging is sensitive enough for long-term posttreatment tracking. However, if tumor
progression has been detected, the patient should be directed for MRI [25]. CT can also
be used as the main imaging modality on rare occasions when MRI is contraindicated
(ferromagnetic foreign bodies, pacemakers, and cochlear implants are most common).

3.2. MRI

By having intricate and subtle architectural changes in the brain, magnetic resonance
imaging (MRI) is sensitive enough to suspect the radiographical characteristics of glioma.
The usage is not instrumental in making a diagnosis but also in pre- and posttreatment [26].

Standard Imaging Sequences

In recent years more advanced imaging has entered oncological diagnostics; however,
basic MRI sequences are still the foundation of the radiological workload. They show the
location, size, margins, structure, and spread of the tumor, and the presence or absence
of vasogenic edema [27–29]. T1 contrast-enhanced (T1CE) images with gadolinium-based
contrast agents reveal disruption of the blood–brain barrier. Susceptibility-weighted images
(SWI) are helpful for a better depiction of tumoral hemorrhages and calcifications. Diffusion-
weighted images can show areas of increased diffusion, while automatically calculated
apparent diffusion coefficient (ADC) may have a role in predicting the tumor grade for
gliomas and evaluating posttreatment response.

Oligodendroglioma usually appears as cortical and subcortical white matter mass,
that can be heterogeneous due to cystic degeneration, calcifications, or small intratumoral
hemorrhages with mild or absent contrast enhancement or peritumoral edema. Slow
growth is a typical followup image sign.

Low-grade diffuse astrocytoma usually presents as a homogeneous relatively well-
marginated white-matter mass without necrosis or contrast enhancement, with mild or
absent peritumoral edema, and typically shows slow growth.
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The typical appearance of glioblastoma is a white-matter-centered mass with a central
necrotic core, surrounded by thick irregularly enhanced margins and surrounded by
vasogenic edema. Glioblastoma is the most common and aggressive type of malignant
brain tumor in adults [9,30]. Overall, the prognosis is poor, with a median survival of
<2 years [31,32], the same clinical outcomes also seen in our hospital. However, an early
and precise diagnostic is key to better treatment and, therefore, longer survival.

Despite the advancements in biomolecular diagnostics that can be beneficial for a
better outcome for brain tumors, they also bring new challenges to diagnostic imaging. The
radiologic appearance of the tumor may not entirely correspond to its biomarkers.

Tumors with IDH-wildtype usually show aggressive growth and transformation, even
when they initially present with radiologic features of low-grade glioma (Figure 1).
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A T2-FLAIR mismatch sign is considered a highly specific imaging biomarker for 
IDH-mutant, 1p/19q-non-codeleted diffuse glioma, with T2w sequence showing well-cir-
cumscribed high-intensity mass, that appears relatively hypointense and usually with a 
hyperintense rim on T2-FLAIR images (Figure 2). 

Figure 1. Glioblastoma IDH wild-type. Axial T2-FLAIR (A) and postcontrast axial (B) T1W images
are suggestive of a low-grade tumor. However, followup FLAIR (C) and postcontrast T1W (D) im-
ages 6 months later show tumor progression with irregular contrast enhancement, surrounded by
extensive edema, characteristic of glioblastoma. Arrows in A-D images shows the mass-like site of
IDH wild-type glioblastoma. Images used for publication are taken from LUHS Radiology Clinic
archives servers.

A T2-FLAIR mismatch sign is considered a highly specific imaging biomarker for
IDH-mutant, 1p/19q-non-codeleted diffuse glioma, with T2w sequence showing well-
circumscribed high-intensity mass, that appears relatively hypointense and usually with a
hyperintense rim on T2-FLAIR images (Figure 2).

MGMT promoter methylated glioblastoma tends to reveal limited peritumoral edema,
high ADC values, and low CBV [33].

In glioblastomas with a substantial proportion of noncontrast-enhancing tumors, a
mass-like pattern in most cases correlates with longer survival [18].

When the volume of the lesion, involvement of the cortex, whether the high or low-
grade tumor is suspected, and genetic profile are taken into consideration, sometimes it can
be difficult to formulate a correct decision. In most cases, sequences such as FLAIR, T1*,
and T2* are sufficient for suspecting a glial neoplasm. However, a tendency for advanced
imaging is increasing [18,34,35].
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hancement (DCE), is another contrast-related sequence that depends on the imaging ap-
proach when perfusion defects and hyperdense regions of the lesion are seen. The last one 
(arterial spin labeling (ASL) does not require contrast media; instead, advanced rapid 
pulse sequences and blood flow “act” as a contrast [36]. 

3.3.1. Dynamic Susceptibility Contrast 
DSC is more useful when discussing cerebral tissue. Due to having a large vessel 

network and, thus, by contrast remaining in the blood flow system. The paramagnetic 
nature of the contrast agent increases local tissue susceptibility, causing increased T2∗ 
dephasing of nearby tissues. Gradient echo and well-perfused tissue exhibit a reduction 
in the signal relative to the precontrast images or the poorly perfused tissues. This crite-
rion is a substitute marker for capillary density or neoangiogenesis and often is relative to 
the contralesion brain tissue. The duration and reliability of DSC are the main advantages. 
However, calculations of absolute parameter measures and sensitivity to susceptibility-
related artifacts depend on the user. Artifacts are commonly observed at the base of the 
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ovascularity in high-grade gliomas; therefore, microvascular density is increased which 
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Figure 2. T2-FLAIR mismatch sign. Histologically proven IDH mutant, 1p19q nondeleted astrocy-
toma. (A) Coronal T2-FLAIR image showing an area of lower intensity surrounded by a hyperintense
peripheral rim (arrow). On the corresponding (B) coronal T2W image an area of the homogenously
hyperintense signal is seen (arrow). Images used for publication are taken from LUHS Radiology
Clinic archives servers.

3.3. Perfusion-Based Imaging

Perfusion-weighted imaging provides spatial blood flow through tissue. Due to signal
changes in glial tumor blood flow circulation, a more profound conclusion can be made. A
healthy tissue can maintain metabolism, remove byproducts, and keep a stable temperature;
however, pathological tissue cannot sustain these processes. Mainly two approaches are
used for MR perfusion. Dynamic susceptibility contrast (DSC), which heavily depends on
contrast uptake (mostly gadolinium-chelate) and dynamic contrast enhancement (DCE), is
another contrast-related sequence that depends on the imaging approach when perfusion
defects and hyperdense regions of the lesion are seen. The last one (arterial spin labeling
(ASL) does not require contrast media; instead, advanced rapid pulse sequences and blood
flow “act” as a contrast [36].

3.3.1. Dynamic Susceptibility Contrast

DSC is more useful when discussing cerebral tissue. Due to having a large vessel
network and, thus, by contrast remaining in the blood flow system. The paramagnetic
nature of the contrast agent increases local tissue susceptibility, causing increased T2∗
dephasing of nearby tissues. Gradient echo and well-perfused tissue exhibit a reduction in
the signal relative to the precontrast images or the poorly perfused tissues. This criterion
is a substitute marker for capillary density or neoangiogenesis and often is relative to the
contralesion brain tissue. The duration and reliability of DSC are the main advantages.
However, calculations of absolute parameter measures and sensitivity to susceptibility-
related artifacts depend on the user. Artifacts are commonly observed at the base of the
skull or the site of postoperative hemosiderin deposition [37]. Tumor growth leads to
neovascularity in high-grade gliomas; therefore, microvascular density is increased which
leads to elevated relative cerebral blood volume (rCBV). For such patients, DSC may be
helpful in the preoperative diagnosis (Figure 3) or followup of malignant lesions [38]. It is
the most common technique of brain perfusion. In our radiology department, we use it
routinely for posttreatment followup of high-grade gliomas.

3.3.2. Dynamic Contrast Enhancement

DCE is a T1-weighted sequence that usually uses the spoiled gradient echo technique;
therefore, longer effectuation (fulfilment) time is required compared with DSC [39]. When
imaging is obscure due to microvascular permeability or the blood–brain barrier, DCE
gains an advantage against other perfusion-related techniques. Also, compared with DSC,
reduction in susceptibility-related artifacts has been reported [40]. Disadvantages include
the longer scan time, decreased temporal resolution, and disagreements about the best
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suitable contrast substance. Even though DCE has a decreased temporal imaging capability,
when a lesion with mixed pathology is discovered it is still the preferred method due to
improved spatial resolution [36]. Hence, the preferred modality is based on the tumor’s
localization; other factors taken into consideration can include the nature of the tumor and
its vascularity.
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3.3.3. Arterial Spin Labelling

Lastly, when discussing perfusion adaption for glial tumors arterial spin labelling
(ASL) uses different sets of images than DSC or DCE. Mainly, two technique alterations are
being used for ASL [41]. Signals for both methods are primarily being made due to moving
spins of blood and no statistical difference for diagnostics has been seen [42]. However,
ASL has some setbacks. The main one is that long scanning times are needed, and motion
artefacts cannot be evaded. Also, this modality is heavily dependent on the radiographer
and the complexity of flow calculations means that ASL is not used in everyday clinical
workflow [43]. Because of these listed reasons, the use of ASL is more historic and as other
articles state; we also use it very occasionally in our clinical practice.

3.4. Advanced MR Imaging
3.4.1. Spectroscopy

In most cases, MRI provides all the needed information about the tumor size and
its tissue extension. However, sometimes the information can be inconclusive for pseu-
doresponse or pseudoprogression evaluation [44]. Even though functional and molecular
imaging can provide more accurate information and lately these methods attracted a lot of
attention, getting data about lesions metabolism is sometimes also needed. Magnetic reso-
nance spectroscopy imaging (MRS) is a technique that provides metabolomic information
despite overlayed anatomical structures [45].

A high percentage of brain tumors have decayed signals for N-acetyl aspartate (NAA).
The changes in neuronal tissue: temperature, metabolism, and byproducts exchange lead
also to increased levels of Choline (Cho). It is observed that glioblastomas are linked with
peaked Cho levels in the lesion. Knowing that glioblastomas often have the site of necrosis
in which anaerobic oxidation overtakes the energy production, leading to increased levels
of lactate explaining Cho [46]. There is a direct correlation between lactate levels and glioma
grade [47] (Figure 4). Increased lipid levels are believed to be due to necrosis and membrane
breakdown and are usually present in high-grade neoplasms and often absent in low-grade
gliomas. A high myoinositol peak is more characteristic of lower-grade neoplasms [48].
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Because of new advances in molecular diagnostics of brain tumors, it has been ob-
served that 2-hydroxyglutarate (2-HG) can be a promising biomarker. More specifically,
a subtle change during the glioma genesis IDH mutation occurs that starts producing
2-hydroxyglutarates. More than 99% of all IDH-mutated cells exhibit risen 2-HG levels.
Taking into consideration the fact that there has been no background of healthy brain tissue
with 2-HG, makes the marker a good indicator of glioma [49]. MRS is not only useful in
detecting glioma but also has advantages in tumor evaluation for treatment response [50].

MR spectroscopy can be a useful tool for posttreatment followup. After radiotherapy
or chemotherapy, if no change or elevated Cho peak is observed, relapse or progression
should be taken into consideration [46].

MRS has not been widely accepted as a routine clinical tool for tumor evaluation; in our
hospital, it is used only occasionally. Relatively low sensitivity, especially for the detection
of low-concentration metabolites, and additional time are needed for examination to limit
the application of MRS. However, combined with other imaging it can give insightful
information about tumor metabolism and helps with diagnosis correction.

3.4.2. fMRI

For decades physicians struggled with neurological assessment concerning various
senses. In some cases, for example, a glial tumor can interfere with motor and sensory
functions of a patient, and functional MRI (fMRI) and a better understanding. This modality
is based on the basic principles of MRI physics. Endogenous oxygenated hemoglobin is
diamagnetic and has increased signal waves in comparison to deoxygenated hemoglobin,
which has a shorter relaxation time on T2* resulting in a decreased signal. By applying
these assumptions brain activation can be monitored. Stimulated cortex areas will have
increased blood flow with higher levels of oxygenated blood. Naturally, deoxygenated
levels of hemoglobin are reduced in comparison. It also minimizes the susceptibility of the
cortex by dephasing induced signals on the T2* compared to unstimulated tissue. It all
leads to a higher signal on T2*-weighted imaging. This phenomenon is described as the
blood-oxygenation-level-dependent effect or simply BOLD (Figure 5) [51]. When discussing
mainly glioblastomas, fMRI has quite an impact on surgical treatment planning. It gives
a wider perspective of what the prognosis the patient could have and if it is necessary at
all [52].
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help more accurately plan the resection site based on the tract’s invasion level. It is also 
more likely to reduce the functional impairments postsurgically, helping neurosurgeons 
to be aware of the location of white matter tracts. Glioma’s heterogenic nature makes it 
difficult to differentiate from normal tissue and, thus, DTI would be helpful to segregate 
the two. Recent studies suggest that DTI is more efficacious when combined with other 
modalities. Combined with a tumor-isolating “fence-post” catheter (insertion of catheters 
around the border of tumor margins) technique, motor-evoked potentials from cortical 
areas can facilitate the resection of high-grade glioma up to 1 cm from the corticospinal 
tract [49].  

Figure 5. Right hemisphere astrocytoma. BOLD fMRI data are superimposed on sagittal T2W images
for anatomic localization. BOLD fMRI showing the foot sensorimotor cortex (long arrows) is located
along the anteroinferior aspect of the tumor (short arrows). The image used for publication is taken
from LUHS Radiology Clinic archives servers.

3.4.3. Diffusion Tensor Imaging

DTI is a method that reconstructs a model of subcortical connectivity. Doing so can
help more accurately plan the resection site based on the tract’s invasion level. It is also
more likely to reduce the functional impairments postsurgically, helping neurosurgeons
to be aware of the location of white matter tracts. Glioma’s heterogenic nature makes it
difficult to differentiate from normal tissue and, thus, DTI would be helpful to segregate
the two. Recent studies suggest that DTI is more efficacious when combined with other
modalities. Combined with a tumor-isolating “fence-post” catheter (insertion of catheters
around the border of tumor margins) technique, motor-evoked potentials from cortical
areas can facilitate the resection of high-grade glioma up to 1 cm from the corticospinal
tract [49].

Further advancements in diffusion sequencing have allowed finer imaging which initi-
ated a neuronal fiber to be reconstructed [53]. A decision in resection site concerning white
matter has made not only neurosurgeon planning more advanced but also ensures finer
gliomas treatment [54,55]. Using high-definition fiber tractography it became possible to
evaluate perilesional white matter tracts in case of glial tumors [56]. However, tractography
heavily relies on the performing physician’s competence. The quality of an image depends
on the regions of interest (ROIs) and the visualized tracts segmentation. The accuracy
and sensitivity of fiber tracking algorithms can be analyzed using intraoperative electrical
stimulation [57]. The imaging method suffers from the need to adjust the parameters,
particularly to patient datasets, and even regions of interest. The lack of unified algorithm
standardization makes tractography less approachable. Other problems include reliance
on user interaction, placement of the seeds and mismatches between ROIs inclusion or
exclusion, and a lack of image noise reduction. Therefore, a false positive or false negative
tract’s pathological visualization can occur. However, tractography provides a depiction of
global connectivity. Most importantly, the main technique’s advantage is the capability of
tracts noninvasive 3D visualization that gives hope for future patients [57,58]. In LUHS
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DTI and white matter, tractography is performed for surgery planning when tumoral
involvement of major white matter tracts is expected (Figure 6).
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Positron emission tomography (PET) is paving the way in understanding complex 
heterogenous tumors such as gliomas. The glioma genesis is still not understood com-
pletely; however, including PET gives a better understanding of the tumor’s genesis. One 
of the hardest aspects of posttreatment diagnostics is the complexity and ability to re-
model. It is one of the main reasons why it is hard to discern TP from PsP or radiation 
necrosis. By having a better comprehension of the tumor’s ecosystem, a better prognosis 
and treatment plan could be possible [59]. One of the most promising trackers that has 
been seen is 18F-FDG. Utilizing it for a recurrent glioma could have a better treatment 
prognosis. Amino acid PET is starting to become a standard when a PET scan is needed. 
The basis is simple, labeled amino acids can detect tumors progression in the earliest 
stages and, if so, a different approach could be thought of and improvements in prognosis 
could happen. As seen, PET is an advanced diagnostic tool for refining prognosis [60]. 
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3.5. Nuclear Medicine Imaging
3.5.1. Positron Emission Tomography

Positron emission tomography (PET) is paving the way in understanding complex
heterogenous tumors such as gliomas. The glioma genesis is still not understood completely;
however, including PET gives a better understanding of the tumor’s genesis. One of the
hardest aspects of posttreatment diagnostics is the complexity and ability to remodel. It
is one of the main reasons why it is hard to discern TP from PsP or radiation necrosis. By
having a better comprehension of the tumor’s ecosystem, a better prognosis and treatment
plan could be possible [59]. One of the most promising trackers that has been seen is
18F-FDG. Utilizing it for a recurrent glioma could have a better treatment prognosis. Amino
acid PET is starting to become a standard when a PET scan is needed. The basis is simple,
labeled amino acids can detect tumors progression in the earliest stages and, if so, a different
approach could be thought of and improvements in prognosis could happen. As seen, PET
is an advanced diagnostic tool for refining prognosis [60].

3.5.2. SPECT

When comparing nuclear medicine imaging SPECT is not only more widely accessible
but also cheaper than PET; however, due to the attribution of nuclear decay, gamma rays
used (two for PET, one for SPECT) makes the spatial resolution inferior compared to
PET. However, isotopes used for SPECT are sensitive enough to observe various process
regarding glial tumors. Technetium-99m-labelled compounds have been one of the main
tracers used for differentiation between glioma progression and radiation necrosis. When
99mTc-sestamibi and 99mTc-tetrofosmin enter the blood flow no signs of conversion in
a healthy brain have been registered. If uptake is seen, tumors recurrence or necrosis
induced by radiation can be expected. Hence, the assimilation of radioactive tracer can
be a differentiative tool. Other studies have shown that the cutoff ratio value of the
tumor’s uptake for true progression is around 4; however, for tumors necrosis uptake varies
but never peaks as high as for true progression [61]. One study discovered that 99mTc-
tetrofosmin SPECT has the same level of accuracy as perfusion MRI in detecting recurrent
tumors after glioma treatment [62]. In our clinical practice, SPECT 99mTc-sestamibi is used
as an additional method to differentiate true progression from radiation necrosis, when
conventional and advanced MRI provide doubtful results (Figure 7).
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for publication are taken from LUHS Radiology Clinic archives servers. 

The diagnostic value of 99mTc-methionine SPECT is like PET FDG utility and higher 
than contrast-enhanced MRI for the detection of glioma recurrence [63]. A meta-analysis 
that assessed the efficacy of SPECT in distinguishing between glioma recurrence and ra-
diation necrosis reported extremely high specificity and sensitivity [64]. 

3.6. Posttreatment Imaging 
3.6.1. True Progression 

Criteria defining progression was first introduced in 2010. The RANO (Response As-
sessment in Neuro-oncology) guidelines depict true progression concerning imaging fea-
tures also reflecting on chemoradiation time of completion (<12 weeks and >12 weeks). 
Enhancement outside of the radiation field, enlargement of perpendicular diameter by 
25% or greater between the first and twelves week postradiotherapy scan, or clinical de-
terioration were progression-determining factors. The guidelines additionally considered 
the influence made on the imaging of antiangiogenic drugs. Increased FLAIR signal for 
nonenhancing lesions in such patients could indicate disease progression [65]. Improve-
ments in immunotherapy treatment forced modulating RANO guidelines which adjusted 

Figure 7. SPECT (A) and SPECT-MRI-fused (B) images show an accumulation of 99mTc- MIBI in a
tumor area (arrow) after treatment, confirming the true progression of glioblastoma. Images used for
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The diagnostic value of 99mTc-methionine SPECT is like PET FDG utility and higher
than contrast-enhanced MRI for the detection of glioma recurrence [63]. A meta-analysis
that assessed the efficacy of SPECT in distinguishing between glioma recurrence and
radiation necrosis reported extremely high specificity and sensitivity [64].

3.6. Posttreatment Imaging
3.6.1. True Progression

Criteria defining progression was first introduced in 2010. The RANO (Response
Assessment in Neuro-oncology) guidelines depict true progression concerning imaging
features also reflecting on chemoradiation time of completion (<12 weeks and >12 weeks).
Enhancement outside of the radiation field, enlargement of perpendicular diameter by
25% or greater between the first and twelves week postradiotherapy scan, or clinical dete-
rioration were progression-determining factors. The guidelines additionally considered
the influence made on the imaging of antiangiogenic drugs. Increased FLAIR signal for
nonenhancing lesions in such patients could indicate disease progression [65]. Improve-
ments in immunotherapy treatment forced modulating RANO guidelines which adjusted
the time frame for imaging criteria. The interval broadens to less than 6 months and more
than 6 months after the start of immunotherapy. The timing was given to observe if the
condition is getting worse while the immune response spreads. In 2017, modified RANO
criteria focused on the differentiation between true progression and pseudoprogression
based on at least two images taken in a month (Figure 8).

3.6.2. Pseudoprogression

Post-treatment radiographic changes can be challenging for a clinician on excluding
tumor progression (TP) from pseudoprogression (PsP). In a study of 208 patients, PsP is
observed relatively commonly. A correlation was observed between MGMT-methylated
tumors and PsP. Converting to numbers, 31% of the sample group was diagnosed with PsP.
A more sophisticated treatment planning should be carried out dealing with methylated
tumors if a preferable outcome is to be expected. Hence, PsP patients can endure a more
robust treatment, achieving longer progression-free survival compared to TP patients [66].
Although, radiologic assessment in neuro-oncology has come a long way since McDonald’s
criteria, which only had four basic features and relied solely on MRI. It is still frequently a
tough decision to pass in the clinical field when it comes to distinguishing TP/PsP [67]. In
situations such as radiation-induced treatment basic MRI imaging cannot always segregate
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the differences between PsP and TP. At first imitation of progression in the early stages of
healing can occur, relying only on conventional imaging can be troublesome. In the appli-
cation of chemoradiation, a common appearance of glioblastoma can be present on FLAIR,
impeding diagnostics. Hence, advanced imaging is indispensable in contemporary glial tu-
mor assessment. However, combining advanced imaging techniques such as DWI, PWI, or
MRS has a better chance of differentiating TP from PsP [40]. DSC perfusion in PsP usually
shows reduced cerebral blood volume, while viable tumors will usually have increased
rCBV [68]. MRS in PsP reveals a low Cho and Cho/NAA ratio ≤1.4, while due to cell death,
ADC values are expected to be elevated, with mean values ≥1300 × 10−6 mm2/s [69].
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apy. Postcontrast axial T1W image (A) reveals an enhancing mass with elevated perfusion at the
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It is also observed that IDH mutation frequently is detected in patients who have
pseudoprogression (Figure 9). In comparison, most of the time the corpus callosum is
involved in tumor progression, particularly in combination with the multiple enhancing
lesions crossing the midline and spreading in the subependymal regions [70]. To correctly
evaluate the patient’s survival and to make a correct clinical decision, it is of paramount
importance to differentiate PsP from TP [71]. In our clinical practice, we use DSC perfusion
and DWI as a part of the routine examination to differentiate between true progression
and pseudoprogression of glial tumors or radiation necrosis, and SPECT is added in more
difficult cases when MRI is not sufficient.

3.6.3. Pseudoresponse

Another significant post-treatment highlight worth discussing is a pseudoresponse.
The main difference from PsP is that pseudoresponse is observed in the setting of antiangio-
genic therapy. VEGF, hepatocyte growth factor, fibroblast growth factor, platelet-derived
growth factor, angiopoietins, and IL-8 are the proangiogenic agents known for glioblas-
toma’s angiogenic growth upregulation. Brain tumors express the VEGF-A factor in a
considerable huge amount. Bevacizumab is a humanized monoclonal antibody that nor-
malizes tumor vascularization by decreasing vessel size and permeability [31]. Therefore,
tumor exposure to chemotherapy and/or radiation therapy is improved significantly. Re-
sponse rates differ between 25% and 60% [72]. Changes in radiological features are followed
as early as one day after initiation of anti-VEGF therapy [72]. Imaging findings show de-
creased contrast enhancement, edema, and vessel permeability. Sadly, even having this
kind of impact, no correlation between bevacizumab and prolonged survival has been
proven [73]. However, patients show a longer timeframe for progression-free survival and
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the need for steroid treatment. Nevertheless, patients who show a response radiographi-
cally develop a rapid worsening of the disease. The changes are best seen in no-enhancing
T2 signal hyperintensity on T2 FLAIR sequences [74]. In the mind of pseudoresponse
evaluation, the ADC value is not as informative for determining pseudoprogression or true
progression. A recent study of ADC values exhibited normalization of the values following
the administration of the bevacizumab [75]. Nevertheless, for improved overall survival
prediction of recurrent glioblastoma patients, ADC values greater than 1.24 µm2/ms can
be beneficial [76].
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(C) shows contrast-enhancing areas (arrow) resolving without new treatment. However, 3 months
later (D) there is a new rapidly growing heterogeneous enhancing lesion (arrow) due to true progres-
sion. Images used for publication are taken from LUHS Radiology Clinic archives servers.

3.6.4. Radiation Necrosis

Even though radiation necrosis is the opposite extreme of pseudoprogression, several
studies refer to it as a single collective entity. However, pseudoprogression and radiation
necrosis are diverse from each other in timing, pathological mechanisms, histopathology,
and prognosis [77,78]. Pseudoprogression typically occurs up until a few months after
treatment, whereas radiation necrosis can be seen after a prolonged time, typically between
nine to twelve months but there have been cases when it was observed even after several
years. This peculiarity occurs because new areas of contrast enhancement are bounded by
the initial radiation field [79]. When it comes to survival prognosis, pseudoprogression has
a more favorable outcome compared with radiation necrosis. Life quality is also affected
by radiation necrosis, as neurologic functions often decline [80]. Patients with a 1p/19q
codeletion can expect a much higher risk of developing radiation necrosis compared with
other genetic markers [81].

The distinctive features of radiation necrosis are associated with feeble circulation
within the periventricular white matter or contiguous fields to the radiation affected by
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radiation necrosis are seen. Occurrences in contralesioned sites or multifocal distribution
were also reported [79]. “Swiss cheese” or “soap-bubble” images are more exhibited in
the presence of radiation necrosis. These are internal enhancement patterns, and the
margins are described as “feathery” in the peripheral or diffusive “mesh-like enhancement”
pattern [82]. Central necrosis when compared to the lesion’s solid part will appear as
a hyperdense signal on T2-weighted imaging [83]. The recurrent tumor typically has
lower ADC values than radiation necrosis. Perfusion MR reveals decreased rCBV in areas
of radiation necrosis (Figure 10). MRS shows elevated lactate/lipid peak and marked
reduction of NAA, choline, and creatine. To differentiate between radiation necrosis
and tumor progression, we always include DWI and MR perfusion in the post-treatment
followup MRI examination, with the occasional use of MR spectroscopy, and SPECT is
added if necessary.
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Figure 10. Radiation necrosis. Axial T2-FLAIR (A) and postcontrast axial T1W (B) images show
heterogeneous an irregularly shaped area with cavitations, surrounded by moderate peripheral
rim enhancement (arrows) and a wide T2-hyperintense zone of radiation-induced encephalopa-
thy, with no significant mass effect. No frank hyperperfusion is seen on the DSC-based cerebral
blood volume map (C). There is no significant change on a followup postcontrast axial T1W image
(D) 11 months later.

3.6.5. Imaging after Immunotherapy

Immunotherapy has come a long way since it was introduced. In 2018 Nobel Prize in
Medicine was awarded to James Allison and Tasuku Honjo for their breakthrough research
in immunotherapy. Today, it is mostly used as an adjuvant treatment; however, it is believed
that immunotherapy is the future of cancer treatment [84]. In the setting of treatment, an
increase in lesions can reflect a localized inflammatory response despite immunotherapy. A
new, enhancing lesion may be the response of the immune system in previously nonen-
hancing, infiltrative disease. “Flare phenomenon” or overdue response can occur [85].
Some researchers investigated the changes seen in perfusion and MRS after immune treat-
ment [86,87]. A lipid peak may be seen, as lipids are a substrate of natural killer (T cells) in
the setting of immunotherapy response. According to our experience, it is important to
check the medical history comprehensively for patients undergoing immunotherapy, to
avoid hyperdiagnostic for glioma patients. Another aspect that needs to be considered is
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the glioma immune tumor microenvironment (TME). Nevertheless, the treatment has an
expectancy of promising results; however, in the TME area glioma-associated macrophages,
myeloid-derived suppressor cells, and brain-resident cells compose obstacles to the treat-
ment [88]. Since the breakthrough of immunotherapy, there have not been conventional
guidelines for the response evaluation and so the immunotherapy response assessment
in neuro-oncology (iRANO) criteria was developed. The main differences from RANO
criteria are as follows: within 6 months after the start of immunotherapy, the appearance of
the new lesions without significant clinical decline should not automatically be interpreted
as a progressive disease; to confirm disease progression a repeat scan is needed 3 months
or later.

4. Conclusions

Glial tumors are among the most malignant brain tumors. New research in the
biomolecular field helps to differentiate and better foresee the glioma’s outcome, which is
reflected in a new 2021 WHO Classification of CNS Tumors. While standard diagnostic
imaging usually provides necessary information for identifying and characterizing adult-
type diffuse brain gliomas, advanced imaging techniques such as fMRI and DTI may
be required for treatment planning. However, differentiation between true progression,
pseudoprogression, and radiation necrosis on posttreatment followup imaging can be
challenging and usually additionally requires perfusion MRI as part of a routine protocol
on followup examination. When tumor progression is suspected, MR spectroscopy and
SPECT or PET imaging can be of value when the result of the routine examination remains
ambiguous. For the best glial tumor treatment results, a multimodal approach is needed.
Combining various imaging techniques, and considering the strengths and limitations, the
radiologist can develop a more evidence-based assessment.
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