Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (531)

Search Parameters:
Keywords = irrigation districts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4804 KiB  
Article
Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China
by Xiaodong Fan, Dianyu Chen, Haitao Che, Yakun Wang, Yadan Du and Xiaotao Hu
Agronomy 2025, 15(8), 1852; https://doi.org/10.3390/agronomy15081852 - 31 Jul 2025
Viewed by 246
Abstract
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects [...] Read more.
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects of irrigation amounts on agricultural yield and the mechanisms under deep storage irrigation. A three-year field experiment (2020–2023) was conducted in the Guanzhong Plain, according to five soil wetting layer depths (RF: 0 cm; W1: control, 120 cm; W2: 140 cm; W3: 160 cm; W4: 180 cm) with soil saturation water content as the irrigation upper limit. Results exhibited that, compared to W1, the W2, W3, and W4 treatments led to the increased plant height, leaf area index, and dry matter accumulation. Meanwhile, the W2, W3, and W4 treatments improved kernel weight increment achieving maximum grain-filling rate (Wmax), maximum grain-filling rate (Gmax), and average grain-filling rate (Gave), thereby enhancing the effective spikes (ES) and grain number per spike (GS), and thus increased wheat grain yield (GY). In relative to W1, the W2, W3, and W4 treatments increased the ES, GS, and GY by 11.89–19.81%, 8.61–14.36%, and 8.17–13.62% across the three years. Notably, no significant difference was observed in GS and GY between W3 and W4 treatments, but W4 treatment displayed significant decreases in ES by 3.04%, 3.06%, and 2.98% in the respective years. The application of a structural equation modeling (SEM) revealed that deep storage irrigation improved ES and GS by positively regulating Wmax, Gmax, and Gave, thus significantly increasing GY. Overall, this study identified the optimal threshold (W3 treatment) to maximize wheat yields by optimizing both the vegetative growth and grain-filling dynamics. This study provides essential support for the feasibility assessment of deep storage irrigation before flood seasons, which is vital for the balance and coordination of food security and water security. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

24 pages, 3509 KiB  
Article
Water: The Central Theme of the Proposed Sonora Estuarine Biocultural Corridor of Northwestern Mexico
by Diana Luque-Agraz, Martha A. Flores-Cuamea, Alessia Kachadourian-Marras, Lara Cornejo-Denman and Arthur D. Murphy
Water 2025, 17(15), 2227; https://doi.org/10.3390/w17152227 - 26 Jul 2025
Viewed by 384
Abstract
The Sonora Estuarine Biocultural Corridor (CBES) is made up of six coastal wetlands with mangrove forest, internationally certified as Ramsar Sites. Four are part of indigenous territories whose inhabitants have serious development lags and low water security. Five are within one or more [...] Read more.
The Sonora Estuarine Biocultural Corridor (CBES) is made up of six coastal wetlands with mangrove forest, internationally certified as Ramsar Sites. Four are part of indigenous territories whose inhabitants have serious development lags and low water security. Five are within one or more of six irrigation districts of national relevance. The objective is to learn about the socio-environmental problems of the CBES, focused on the issue of water, as well as community proposals for solutions. Intercultural, mixed methodology approach. Prospecting visits were carried out in the six estuaries of the CBES, and 84 semi-structured interviews were conducted with experts from all social sectors who know the problems of the CBES in three (out of six) estuaries associated with indigenous territories. The main problem is centered on the issue of water: they receive contaminated water from agroindustry, aquaculture, and the municipal service; the fresh water of the rivers is almost nil, rainfall has decreased while the heat increases, and marine and terrestrial biodiversity decreases. This affects the food and economic security of the local population and generates conflicts between the different productive activities. A multisectoral organization that integrates the six estuaries would improve community wellbeing and, in turn, climate resilience. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

20 pages, 2635 KiB  
Article
Regulation of CH4 and N2O Emissions by Biochar Application in a Salt-Affected Sorghum Farmland
by Yibo Zhao, Wei Yang, Zhongyi Qu, Liping Wang, Yixuan Yang and Yusheng Hao
Agriculture 2025, 15(15), 1592; https://doi.org/10.3390/agriculture15151592 - 24 Jul 2025
Viewed by 257
Abstract
The ameliorative mechanism of biochar in reducing soil greenhouse gas emissions in arid saline farmland remains unclear. A two-year field study in sorghum farmland in China’s Hetao Irrigation District was conducted to assess the influence of corn straw-derived biochar on GHG emissions and [...] Read more.
The ameliorative mechanism of biochar in reducing soil greenhouse gas emissions in arid saline farmland remains unclear. A two-year field study in sorghum farmland in China’s Hetao Irrigation District was conducted to assess the influence of corn straw-derived biochar on GHG emissions and explore the role of soil physicochemical properties in regulating GHG fluxes. Four different biochar application rates were tested: 0 (CK), 15 (C15), 30 (C30), and 45 t hm−2 (C45). Compared to CK, C15 reduced CH4 emissions by 15.2% and seasonal CH4 flux by 77.0%. The N2O flux followed CK > C45 > C30 > C15 from 2021 to 2022. C15 and C30 significantly decreased GWP, mitigating GHG emission intensity. Biochar application enhanced sorghum grain yield. Soil temperature was the primary determinant of CH4 flux (total effect = 0.92). In the second year, biochar’s influence on CH4 emissions increased by 0.76. Multivariate SEM identified soil moisture (total effect = −0.72) and soil temperature (total effect = −0.70) as primary negative regulators of N2O fluxes. C40 lead to salt accumulation, which increases CH4 emissions but inhibits N2O emissions. Averaged over two years, GWP under C15 and C30 decreased by 76.5–106.7% and 5.3–56.1%, respectively, compared to CK. Overall, the application of biochar at a rate of 15 t hm−2 significantly reduced CH4 and N2O emissions and increased sorghum yield. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

25 pages, 1882 KiB  
Article
An Assessment of Collector-Drainage Water and Groundwater—An Application of CCME WQI Model
by Nilufar Rajabova, Vafabay Sherimbetov, Rehan Sadiq and Alaa Farouk Aboukila
Water 2025, 17(15), 2191; https://doi.org/10.3390/w17152191 - 23 Jul 2025
Viewed by 528
Abstract
According to Victor Ernest Shelford’s ‘Law of Tolerance,’ organisms within ecosystems thrive optimally when environmental conditions are favorable. Applying this principle to ecosystems and agro-ecosystems facing water scarcity or environmental challenges can significantly enhance their productivity. In these ecosystems, phytocenosis adjusts its conditions [...] Read more.
According to Victor Ernest Shelford’s ‘Law of Tolerance,’ organisms within ecosystems thrive optimally when environmental conditions are favorable. Applying this principle to ecosystems and agro-ecosystems facing water scarcity or environmental challenges can significantly enhance their productivity. In these ecosystems, phytocenosis adjusts its conditions by utilizing water with varying salinity levels. Moreover, establishing optimal drinking water conditions for human populations within an ecosystem can help mitigate future negative succession processes. The purpose of this study is to evaluate the quality of two distinct water sources in the Amudarya district of the Republic of Karakalpakstan, Uzbekistan: collector-drainage water and groundwater at depths of 10 to 25 m. This research is highly relevant in the context of climate change, as improper management of water salinity, particularly in collector-drainage water, may exacerbate soil salinization and degrade drinking water quality. The primary methodology of this study is as follows: The Food and Agriculture Organization of the United Nations (FAO) standard for collector-drainage water is applied, and the water quality index is assessed using the CCME WQI model. The Canadian Council of Ministers of the Environment (CCME) model is adapted to assess groundwater quality using Uzbekistan’s national drinking water quality standards. The results of two years of collected data, i.e., 2021 and 2023, show that the water quality index of collector-drainage water indicates that it has limited potential for use as secondary water for the irrigation of sensitive crops and has been classified as ‘Poor’. As a result, salinity increased by 8.33% by 2023. In contrast, groundwater quality was rated as ‘Fair’ in 2021, showing a slight deterioration by 2023. Moreover, a comparative analysis of CCME WQI values for collector-drainage and groundwater in the region, in conjunction with findings from Ethiopia, India, Iraq, and Turkey, indicates a consistent decline in water quality, primarily due to agriculture and various other anthropogenic pollution sources, underscoring the critical need for sustainable water resource management. This study highlights the need to use organic fertilizers in agriculture to protect drinking water quality, improve crop yields, and promote soil health, while reducing reliance on chemical inputs. Furthermore, adopting WQI models under changing climatic conditions can improve agricultural productivity, enhance groundwater quality, and provide better environmental monitoring systems. Full article
Show Figures

Figure 1

23 pages, 5120 KiB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 229
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

18 pages, 3154 KiB  
Article
Water Saving and Environmental Issues in the Hetao Irrigation District, the Yellow River Basin: Development Perspective Analysis
by Zhuangzhuang Feng, Qingfeng Miao, Haibin Shi, José Manuel Gonçalves and Ruiping Li
Agronomy 2025, 15(7), 1654; https://doi.org/10.3390/agronomy15071654 - 8 Jul 2025
Viewed by 332
Abstract
Global changes and society’s development necessitate the improvement of water use and irrigation water saving, which require a set of water management measures to best deal with the necessary changes. This study considers the framework of the change process for water management in [...] Read more.
Global changes and society’s development necessitate the improvement of water use and irrigation water saving, which require a set of water management measures to best deal with the necessary changes. This study considers the framework of the change process for water management in the Hetao Irrigation District (HID) of the Yellow River Basin. This paper presents the main measures that have been applied to ensure the sustainability and modernization of Hetao, mitigating water scarcity while maintaining land productivity and environmental value. Several components of modernization projects that have already been implemented are characterized, such as the off-farm canal distribution system, the on-farm surface irrigation, innovative crop and soil management techniques, drainage, and salinity control, including the management of autumn irrigation and advances of drip irrigation at the sector and farm levels. This characterization includes technologies, farmer training, labor needs, energy consumption, water savings, and economic aspects, based on data observed and reported in official reports. Therefore, this study integrates knowledge and analyzes the most limiting aspects in some case studies, evaluating the effectiveness of the solutions used. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

25 pages, 10132 KiB  
Article
Water and Salt Dynamics in Cultivated, Abandoned, and Lake Systems Under Irrigation Reduction in the Hetao Irrigation District
by Lina Hao, Guoshuai Wang, Vijay P. Singh and Tingxi Liu
Agronomy 2025, 15(7), 1650; https://doi.org/10.3390/agronomy15071650 - 7 Jul 2025
Viewed by 254
Abstract
The shifting irrigation reduction in the Hetao Irrigation District and the inability to effectively discharge salts from the system have led to significant changes in salt migration patterns. Based on the integration of long-term field observations (2017–2023) with soil hydrodynamics and solute transport [...] Read more.
The shifting irrigation reduction in the Hetao Irrigation District and the inability to effectively discharge salts from the system have led to significant changes in salt migration patterns. Based on the integration of long-term field observations (2017–2023) with soil hydrodynamics and solute transport models, this study explored the impact of irrigation reduction on water and salt migration in a cropland–wasteland–lake system. The results indicated that before and after the reduction in irrigation and decline in groundwater levels, the migration rates of groundwater from croplands to wastelands and from wastelands to lakes remained relatively stable, averaging 78% and 40%. During the crop growth period, after irrigation reduction and groundwater level decline, the volume of groundwater recharging lakes from wastelands decreased by 80–120 mm, causing a water deficit in the lakes of 679–789 mm. After irrigation reduction and groundwater level decline, during the crop growth period, 1402 kg/ha of salt remained in the wasteland groundwater, and 597–861 kg/ha of salt accumulated in the cropland groundwater, exceeding previous levels, leading to salinization in the cropland and wasteland groundwater. This study provides insights relevant to managing groundwater and soil salinity in irrigation areas. Full article
Show Figures

Figure 1

21 pages, 3454 KiB  
Article
Yield Increase and Emission Reduction Effects of Alfalfa in the Yellow River Irrigation District of Gansu Province: The Coupling Mechanism of Biodegradable Mulch and Controlled-Release Nitrogen Fertilizer
by Wenjing Chang, Haiyan Li, Yaya Duan, Yi Ling, Jiandong Lu, Minhua Yin, Yanlin Ma, Yanxia Kang, Yayu Wang, Guangping Qi and Jianjun Wang
Plants 2025, 14(13), 2022; https://doi.org/10.3390/plants14132022 - 2 Jul 2025
Viewed by 367
Abstract
Agricultural production in Northwest China is widely constrained by residual plastic film pollution, excessive greenhouse gas emissions, and low productivity. Integrating biodegradable film with controlled-release nitrogen fertilizer offers a promising approach to optimize crop management, enhance yield, and improve environmental outcomes. In this [...] Read more.
Agricultural production in Northwest China is widely constrained by residual plastic film pollution, excessive greenhouse gas emissions, and low productivity. Integrating biodegradable film with controlled-release nitrogen fertilizer offers a promising approach to optimize crop management, enhance yield, and improve environmental outcomes. In this study, three planting patterns (conventional flat planting, FP; ridge mulching with biodegradable film, BM; and ridge mulching with conventional plastic film, PM), two nitrogen fertilizer types (urea, U, and controlled-release nitrogen fertilizer, C), and four nitrogen application rates (0, 80, 160, and 240 kg·hm−2) were applied to systematically investigate their effects on alfalfa yield and N2O emissions from grasslands. The results showed that BM and PM increased alfalfa yield by 23.49% and 18.65%, respectively, compared to FP, while C increased yield by 8.46% compared to urea. The highest yield (24.84 t·hm−2) was recorded under the BMC2 treatment, which was 97.11% higher than that of FPN0. N2O emission flux and cumulative emissions increased with nitrogen application rate. Compared with U, C reduced cumulative N2O emissions and greenhouse gas emission intensity (GHGI) by 23.89% and 25.84%, respectively. Compared to PM, BM reduced cumulative N2O emissions and GHGI by 11.58% and 20.15%, respectively. Principal component analysis indicated that the combination of ridge mulching with biodegradable film and 160 kg·hm−2 of C was optimal for simultaneously increasing alfalfa yield and reducing N2O emissions, making it a suitable planting–fertilization strategy for the Yellow River irrigation district in Gansu and similar ecological regions. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition and Novel Fertilizers—Second Edition)
Show Figures

Figure 1

19 pages, 2692 KiB  
Article
Enhanced Spring Wheat Soil Plant Analysis Development (SPAD) Estimation in Hetao Irrigation District: Integrating Leaf Area Index (LAI) Under Variable Irrigation Conditions
by Qiang Wu, Dingyi Hou, Min Xie, Qi Gao, Mengyuan Li, Shuiyuan Hao, Chao Cui, Keke Fan, Yu Zhang and Yongping Zhang
Agriculture 2025, 15(13), 1372; https://doi.org/10.3390/agriculture15131372 - 26 Jun 2025
Viewed by 363
Abstract
Non-destructive monitoring of chlorophyll content through Soil Plant Analysis Development (SPAD) values is essential for precision agriculture in water-limited regions. However, current estimation methods using spectral information alone face significant limitations in sensitivity and transferability under variable irrigation conditions. While integrating canopy structural [...] Read more.
Non-destructive monitoring of chlorophyll content through Soil Plant Analysis Development (SPAD) values is essential for precision agriculture in water-limited regions. However, current estimation methods using spectral information alone face significant limitations in sensitivity and transferability under variable irrigation conditions. While integrating canopy structural parameters with spectral data represents a promising solution, systematic investigation of this approach throughout the entire growth cycle of spring wheat under different irrigation regimes remains limited. This study evaluated three machine learning algorithms (Random Forest, Support Vector Regression, and Multi-Layer Perceptron) for SPAD estimation in spring wheat cultivated in the Hetao Irrigation District. Using a split-plot experimental design with two irrigation treatments (conventional: four irrigations; limited: two irrigations) and five nitrogen levels (0–300 kg·ha−1), we analyzed ten vegetation indices derived from Unmanned Aerial Vehicle (UAV) multispectral imagery, with and without Leaf Area Index (LAI) integration, across six growth stages. Results demonstrated that incorporating LAI significantly improved SPAD estimation accuracy across all algorithms, with Random Forest exhibiting the most substantial enhancement (R2 increasing from 0.698 to 0.842, +20.6%; RMSE decreasing from 5.025 to 3.640, −27.6%). Notably, LAI contributed more significantly to SPAD estimation under limited irrigation conditions (R2 improvement: +17.6%) compared to conventional irrigation (+11.0%), indicating its particular value for chlorophyll monitoring in water-stressed environments. The Green Normalized Difference Vegetation Index (GNDVI) emerged as the most important predictor (importance score: 0.347), followed by LAI (0.213), confirming the complementary nature of spectral and structural information. These findings provide a robust framework for non-destructive SPAD estimation in spring wheat and highlight the importance of integrating canopy structural information with spectral data, particularly in water-limited agricultural systems. Full article
(This article belongs to the Special Issue Remote Sensing in Smart Irrigation Systems)
Show Figures

Figure 1

22 pages, 5801 KiB  
Article
Study on the Impact of Pipe Installation Height on the Hydraulic Performance of Combined Canal–Pipe Water Conveyance Systems
by Yanan Liu, Meijian Bai, Kai Zhang, Baozhong Zhang, Yinong Li, Yuanpeng Wang, Jintao Liu, Hairuo Liu and Yutian He
Agriculture 2025, 15(13), 1347; https://doi.org/10.3390/agriculture15131347 - 23 Jun 2025
Viewed by 352
Abstract
This study investigates the impact of pipe installation height on the hydraulic performance of a combined canal–pipe water conveyance system (CCPS) and provides practical recommendations. A combined experimental and numerical simulation approach was conducted to systematically analyze and evaluate the impact of different [...] Read more.
This study investigates the impact of pipe installation height on the hydraulic performance of a combined canal–pipe water conveyance system (CCPS) and provides practical recommendations. A combined experimental and numerical simulation approach was conducted to systematically analyze and evaluate the impact of different pipe installation heights (0, 1, 3, and 5 cm) and flow rates (18.40, 21.21, 24.74, 28.27, 33.58, and 38.88 L/s) on the system’s behavior. The results indicated that the canal water depths obtained from the numerical simulations were in close agreement with the measurements from the experiments. The water depth in the upstream canal remained nearly parallel to the canal bottom. At the junction, the trend of water depth varies under different flow rates. When the flow rate is low, the water depth sharply decreases. Conversely, when the flow rate is higher, the water depth rises significantly. Cross sections farther from the junction exhibit a higher uniformity in flow velocity distribution. As the height of the pipe installation increases, the range of influence of the junction on the flow velocity distribution in the upstream canal decreases. The elevation of the pipe installation height has been instrumental in enhancing the uniformity of flow velocity distribution across the section. However, the local head loss gradually increases as the installation height increases. Turbulent kinetic energy (TKE) and turbulent eddy dissipation rate (TED) are negatively correlated with the distance between the section and the junction point, and the maximum value decreases gradually with increasing values of the pipe installation height. Considering the hydraulic performance and engineering construction investment, the recommended pipe installation height under the conditions of this study is 1 cm. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

23 pages, 3292 KiB  
Article
Multi-Objective Optimal Scheduling of Water Transmission and Distribution Channel Gate Groups Based on Machine Learning
by Yiying Du, Chaoyue Zhang, Rong Wei, Li Cao, Tiantian Zhao, Wene Wang and Xiaotao Hu
Agriculture 2025, 15(13), 1344; https://doi.org/10.3390/agriculture15131344 - 23 Jun 2025
Viewed by 421
Abstract
This study develops a synergistic optimization method of multiple gates integrating hydrodynamic simulation and data-driven methods, with the goal of improving the accuracy of water distribution and regulation efficiency. This approach addresses the challenges of large prediction deviation of hydraulic response and unclear [...] Read more.
This study develops a synergistic optimization method of multiple gates integrating hydrodynamic simulation and data-driven methods, with the goal of improving the accuracy of water distribution and regulation efficiency. This approach addresses the challenges of large prediction deviation of hydraulic response and unclear synergy mechanisms in the coupled regulation of multiple gates in irrigation areas. The NSGA-II multi-objective optimisation algorithm is used to minimise the water distribution error and the water level deviation before the gate as the objective function in order to achieve global optimisation of the regulation of the complex canal system. A one-dimensional hydrodynamic model based on St. Venant’s system of equations is built to generate the feature dataset, which is then combined with the random forest algorithm to create a nonlinear prediction model. An example analysis demonstrates that the optimal feedforward time of the open channel gate group is negatively connected with the flow condition and that the method can manage the water distribution error within 13.97% and the water level error within 13%. In addition to revealing the matching mechanism between the feedforward time and the flow condition, the study offers a stable and accurate solution for the cooperative regulation of multiple gates in irrigation districts. This effectively supports the need for precise water distribution in small irrigation districts. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

16 pages, 1699 KiB  
Article
Climate Change Adaptation Knowledge Among Rice Farmers in Lake Toba Highland, Indonesia
by Rizabuana Ismail, Erika Revida, Suwardi Lubis, Emmy Harso Kardhinata, Raras Sutatminingsih, Ria Manurung, Bisru Hafi, Rahma Hayati Harahap and Devi Sihotang
Sustainability 2025, 17(13), 5715; https://doi.org/10.3390/su17135715 - 21 Jun 2025
Viewed by 719
Abstract
Climate change has increasingly disrupted traditional farming systems, particularly in highland areas where environmental changes are more pronounced. This study explores how rice farmers in the Lake Toba highlands, Indonesia—both irrigated and non-irrigated—have gradually shifted away from traditional knowledge (TK) in response to [...] Read more.
Climate change has increasingly disrupted traditional farming systems, particularly in highland areas where environmental changes are more pronounced. This study explores how rice farmers in the Lake Toba highlands, Indonesia—both irrigated and non-irrigated—have gradually shifted away from traditional knowledge (TK) in response to climate challenges and what new adaptation strategies have emerged to sustain rice production. This study employed a descriptive qualitative approach with a broad and holistic perspective. Data were collected from 130 purposively selected rice farmers in two sub-districts: Harian (irrigated) and Pangururan (non-irrigated). Data were gathered through in-depth interviews guided by semi-structured statements, focusing on farmers’ lived experiences and adaptation strategies across the rice farming cycle—from planting to harvesting. The findings revealed that while the two groups differ in water access and environmental conditions, they show similar trends in shifting away from traditional indicators. Farmers increasingly adopted new adaptation strategies such as joining farmer groups, using water pumps in non-irrigated areas, switching to more climate-resilient crop varieties, and adjusting planting calendars based on personal observation rather than inherited natural signs. This shift from traditional to practical, experience-based strategies reflects farmers’ responses to the fading reliability of traditional knowledge under changing climatic conditions. Despite the loss of symbolic TK practices, farmers continue to demonstrate resilience through peer collaboration and contextual decision-making. This study highlights the need to strengthen farmer-led adaptation while preserving valuable elements of TK. Future research should expand across the Lake Toba highlands and incorporate quantitative methods to capture broader patterns of local adaptation. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

26 pages, 10157 KiB  
Article
Improving Soil Moisture Estimation by Integrating Remote Sensing Data into HYDRUS-1D Using an Ensemble Kalman Filter Approach
by Yule Sun, Quanming Liu, Chunjuan Wang, Qi Liu and Zhongyi Qu
Agriculture 2025, 15(12), 1320; https://doi.org/10.3390/agriculture15121320 - 19 Jun 2025
Viewed by 365
Abstract
Reliable soil moisture projections are critical for optimizing crop productivity and water savings in irrigation in arid and semi-arid regions. However, capturing their spatial and temporal variability is difficult when using individual observations, modeling, or satellite-based methods. Here, we present an integrated framework [...] Read more.
Reliable soil moisture projections are critical for optimizing crop productivity and water savings in irrigation in arid and semi-arid regions. However, capturing their spatial and temporal variability is difficult when using individual observations, modeling, or satellite-based methods. Here, we present an integrated framework that combines satellite-derived soil moisture estimates, ground-based observations, the HYDRUS-1D vadose zone model, and the ensemble Kalman filter (EnKF) data assimilation method to improve soil moisture simulations over saline-affected farmland in the Hetao irrigation district. Vegetation effects were first removed using the water cloud model; after correction, a cubic regression using the vertical transmit/vertical receive (VV) signal retrieved surface moisture with an R2 value of 0.7964 and a root mean square error (RMSE) of 0.021 cm3·cm−3. HYDRUS-1D, calibrated against multi-depth field data (0–80 cm), reproduced soil moisture profiles at 17 sites with RMSEs of 0.017–0.056 cm3·cm−3. The EnKF assimilation of satellite and ground observations further reduced the errors to 0.008–0.017 cm3·cm−3, with the greatest improvement in the 0–20 cm layer; the accuracy declined slightly with depth but remained superior to either data source alone. Our study improves soil moisture simulation accuracy and closes the knowledge gaps in multi-source data integration. This framework supports sustainable land management and irrigation policy in vulnerable farming regions. Full article
(This article belongs to the Special Issue Model-Based Evaluation of Crop Agronomic Traits)
Show Figures

Figure 1

21 pages, 6504 KiB  
Article
Drought Amplifies the Suppressive Effect of Afforestation on Net Primary Productivity in Semi-Arid Ecosystems: A Case Study of the Yellow River Basin
by Futao Wang, Ziqi Zhang, Mingxuan Du, Jianzhong Lu and Xiaoling Chen
Remote Sens. 2025, 17(12), 2100; https://doi.org/10.3390/rs17122100 - 19 Jun 2025
Viewed by 472
Abstract
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate [...] Read more.
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate on primary productivity require further investigation. Integrating multi-source remote sensing data (2000–2020), meteorological observations with the Standardized Precipitation Evapotranspiration Index (SPEI) and an improved CASA model, this study systematically investigates spatiotemporal patterns of vegetation net primary productivity (NPP) responses to extreme drought events while quantifying vegetation coverage’s regulatory effects on ecosystem drought sensitivity. Among drought events identified using a three-dimensional clustering algorithm, high-intensity droughts caused an average NPP loss of 23.2 gC·m−2 across the basin. Notably, artificial irrigation practices in the Hetao irrigation district significantly mitigated NPP reduction to −9.03 gC·m−2. Large-scale afforestation projects increased the NDVI at a rate of 3.45 × 10−4 month−1, with a contribution rate of 78%, but soil moisture competition from high-density vegetation reduced carbon-sink benefits. However, mixed forest structural optimization in the Three-North Shelterbelt Forest Program core area achieved local carbon-sink gains, demonstrating that vegetation configuration alleviates water competition pressure. Drought amplified the suppressive effect of afforestation through stomatal conductance-photosynthesis coupling mechanisms, causing additional NPP losses of 7.45–31.00 gC·m−2, yet the April–July 2008 event exhibited reversed suppression effects due to immature artificial communities during the 2000–2004 baseline period. Our work elucidates nonlinear vegetation-climate interactions affecting carbon sequestration in semi-arid ecosystems, providing critical insights for optimizing ecological restoration strategies and climate-adaptive management in the Yellow River Basin. Full article
Show Figures

Graphical abstract

21 pages, 11618 KiB  
Article
Impact Assessment of Natural Springs for Irrigation Potential in the Hilly Areas of Kashmir
by Zubair Ahmad Khan, Rohitashw Kumar, Afzal Husain Khan, Adil Majeed, Mohmmad Idrees Attar and P. Jagadesh
Sustainability 2025, 17(12), 5490; https://doi.org/10.3390/su17125490 - 14 Jun 2025
Viewed by 557
Abstract
The increasing water demand, fueled by rapid development activities, has significantly strained freshwater reservoirs. A comprehensive study was conducted in the Anantnag district of Jammu and Kashmir to determine the discharge rates of key water springs and assess their capacity to meet the [...] Read more.
The increasing water demand, fueled by rapid development activities, has significantly strained freshwater reservoirs. A comprehensive study was conducted in the Anantnag district of Jammu and Kashmir to determine the discharge rates of key water springs and assess their capacity to meet the crop water requirements within their respective command areas. The research focused on seven vital springs—Martand, Achabal, Malakhnag, Sherbagh, Verinag, Lukhbawan, and Kokernag—which are critical for domestic and agricultural purposes. The study was carried out from May to October 2018, employed the weir formula to measure spring discharge, and utilized evapotranspiration (ETo) calculations, integrating evaporation and rainfall data to estimate crop water requirements. The results revealed significant variability in spring discharge rates, with Verinag spring being the most productive at 4.55 m3/s, followed by Sherbagh at 1.97 m3/s, while Lukhbawan exhibited the lowest discharge rate at 0.17 m3/s. Springs such as Verinag, Martand, and Achabal demonstrated sufficient capacity to meet the water demands of crops in their command areas, highlighting their potential for sustainable agricultural support. These findings emphasize the importance of integrating surface–subsurface water dynamics in water resource management to ensure efficient utilization of these springs for both domestic and irrigation needs. The study provides valuable insights into optimizing spring water use to address increasing water demands in the region, contributing to sustainable development and resource conservation. Full article
Show Figures

Figure 1

Back to TopTop