Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (782)

Search Parameters:
Keywords = islet cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1447 KB  
Review
Preclinical Diagnosis of Type 1 Diabetes: Reality or Utopia
by Tatyana A. Marakhovskaya, Dmitry V. Tabakov, Olga V. Glushkova, Zoya G. Antysheva, Yaroslava S. Kiseleva, Ekaterina S. Petriaikina, Nickolay A. Bugaev-Makarovskiy, Anna S. Tashchilova, Vasiliy E. Akimov, Julia A. Krupinova, Viktor P. Bogdanov, Tatyana M. Frolova, Victoria S. Shchekina, Ekaterina S. Avsievich, Valerii V. Gorev, Irina G. Rybkina, Ismail M. Osmanov, Irina G. Kolomina, Igor E. Khatkov, Natalia A. Bodunova, Vladimir S. Yudin, Anton A. Keskinov, Sergey M. Yudin, Pavel Y. Volchkov, Dmitry V. Svetlichnyy, Mary Woroncow and Veronika I. Skvortsovaadd Show full author list remove Hide full author list
Biomedicines 2025, 13(10), 2444; https://doi.org/10.3390/biomedicines13102444 - 7 Oct 2025
Abstract
Type 1 Diabetes Mellitus (T1D) is an autoimmune disease characterized by the destruction of pancreatic β-cells, predominantly manifesting in childhood or adolescence. The lack of clearly interpretable biological markers in the early stages, combined with the insidious onset of the disease, poses [...] Read more.
Type 1 Diabetes Mellitus (T1D) is an autoimmune disease characterized by the destruction of pancreatic β-cells, predominantly manifesting in childhood or adolescence. The lack of clearly interpretable biological markers in the early stages, combined with the insidious onset of the disease, poses significant challenges to early diagnosis and the implementation of preventive strategies. The applicability of classic T1D biomarkers for understanding the mechanisms of the autoimmune process, preclinical diagnostics and treatment efficiency is limited. Despite advances in next-generation sequencing (NGS) technologies, which have enabled large-scale genome-wide association studies (GWASs) and the identification of polygenic risk scores (PRSs) associated with T1D predisposition, as well as progress in bioinformatics approaches for assessing dysregulated gene expression, no universally accepted risk assessment model or definitive predictive biomarker has been established. Until now, the use of new promising biomarkers for T1D diagnostics is limited by insufficient evidence base. However, they have great potential for the development of diagnostic methods on their basis, which has been shown in single or serial large-scale studies. This critical review covers both well-known biomarkers widely used in clinical practice, such as HLA-haplotype, non-HLA SNPs, islet antigen autoantibodies, C-peptide, and the promising ones, such as cytokines, cfDNA, microRNA, T1D-specific immune cells, islet-TCR, and T1D-specific vibrational bands. Additionally, we highlight new approaches that have been gaining popularity and have already demonstrated their potential: GWAS, single-cell transcriptomics, identification of antigen-specific T cells using scRNA-seq, and FTIR spectroscopy. Although some of the biomarkers, in our opinion, are still limited to a research context or are far from being implemented in clinical diagnostics of T1D, they have the greatest potential of being applied in clinical practice. When integrated with the monitoring of the classical autoimmune diabetes markers, they would increase the sensitivity and specificity during diagnostics of early and preclinical stages of the disease. This critical review aims to evaluate the current landscape of classical and emerging biomarkers in autoimmune diabetes, with a focus on those enabling early detection—prior to extensive destruction of pancreatic islets. Another goal of the review is to focus the attention of the scientific community on the gaps in early T1D diagnostics, and to help in the selection of markers, targets, and methods for scientific studies on creating novel diagnostic panels. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
15 pages, 1274 KB  
Article
Impact of Hypoglycemia on Morbidity, Mortality, and Resource Utilization in Gastrointestinal Stromal Tumor: A Nationwide Analysis
by Manasa Ginjupalli, Jayalekshmi Jayakumar, Arnold Forlemu, Anuj Raj Sharma, Praneeth Bandaru, Vikash Kumar, Kameswara Santosh Dheeraj Nalluri and Madhavi Reddy
Gastroenterol. Insights 2025, 16(4), 36; https://doi.org/10.3390/gastroent16040036 - 25 Sep 2025
Viewed by 269
Abstract
Background: Non-islet cell tumor hypoglycemia is increasingly reported with gastrointestinal stromal tumors (GIST), but population-level estimates of its clinical impact are limited. We evaluated associations between hypoglycemia and inpatient outcomes among GIST hospitalizations. Methods: We conducted a retrospective cross-sectional study of the National [...] Read more.
Background: Non-islet cell tumor hypoglycemia is increasingly reported with gastrointestinal stromal tumors (GIST), but population-level estimates of its clinical impact are limited. We evaluated associations between hypoglycemia and inpatient outcomes among GIST hospitalizations. Methods: We conducted a retrospective cross-sectional study of the National Inpatient Sample (NIS) 2018–2020. Adult GIST discharges were identified by ICD-10-CM codes and stratified by hypoglycemia. Primary outcomes were in-hospital mortality and resource utilization—length of stay (LOS) and total hospital charge. Secondary outcomes included malnutrition, sepsis, ascites, peritonitis, bowel perforation, intestinal obstruction, gastrointestinal bleeding, and iron deficiency anemia. Analyses used survey-weighted logistic regression for binary outcomes and generalized linear models for continuous outcomes. A propensity score-matched sensitivity analysis balanced sepsis and malnutrition. Results: Among 61,725 GIST hospitalizations, 0.72% had hypoglycemia. Mortality was 12.6% with hypoglycemia vs. 3.1% without; adjusted odds of death were higher (aOR 4.16, 95% CI 2.06–8.37; p < 0.001). Hypoglycemia was also associated with malnutrition (aOR 5.63, 3.37–9.40), sepsis (aOR 4.00, 2.24–7.14), ascites (aOR 3.43, 1.63–7.19), and peritonitis (aOR 2.91, 1.17–7.22). LOS was 4.61 days longer on average (not significant; p = 0.185), and total hospital charge was $5218 higher (β = 19,116.8; p = 0.95). In the matched cohort, the mortality association attenuated but persisted (aOR 1.38, 1.27–1.49; p < 0.001); peritonitis remained significant (aOR 1.10, 1.04–1.17), intestinal obstruction (aOR 4.91, 3.44–7.05) and iron deficiency anemia (aOR 3.54, 1.62–7.74) became significant, while ascites and gastrointestinal bleeding were not significant. Conclusions: Hypoglycemia in GIST, although uncommon, marks a higher-risk inpatient trajectory with increased mortality and several complications; these signals largely persist after balancing severity proxies. Resource-use differences were directionally higher but not statistically significant. Recognition of hypoglycemia may aid risk stratification and inpatient management in GIST. Full article
(This article belongs to the Collection Advances in Gastrointestinal Cancer)
Show Figures

Figure 1

24 pages, 12694 KB  
Article
Tissue-Specific Enhancement of Insulin Function and Restoration of Glucose-Stimulated Insulin Secretion by Croton guatemalensis Lotsy and Eryngium cymosum F. Delaroche
by Fernanda Artemisa Espinoza-Hernández, Angelina Daniela Moreno-Vargas, Andrea Díaz-Villaseñor, Gerardo Mata-Torres, Jazmín Samario-Román and Adolfo Andrade-Cetto
Pharmaceuticals 2025, 18(10), 1433; https://doi.org/10.3390/ph18101433 - 24 Sep 2025
Viewed by 544
Abstract
Background/Objectives: Ethnopharmacological studies indicates that plant-based infusions are usually consumed by some people in advanced stages of diabetes, that is, when poor pancreatic dysfunction coexists with insulin resistance (IR). Current treatments aim to prevent β-cell deterioration by promoting improved insulin function and/or [...] Read more.
Background/Objectives: Ethnopharmacological studies indicates that plant-based infusions are usually consumed by some people in advanced stages of diabetes, that is, when poor pancreatic dysfunction coexists with insulin resistance (IR). Current treatments aim to prevent β-cell deterioration by promoting improved insulin function and/or enhancing pancreatic function to avoid the development of hyperglycemia. Therefore, Croton guatemalensis (Cg) and Eryngium cymosum (Ec), two medicinal plants with potential insulin-sensitizing effects described in previous studies, were assessed on parameters related to IR and on the architecture of pancreatic islets in rats exposed to a syrup containing 8.8% glucose and 5.2% fructose in drinking water. Methods: After an 8-week exposure to syrup, plant extracts were orally administered for four weeks at traditional doses (Cg: 30 mg/kg body weight; Ec: 470 mg/kg body weight). Body weight, food intake, and drinking water consumption were monitored. At the end of the study, IR surrogate indices were calculated, metabolic assays were performed, and white adipose tissues, liver, gastrocnemius muscle, and pancreas were extracted in fasting and postprandial state for lipid quantification (liver), measurement of Akt phosphorylation status by western blot (liver and muscle), and determination of insulin content by immunohistochemistry (pancreatic islets). Results: Both species decreased hepatic lipid content without promoting significant changes in visceral adiposity. Although they did not improve surrogate markers of fasting IR, both ameliorated insulin function, glucose tolerance, and restored the glucose-stimulated insulin secretory response in metabolic tests. Cg restored the insulin signaling response in liver and muscle, whereas Ec only did so in muscle. Moreover, both appeared to enhance insulin pancreatic content or restore pancreatic islet population. Conclusions: Cg and Ec can reverse the IR phenotype in a tissue-specific manner and improve pancreatic function. Full article
Show Figures

Graphical abstract

18 pages, 4239 KB  
Article
Sex-Specific Differences in the Revascularization of Grafted Pancreatic Islets
by Selina Wrublewsky, Annika Valerie Widmann, Caroline Bickelmann, Alex Rafacho, Leticia Prates Roma, Matthias W. Laschke and Emmanuel Ampofo
Cells 2025, 14(17), 1344; https://doi.org/10.3390/cells14171344 - 29 Aug 2025
Viewed by 888
Abstract
Islet transplantation can improve glycemic control in a subset of patients with type 1 diabetes mellitus (T1DM). This therapeutic approach is often limited by scarcity of adequate donor islets and an insufficient revascularization capacity of grafted islets. Recent findings reveal that sex is [...] Read more.
Islet transplantation can improve glycemic control in a subset of patients with type 1 diabetes mellitus (T1DM). This therapeutic approach is often limited by scarcity of adequate donor islets and an insufficient revascularization capacity of grafted islets. Recent findings reveal that sex is an important determinant for the outcome of islet transplantation. However, it is still unknown how the biological sex of islet donors and recipients affects the revascularization of the grafts during the initial ischemic post-transplantation phase. In this study, we observed in a mouse dorsal skinfold chamber model a higher revascularization capacity of female islets transplanted in female or male recipient mice when compared to male islets transplanted in female or male recipients. To mimic the ischemic in vivo conditions ex vivo, we subjected isolated female and male islets to oxygen-glucose deprivation. Under these conditions female islets expressed and secreted significantly more glucagon (GCG). By a panel of functional angiogenesis assays, we could further demonstrate that GCG exhibits a strong pro-angiogenic function. This effect was pronounced in blood vessels as well as endothelial cells and pericytes of female origin due to a higher expression of GCG receptor. Taken together, these results not only confirm the clinical observation that transplantation of female islets improves the outcome of islet transplantation but also indicate that this is mediated by an accelerated GCG-driven islet engraftment. Full article
(This article belongs to the Special Issue New Insights into Vascular Biology in Health and Disease)
Show Figures

Figure 1

26 pages, 925 KB  
Review
Comparative Pharmacological and Pharmaceutical Perspectives on Antidiabetic Therapies in Humans, Dogs, and Cats
by Iljin Kim and Jang-Hyuk Yun
Pharmaceutics 2025, 17(9), 1098; https://doi.org/10.3390/pharmaceutics17091098 - 23 Aug 2025
Viewed by 1163
Abstract
Background/Objectives: Diabetes mellitus (DM) is an increasingly prevalent endocrine disorder affecting humans and companion animals. Type 1 DM (T1DM) and type 2 DM (T2DM) are well characterized in humans, and canine DM most often resembles T1DM, marked by insulin dependence and β-cell destruction. [...] Read more.
Background/Objectives: Diabetes mellitus (DM) is an increasingly prevalent endocrine disorder affecting humans and companion animals. Type 1 DM (T1DM) and type 2 DM (T2DM) are well characterized in humans, and canine DM most often resembles T1DM, marked by insulin dependence and β-cell destruction. Conversely, feline DM shares key features with human T2DM, including insulin resistance, obesity-related inflammation, and islet amyloidosis. This review provides a comprehensive comparative analysis of antidiabetic therapies in humans, dogs, and cats, focusing on three core areas: disease pathophysiology, pharmacological and delivery strategies, and translational implications. In human medicine, a wide array of insulin analogs, oral hypoglycemic agents, and incretin-based therapies, including glucagon-like peptide-1 receptor agonists (liraglutide) and sodium-glucose cotransporter-2 inhibitors (empagliflozin), are available. Veterinary treatments remain limited to species-adapted insulin formulations and off-label use of human drugs. Interspecies differences in gastrointestinal physiology, drug metabolism, and behavioral compliance influence therapeutic efficacy and pharmacokinetics. Recent innovations, such as microneedle patches for insulin delivery and continuous glucose monitoring systems, show promise in humans and animals. Companion animals with naturally occurring diabetes serve as valuable models for preclinical testing of novel delivery platforms and long-acting formulations under real-world settings. While these technologies show potential, challenges remain in regulatory approval and behavioral adaptation in animals. Conclusions: Future research should prioritize pharmacokinetic bridging studies, veterinary-specific formulation trials, and device validation in animal models. By highlighting shared and species-specific characteristics of DM pathogenesis and treatment, this review advocates a One Health approach toward optimized antidiabetic therapies that benefit human and veterinary medicine. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

51 pages, 4873 KB  
Review
Type 2 Diabetes and the Multifaceted Gut-X Axes
by Hezixian Guo, Liyi Pan, Qiuyi Wu, Linhao Wang, Zongjian Huang, Jie Wang, Li Wang, Xiang Fang, Sashuang Dong, Yanhua Zhu and Zhenlin Liao
Nutrients 2025, 17(16), 2708; https://doi.org/10.3390/nu17162708 - 21 Aug 2025
Viewed by 2374
Abstract
Type 2 diabetes (T2D) is a complex metabolic disease characterized by chronic hyperglycemia due to insulin resistance and inadequate insulin secretion. Beyond the classically implicated organs, emerging evidence highlights the gut as a central player in T2D pathophysiology through its interactions with metabolic [...] Read more.
Type 2 diabetes (T2D) is a complex metabolic disease characterized by chronic hyperglycemia due to insulin resistance and inadequate insulin secretion. Beyond the classically implicated organs, emerging evidence highlights the gut as a central player in T2D pathophysiology through its interactions with metabolic organs. The gut hosts trillions of microbes and enteroendocrine cells that influence inflammation, energy homeostasis, and hormone regulation. Disruptions in gut homeostasis (dysbiosis and increased permeability) have been linked to obesity, insulin resistance, and β-cell dysfunction, suggesting multifaceted “Gut-X axes” contribute to T2D development. We aimed to comprehensively review the evidence for gut-mediated crosstalk with the pancreas, endocrine system, liver, and kidneys in T2D. Key molecular mechanisms (incretins, bile acids, short-chain fatty acids, endotoxins, etc.) were examined to construct an integrated model of how gut-derived signals modulate metabolic and inflammatory pathways across organs. We also discuss clinical implications of targeting Gut-X axes and identify knowledge gaps and future research directions. A literature search (2015–2025) was conducted in PubMed, Scopus, and Web of Science, following PRISMA guidelines (Preferred Reporting Items for Systematic Reviews). Over 150 high-impact publications (original research and review articles from Nature, Cell, Gut, Diabetologia, Lancet Diabetes & Endocrinology, etc.) were screened. Data on gut microbiota, enteroendocrine hormones, inflammatory mediators, and organ-specific outcomes in T2D were extracted. The GRADE framework was used informally to prioritize high-quality evidence (e.g., human trials and meta-analyses) in formulating conclusions. T2D involves perturbations in multiple Gut-X axes. This review first outlines gut homeostasis and T2D pathogenesis, then dissects each axis: (1) Gut–Pancreas Axis: how incretin hormones (GLP-1 and GIP) and microbial metabolites affect insulin/glucagon secretion and β-cell health; (2) Gut–Endocrine Axis: enteroendocrine signals (e.g., PYY and ghrelin) and neural pathways that link the gut with appetite regulation, adipose tissue, and systemic metabolism; (3) Gut–Liver Axis: the role of microbiota-modified bile acids (FXR/TGR5 pathways) and bacterial endotoxins in non-alcoholic fatty liver disease (NAFLD) and hepatic insulin resistance; (4) Gut–Kidney Axis: how gut-derived toxins and nutrient handling intersect with diabetic kidney disease and how incretin-based and SGLT2 inhibitor therapies leverage gut–kidney communication. Shared mechanisms (microbial SCFAs improving insulin sensitivity, LPS driving inflammation via TLR4, and aryl hydrocarbon receptor ligands modulating immunity) are synthesized into a unified model. An integrated understanding of Gut-X axes reveals new opportunities for treating and preventing T2D. Modulating the gut microbiome and its metabolites (through diet, pharmaceuticals, or microbiota therapies) can improve glycemic control and ameliorate complications by simultaneously influencing pancreatic islet function, hepatic metabolism, and systemic inflammation. However, translating these insights into clinical practice requires addressing gaps with robust human studies. This review provides a state-of-the-art synthesis for researchers and clinicians, underlining the gut as a nexus for multi-organ metabolic regulation in T2D and a fertile target for next-generation therapies. Full article
(This article belongs to the Special Issue Dietary Regulation of Glucose and Lipid Metabolism in Diabetes)
Show Figures

Figure 1

16 pages, 5798 KB  
Article
Ramulus Mori (Sangzhi) Alkaloids Improve Pancreatic β-Cell Function Through Gut Microbial and Intra-Islet 2-Methoxyestradiol Biosynthesis
by Nan Wu, Lusi Lu, Yiming Liu, Sunyue He, Chunyi Xu, Ying Wu, Yuchen Zhao, Xihua Lin, Wenjing Zhang and Jiaqiang Zhou
Biomedicines 2025, 13(8), 2013; https://doi.org/10.3390/biomedicines13082013 - 19 Aug 2025
Cited by 1 | Viewed by 698
Abstract
Background: Ramulus Mori (Sangzhi) Alkaloids (SZ-A) are natural hypoglycemic compounds known to enhance insulin secretion. Given the emerging role of the gut microbiota in regulating β-cell function, in this study, we aimed to investigate whether SZ-A exert their beneficial effects through modulating [...] Read more.
Background: Ramulus Mori (Sangzhi) Alkaloids (SZ-A) are natural hypoglycemic compounds known to enhance insulin secretion. Given the emerging role of the gut microbiota in regulating β-cell function, in this study, we aimed to investigate whether SZ-A exert their beneficial effects through modulating the gut microbiota and its metabolites. Methods: A diabetic mouse model was established using a high-fat diet and streptozotocin, followed by 20 weeks of SZ-A treatment. Gut microbiota and metabolites were profiled via 16S rRNA sequencing and liquid chromatography–mass spectrometry, respectively. Spearman’s correlation analysis was used to explore associations between gut microbiota and metabolites. Single-cell RNA sequencing (scRNA-seq) was used to assess gene expression and signaling pathway changes in β cells. Results: Our results demonstrate that SZ-A alleviated hyperglycemia and increased islet numbers in T2DM mice. SZ-A treatment also reshaped the gut microbiota, notably enriching quantities of Lactobacillus and norank_f__Eubacterium_coprostanoligenes_group, which may contribute to increasing levels of 2-methoxyestradiol (2-ME), a bioactive metabolite. Moreover, scRNA-seq revealed an increased proportion of COMT+ cells in the islets, suggesting that 2-ME may also be synthesized within the islets. In vitro, 2-ME suppressed HIF-1α signaling and promoted insulin secretion, indicating that 2-ME may act as a crucial mediator of the beneficial effects of SZ-A. Conclusions: SZ-A improve β-cell function by increasing 2-ME levels via gut microbiota modulation and islet production, ultimately suppressing HIF-1α signaling and restoring β-cell homeostasis. Full article
Show Figures

Graphical abstract

22 pages, 856 KB  
Review
Combined Use of Vitamin D and DPP-4 Inhibitors as a Potential Adjuvant Treatment Strategy to Enhance the Efficacy of Novel Beta-Cell Replacement Therapies for Type 1 Diabetes
by Marcelo Maia Pinheiro, Felipe Moura Maia Pinheiro, Bruna Fioravante Di Serio, Nathalia Padilla, Benjamin Udoka Nwosu, David Della-Morte, Camillo Ricordi and Marco Infante
Med. Sci. 2025, 13(3), 141; https://doi.org/10.3390/medsci13030141 - 18 Aug 2025
Viewed by 1182
Abstract
Emerging evidence suggests that vitamin D and dipeptidyl peptidase-4 (DPP-4) inhibitors exert synergistic immunomodulatory, anti-inflammatory and antioxidant actions. Moreover, intervention studies showed that combination therapy based on the concomitant use of vitamin D and DPP-4 inhibitors (VIDPP-4i) may preserve beta-cell function in patients [...] Read more.
Emerging evidence suggests that vitamin D and dipeptidyl peptidase-4 (DPP-4) inhibitors exert synergistic immunomodulatory, anti-inflammatory and antioxidant actions. Moreover, intervention studies showed that combination therapy based on the concomitant use of vitamin D and DPP-4 inhibitors (VIDPP-4i) may preserve beta-cell function in patients with type 1 diabetes mellitus (T1D) and latent autoimmune diabetes in adults (LADA). These effects are particularly relevant in the context of beta-cell replacement strategies, whose long-term efficacy can be hampered by various factors, such as immune-mediated graft rejection, inadequate vascularization, hypoxia, trauma-induced cell apoptosis, fibrosis, host immune response, and recurrence of autoimmunity. Based on preclinical and clinical studies conducted in the fields of autoimmune diabetes and solid organ/cell transplantation, the present narrative review aims to describe the rationale behind the investigation of VIDPP-4i combination therapy as an adjuvant treatment strategy to enhance the efficacy of novel beta-cell replacement therapies for T1D. In this regard, we discuss the potential immune and metabolic mechanisms through which vitamin D and DPP-4 inhibitors can promote the long-term function and survival of transplanted islets in patients with T1D receiving various types of beta-cell replacement therapies, including therapeutic approaches using encapsulated stem cell-derived beta cells. Full article
(This article belongs to the Section Endocrinology and Metabolic Diseases)
Show Figures

Figure 1

21 pages, 1321 KB  
Review
Neurotransmitter Alterations in Prediabetes and Type 2 Diabetes Mellitus: A Narrative Review
by Roxana-Viorela Ahrițculesei, Lidia Boldeanu, Anda Lorena Dijmărescu, Mohamed-Zakaria Assani, Mihail Virgil Boldeanu, Isabela Siloși and Cristin Constantin Vere
Int. J. Mol. Sci. 2025, 26(16), 7847; https://doi.org/10.3390/ijms26167847 - 14 Aug 2025
Viewed by 4665
Abstract
Prediabetes and early type 2 diabetes mellitus (T2D) are increasingly recognized as states of both metabolic and neurochemical dysregulation. This narrative review synthesizes emerging evidence of alterations in key neurotransmitter systems—dopamine, serotonin, norepinephrine, gamma-aminobutyric acid, and glutamate—in individuals with prediabetes and diabetes. Beyond [...] Read more.
Prediabetes and early type 2 diabetes mellitus (T2D) are increasingly recognized as states of both metabolic and neurochemical dysregulation. This narrative review synthesizes emerging evidence of alterations in key neurotransmitter systems—dopamine, serotonin, norepinephrine, gamma-aminobutyric acid, and glutamate—in individuals with prediabetes and diabetes. Beyond peripheral insulin resistance and β-cell dysfunction, disturbances in the central nervous system, especially related to neurotransmitter signaling, may play a role in disease onset and progression. Neuroimaging studies reveal early imbalances in excitatory and inhibitory neurotransmitters, while biochemical and histological findings demonstrate altered receptor expression in both the brain and pancreatic islets. These changes affect metabolic control and are implicated in mood, cognition, and feeding behavior. We investigate the mechanistic links between neurotransmitter dysfunction and glucose metabolism, including the roles of brain insulin resistance, inflammation, mitochondrial stress, and gut–brain axis signaling. Finally, we discuss therapeutic strategies that target neurochemical pathways and highlight the need for longitudinal, sex-aware, and multi-omics studies to refine early interventions. Understanding the neurobiological roots of early T2D could revolutionize risk assessment and open doors for new neuro-metabolic treatments. Full article
(This article belongs to the Special Issue Diabetes and Metabolic Dysfunction)
Show Figures

Figure 1

20 pages, 1155 KB  
Perspective
Historically Based Perspective on the Immunotherapy of Type 1 Diabetes: Where We Have Been, Where We Are, and Where We May Go
by Eugenio Cavalli, Giuseppe Rosario Pietro Nicoletti and Ferdinando Nicoletti
J. Clin. Med. 2025, 14(16), 5621; https://doi.org/10.3390/jcm14165621 - 8 Aug 2025
Viewed by 1316
Abstract
Systematic Background/Objectives: Type 1 diabetes mellitus (T1DM) is an autoimmune condition in which pancreatic β-cells are selectively destroyed, predominantly by autoreactive T lymphocytes. Despite decades of research, the achievement of durable immune tolerance remains elusive. This review presents a historically grounded and forward-looking [...] Read more.
Systematic Background/Objectives: Type 1 diabetes mellitus (T1DM) is an autoimmune condition in which pancreatic β-cells are selectively destroyed, predominantly by autoreactive T lymphocytes. Despite decades of research, the achievement of durable immune tolerance remains elusive. This review presents a historically grounded and forward-looking perspective on the evolution of immunotherapy in T1DM, from early immunosuppressive interventions to advanced precision-based cellular approaches. Specifically, we focus on systemic immunosuppressants (e.g., corticosteroids, cyclosporine), monoclonal antibodies (e.g., anti-CD3, anti-IL-1, anti-TNF), regulatory cell-based approaches (e.g., Tregs, CAR-Tregs, MDSCs), and β-cell replacement strategies using stem cell-derived islets. Methods: We analyzed major clinical and translational milestones in immunotherapy for T1DM, with particular attention to the transition from broad immunosuppression to targeted modulation of immune pathways. Emerging data on cell-based therapies, artificial intelligence (AI)-driven stratification, and personalized intervention timing have been incorporated to provide a comprehensive overview of current and future directions. Results: Initial therapies such as corticosteroids and cyclosporine offered proof-of-concept for immune modulation, yet suffered from relapse and toxicity. The introduction of monoclonal antibodies (e.g., teplizumab) marked a shift toward immune-specific intervention, particularly in stage 2 preclinical T1DM. More recent approaches include low-dose IL-2, checkpoint modulation, and antigen-specific tolerance strategies. Cellular therapies such as Treg adoptive transfer, chimeric antigen receptor Tregs (CAR-Tregs), and stem cell-derived islet replacements (e.g., VX-880) have shown promise in preserving β-cell function and modulating autoimmunity. Myeloid-derived suppressor cells (MDSCs), although still preclinical, represent a complementary avenue for immune tolerance induction. Concurrently, AI-based models are emerging as tools to stratify risk and personalize immunotherapeutic timing, enhancing trial design and outcome prediction. Conclusions: In conclusion, the historical progression from broad immunosuppression to precision-driven strategies underscores the importance of stage-specific, mechanism-based interventions in T1DM. The convergence of targeted biologics, regenerative cell therapies, and β-cell replacement approaches, supported by AI-enabled patient stratification, offers a realistic path toward durable immune tolerance and functional β-cell preservation. Continued integration of these modalities, coupled with rigorous long-term evaluation, will be essential to transform these scientific advances into sustained clinical benefit. Full article
(This article belongs to the Section Immunology & Rheumatology)
Show Figures

Figure 1

23 pages, 4484 KB  
Article
Mechanistic Study of NT5E in Reg3β-Induced Macrophage Polarization and Cooperation with Plasma Proteins in Myocarditis Injury and Repair
by Shichao Zhang, Peirou Zhou, Fanfan Zhu, Yingying Wang, Xuesong Wang, Jingwen Chen, Yumeng Li and Xiaoyi Shao
Biology 2025, 14(8), 1017; https://doi.org/10.3390/biology14081017 - 7 Aug 2025
Viewed by 705
Abstract
Background: We aimed to explore the mechanism by which extracellular-5′-nucleotidase (NT5E) regulates macrophage polarization via regenerating islet-derived protein 3 beta (Reg3β) and other plasma proteins that mediate immune-cell effects on myocarditis. Methods: The involvement of NT5E in Reg3β-induced macrophage polarization was first analyzed [...] Read more.
Background: We aimed to explore the mechanism by which extracellular-5′-nucleotidase (NT5E) regulates macrophage polarization via regenerating islet-derived protein 3 beta (Reg3β) and other plasma proteins that mediate immune-cell effects on myocarditis. Methods: The involvement of NT5E in Reg3β-induced macrophage polarization was first analyzed using RNA sequencing, Western blotting, and quantitative polymerase chain reaction. Mendelian randomization was employed to identify NT5E and various plasma proteins as potential therapeutic targets for myocarditis. Mediation analysis, enrichment analysis, protein–protein interaction network analysis, drug prediction, molecular docking, and single-cell RNA sequencing were integrated to further evaluate the biological functions and pharmacological potential of the identified targets. Finally, phenome-wide association studies were conducted to assess the safety of targeting these proteins. Results: NT5E expression was elevated in Reg3β-stimulated M2 macrophages. The expression of Arg-1, a marker of M2 macrophages, decreased upon NT5E knockdown, suggesting that NT5E is involved in the Reg3β-mediated polarization of macrophages to the M2 phenotype. Mendelian randomization analysis identified NT5E and 80 other plasma proteins as being causally associated with myocarditis. Mediation analysis revealed 12 immune-cell types were mediators of the effects of plasma protein on myocarditis progression. Drug prediction identified candidates such as ICN 1229 and chrysin, which showed strong binding affinities in molecular docking analyses. These findings may contribute to the development of effective treatments for myocarditis. Conclusions: NT5E plays a dual role in Reg3β-induced macrophage polarization and in interacting with plasma proteins that influence the onset and progression of myocarditis through immune-cell pathways. Full article
Show Figures

Figure 1

12 pages, 1664 KB  
Article
Dual Effect of 4-Methylumbelliferone on INS1E Cells: Enhancing Migration and Glucose-Stimulated Insulin Secretion
by Giorgia Adamo, Daniele Romancino, Paola Gargano, Marta Sarullo, Aldo Nicosia, Sabrina Picciotto, Giulia Smeraldi, Antonella Bongiovanni and Monica Salamone
Int. J. Mol. Sci. 2025, 26(15), 7637; https://doi.org/10.3390/ijms26157637 - 7 Aug 2025
Viewed by 747
Abstract
Recent studies have demonstrated that the coumarin derivative 4-Methylumbelliferone (4MU) has an antidiabetic effect in rodent models. 4MU is known to decrease the availability of hyaluronan (HA) substrates and inhibit the activity of different HA synthases. Nevertheless, it has been observed that 4MU [...] Read more.
Recent studies have demonstrated that the coumarin derivative 4-Methylumbelliferone (4MU) has an antidiabetic effect in rodent models. 4MU is known to decrease the availability of hyaluronan (HA) substrates and inhibit the activity of different HA synthases. Nevertheless, it has been observed that 4MU may also affect cellular metabolism. In this study, we utilize the rat insulinoma beta cell line (INS-1E) cultured in both two-dimensional (2D) and three-dimensional (3D) experimental settings (pseudo islets), as an in vitro model to study beta cell functionality. For the first time, we observed that treating INS1E cells with 4MU results in improved insulin secretion. Additionally, we discovered that 4MU treatment elicited morphological changes from multilayer to monolayer conditions, along with a varied distribution of insulin granules and cell adhesion properties. Notably, we found that insulin secretion is not correlated with HA production. The same result was observed in co-culture experiments involving INS-1E cells and stromal vascular fraction (SVF) from adipose tissue. These experiments aim to investigate the effects of 4MU on beta cells in the context of its potential use in early-stage type 1 diabetes and in enhancing islet transplantation outcomes. Full article
(This article belongs to the Special Issue New Insights into Hyaluronan in Human Medicine)
Show Figures

Figure 1

19 pages, 427 KB  
Review
The Role of Viral Infections in the Immunopathogenesis of Type 1 Diabetes Mellitus: A Narrative Review
by Ioanna Kotsiri, Maria Xanthi, Charalampia-Melangeli Domazinaki and Emmanouil Magiorkinis
Biology 2025, 14(8), 981; https://doi.org/10.3390/biology14080981 - 2 Aug 2025
Viewed by 1578
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections [...] Read more.
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disorder characterized by the destruction of insulin-producing pancreatic beta cells, resulting in lifelong insulin dependence. While genetic susceptibility—particularly human leukocyte antigen (HLA) class II alleles—is a major risk factor, accumulating evidence implicates viral infections as potential environmental triggers in disease onset and progression. This narrative review synthesizes current findings on the role of viral pathogens in T1DM pathogenesis. Enteroviruses, especially Coxsackie B strains, are the most extensively studied and show strong epidemiological and mechanistic associations with beta-cell autoimmunity. Large prospective studies—including Diabetes Virus Detection (DiViD), The environmental determinans of diabetes in the young (TEDDY), Miljøfaktorer i utvikling av type 1 diabetes (MIDIA), and Diabetes Autoimmunity Study in the Young (DAISY)—consistently demonstrate correlations between enteroviral presence and the initiation or acceleration of islet autoimmunity. Other viruses—such as mumps, rubella, rotavirus, influenza A (H1N1), and SARS-CoV-2—have been investigated for their potential involvement through direct cytotoxic effects, immune activation, or molecular mimicry. Interestingly, certain viruses like varicella-zoster virus (VZV) and cytomegalovirus (CMV) may exert modulatory or even protective influences on disease progression. Proposed mechanisms include direct beta-cell infection, molecular mimicry, bystander immune activation, and dysregulation of innate and adaptive immunity. Although definitive causality remains unconfirmed, the complex interplay between genetic predisposition, immune responses, and viral exposure underscores the need for further mechanistic research. Elucidating these pathways may inform future strategies for targeted prevention, early detection, and vaccine or antiviral development in at-risk populations. Full article
Show Figures

Figure 1

21 pages, 4988 KB  
Article
Ozone Exposure Induces Prediabetic Symptoms Through Hepatic Glycogen Metabolism and Insulin Resistance
by Yuchai Tian, Xiaoyun Wu, Zhihua Gong, Xiaomin Liang, Huizhen Zhu, Jiyue Zhang, Yangcheng Hu, Bin Li, Pengchong Xu, Kaiyue Guo and Huifeng Yue
Toxics 2025, 13(8), 652; https://doi.org/10.3390/toxics13080652 - 31 Jul 2025
Viewed by 807
Abstract
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related [...] Read more.
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related to impaired glucose tolerance and insulin resistance were screened through the Comparative Toxicogenomics Database (CTD), and verified using quantitative real-time PCR. In addition, liver histopathological observations and the determination of basic biochemical indicators were conducted, and targeted metabolomics analysis was performed on the liver to verify glycogen levels and gene expression. In vitro validation was conducted with HepG2 and Min6 cell lines. (3) Results: Fasting blood glucose and insulin resistance were elevated following O3 exposure. Given that the liver plays a critical role in glucose metabolism, we further investigated hepatocyte apoptosis and alterations in glycogen metabolism, including reduced glycogen levels and genetic dysregulation. Metabolomics analysis revealed abnormalities in fructose metabolism and glycogen synthesis in the livers of the O3-exposed group. In vitro studies demonstrated that oxidative stress enhances both liver cell apoptosis and insulin resistance in pancreatic islet β cells. (4) Conclusions: O3 triggers prediabetes symptoms via hepatic metabolic dysfunction and hepatocyte apoptosis. The identified metabolites and genes offer potential as early biomarkers and therapeutic targets. Full article
Show Figures

Graphical abstract

25 pages, 3050 KB  
Review
REG3A: A Multifunctional Antioxidant Lectin at the Crossroads of Microbiota Regulation, Inflammation, and Cancer
by Jamila Faivre, Hala Shalhoub, Tung Son Nguyen, Haishen Xie and Nicolas Moniaux
Cancers 2025, 17(14), 2395; https://doi.org/10.3390/cancers17142395 - 19 Jul 2025
Viewed by 1180
Abstract
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. [...] Read more.
REG3A, a prominent member of the human regenerating islet-derived (REG) lectin family, plays a pivotal and multifaceted role in immune defense, inflammation, and cancer biology. Primarily expressed in gastrointestinal epithelial cells, REG3A reinforces barrier integrity, orchestrates mucosal immune responses, and regulates host–microbiota interactions. It also functions as a potent non-enzymatic antioxidant, protecting tissues from oxidative stress. REG3A expression is tightly regulated by inflammatory stimuli and is robustly induced during immune activation, where it limits microbial invasion, dampens tissue injury, and promotes epithelial repair. Beyond its antimicrobial and immunomodulatory properties, REG3A contributes to the resolution of inflammation and the maintenance of tissue homeostasis. However, its role in cancer is highly context-dependent. In some tumor types, REG3A fosters malignant progression by enhancing cell survival, proliferation, and invasiveness. In others, it acts as a tumor suppressor, inhibiting growth and metastatic potential. These opposing effects are likely dictated by a combination of factors, including the tissue of origin, the composition and dynamics of the tumor microenvironment, and the stage of disease progression. Additionally, the secreted nature of REG3A implies both local and systemic effects, further modulated by organ-specific physiology. Experimental variability may also reflect differences in methodologies, analytical tools, and model systems used. This review synthesizes current knowledge on the pleiotropic functions of REG3A, emphasizing its roles in epithelial defense, immune regulation, redox homeostasis, and oncogenesis. A deeper understanding of REG3A’s pleiotropic effects could open up new therapeutic avenues in both inflammatory disorders and cancer. Full article
(This article belongs to the Special Issue Lectins in Cancer)
Show Figures

Figure 1

Back to TopTop