Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (141)

Search Parameters:
Keywords = irrigated drylands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4888 KiB  
Article
The Combined Effects of Irrigation, Tillage and N Management on Wheat Grain Yield and Quality in a Drought-Prone Region of China
by Ming Huang, Ninglu Xu, Kainan Zhao, Xiuli Huang, Kaiming Ren, Yulin Jia, Shanwei Wu, Chunxia Li, Hezheng Wang, Guozhan Fu, Youjun Li, Jinzhi Wu and Guoqiang Li
Agronomy 2025, 15(7), 1727; https://doi.org/10.3390/agronomy15071727 - 17 Jul 2025
Viewed by 331
Abstract
With the swift progression of the High-Standard Farmland Construction Program in China and worldwide, many dryland wheat fields can be irrigated once during the wheat growth stage (one-off irrigation). However, the combined strategies of one-off irrigation, tillage, and N management for augmenting wheat [...] Read more.
With the swift progression of the High-Standard Farmland Construction Program in China and worldwide, many dryland wheat fields can be irrigated once during the wheat growth stage (one-off irrigation). However, the combined strategies of one-off irrigation, tillage, and N management for augmenting wheat grain yield and quality are still undeveloped in drought regions. Two-site split–split field experiments were conducted to study the impacts of irrigation, tillage, and N management and their combined effects on grain yield; the contents of protein and protein components; processing quality; and the characteristics of N accumulation and translocation in wheat from a typical dryland wheat production area in China from 2020 to 2022. The irrigation practices (I0, zero irrigation and I1, one-off irrigation), tillage methods (RT, rotary tillage; PT, plowing; and SS, subsoiling) and N management (N0, N120, N180, and N240) were applied to the main plots, subplots and sub-subplots, respectively. The experimental sites, experimental years, irrigation practices, tillage methods, and N management methods and their interaction significantly affected the yield, quality, and plant N characteristics of wheat in most cases. Compared to zero irrigation, one-off irrigation significantly increased the plant N accumulation, enhancing grain yield by 33.7% while decreasing the contents of total protein, albumin, globulin, gliadin, and glutenin by 4.4%, 6.4%, 8.0%, 12.2%, and 10.0%, respectively. It also decreased the wet gluten content, stability time, sedimentation value, extensibility by 4.1%, 10.7%, 9.7%, and 5.5%, respectively, averaged across sites and years. Subsoiling simultaneously enhanced the aforementioned indicators compared to rotary tillage and plowing in most sites and years. With the increase in N rates, wheat yield firstly increased and then decreased under zero irrigation combined with rotary tillage, while it gradually increased when one-off irrigation was combined with subsoiling; however, the contents of total protein and protein components and the quality tended to increase firstly and then stabilize regardless of irrigation practices and tillage methods. The correlations of yield and quality indicators with plant N characteristics were negative when using distinct irrigation practices and tillage methods, while they were positive under varying N management. The decrease in wheat quality induced by one-off irrigation could be alleviated by optimizing N management. I1STN180 exhibited higher yield, plant N accumulation and translocation, and better quality in most cases; thus, all metrics of wheat quality were significantly increased, with a yield enhancement of 50.3% compared to I0RTN180. Therefore, one-off irrigation with subsoiling and an N rate of 180 kg ha−1 is an optimal strategy for high yield, high protein, and high quality in dryland wheat production systems where one-off irrigation is assured. Full article
Show Figures

Figure 1

23 pages, 7766 KiB  
Article
Spatiotemporal Evaluation of Soil Water Resources and Coupling of Crop Water Demand Under Dryland Conditions
by Yaoyu Li, Kaixuan Li, Xifeng Liu, Zhimin Zhang, Zihao Gao, Qiang Wang, Guofang Wang and Wuping Zhang
Agriculture 2025, 15(13), 1442; https://doi.org/10.3390/agriculture15131442 - 4 Jul 2025
Viewed by 240
Abstract
Efficient water management is critical for sustainable dryland agriculture, especially under increasing water scarcity and climate variability. Shanxi Province, a typical dryland region in northern China characterized by pronounced climatic variability and limited soil water availability, faces severe challenges due to uneven precipitation [...] Read more.
Efficient water management is critical for sustainable dryland agriculture, especially under increasing water scarcity and climate variability. Shanxi Province, a typical dryland region in northern China characterized by pronounced climatic variability and limited soil water availability, faces severe challenges due to uneven precipitation and restricted water resources. This study aimed to evaluate the spatiotemporal dynamics of soil water resources and their coupling with crop water demand under different hydrological year types. Using daily meteorological data from 27 stations (1963–2023), we identified dry, normal, and wet years through frequency analysis. Soil water resources were assessed under rainfed conditions, and water deficits of major crops—including millet, soybean, sorghum, winter wheat, maize, and potato—were quantified during key reproductive stages. Results showed a statistically significant declining trend in seasonal precipitation during both summer and winter cropping periods (p < 0.05), which corresponds with the observed intensification of crop water stress over recent decades. Notably, more than 86% of daily rainfall events were less than 5 mm, indicating low effective rainfall. Soil water availability closely followed precipitation distribution, with higher values in the south and west. Crop-specific analysis revealed that winter wheat and sorghum had the largest water deficits in dry years, necessitating timely supplemental irrigation. Even in wet years, water regulation strategies were required to improve water use efficiency and mitigate future drought risks. This study provides a practical framework for soil water–crop demand assessment and supports precision irrigation planning in dryland farming. The findings contribute to improving agricultural water use efficiency in semi-arid regions and offer valuable insights for adapting to climate-induced water challenges. Full article
Show Figures

Figure 1

15 pages, 381 KiB  
Article
Agronomic Characteristics and Nutritive Value of Purple Prairie Clover (Dalea purpurea Vent) Grown in Irrigated and Dryland Conditions in Western Canada
by Yuxi Wang, Alan Iwaasa, Tim McAllister and Surya Acharya
Grasses 2025, 4(3), 27; https://doi.org/10.3390/grasses4030027 - 2 Jul 2025
Viewed by 280
Abstract
Three purple prairie clover (PPC; Dalea purpurea Vent.) varieties, namely Common seed (CS), AC Lamour (ACL) and Bismarck (BIS), were established in plots of irrigated land (rain-fed plus irrigation, Lethbridge, AB) and dryland (rain-fed only, Swift Current, SK) to assess its agronomic characteristics [...] Read more.
Three purple prairie clover (PPC; Dalea purpurea Vent.) varieties, namely Common seed (CS), AC Lamour (ACL) and Bismarck (BIS), were established in plots of irrigated land (rain-fed plus irrigation, Lethbridge, AB) and dryland (rain-fed only, Swift Current, SK) to assess its agronomic characteristics and nutritive value under different ecoclimate and growing conditions in Western Canada. Each seed source was replicated in four test plots arranged as a randomized complete block design at each experimental site. Forage mass on dry matter (DM) basis, canopy height, proportions of leaf and stem and nutritive value were determined at vegetative (VEG), full flower (FF) and late flower (LF) phenological stages. The forage masses of the three PPC varieties were similar (p < 0.05) at each phenological stage with the mean values for VFG, FF and LF being 4739, 4988 and 6753 kg DM/ha under the Lethbridge irrigated conditions, and 1423, 2014 and 2297 kg DM/ha under the Swift Current dryland conditions. The forage mass was higher (p < 0.001) under Lethbridge irrigation than under Swift Current dryland conditions and increased (p < 0.05) with maturity. The three varieties had similar concentrations of organic matter (OM), neutral detergent fibre (NDF), acid detergent fibre (ADF) and crude protein (CP) and in vitro DM digestibility (DMD) at each phenological stage, but CP concentration and in vitro DMD decreased (p < 0.001) whilst NDF and ADF concentration increased (p < 0.001) with maturity. Purple prairie clover grown at Lethbridge irrigated land had higher (p < 0.001) DMD, OM and CP, but lower (p < 0.001) NDF, ADF and condensed tannin concentrations than that grown at Swift Current dryland conditions. These results indicate that PPC has great potential as an alternative legume forage for the cattle industry. Full article
(This article belongs to the Special Issue The Role of Forage in Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 1861 KiB  
Article
Nonparametric and Innovative Hydroclimatic Trend Detection over the South African Sugar Belt
by Thulebona W. Mbhamali and Hector Chikoore
Water 2025, 17(13), 1983; https://doi.org/10.3390/w17131983 - 1 Jul 2025
Viewed by 311
Abstract
Detection and analysis of hydroclimatic trends are crucial for quantifying climate change, global warming, and their potential impacts. This study investigates hydroclimatic trends over the South African Sugar Belt (SASB) under a changing climate using nonparametric and innovative trend detection techniques for the [...] Read more.
Detection and analysis of hydroclimatic trends are crucial for quantifying climate change, global warming, and their potential impacts. This study investigates hydroclimatic trends over the South African Sugar Belt (SASB) under a changing climate using nonparametric and innovative trend detection techniques for the periods 1980–2022, 2025–2050, and 2050–2080. Statistical tests, including the original and modified Mann–Kendall test, sequential Mann–Kendall test, and Innovative Trend Analysis were performed to detect trends and changes in hydroclimatic variables over the SASB’s dryland and irrigated regions. An 18-month low-pass filter was applied to 19 GCMs of the CMIP6, which were downscaled to a local setting. The results indicate contrasting rainfall trends: a positive trend in the dryland region and a negative trend in the irrigated region from 1980 to 2022. Under low- (SSP2–4.5) and high-emission (SSP5–8.5) scenarios, both regions exhibited a significant drying trend from 1980 to 2080, with the irrigated region drying and warming faster than the dryland region. Mann–Kendall tests and Innovative Trend Analysis revealed robust positive trends in surface air temperatures across the SASB, with even stronger trends projected for the future, potentially promoting water loss in the area. Compound dry–hot events were also projected to cause significant socioeconomic impacts in the near and distant future. Future studies can explore nonparametric and monotonic trend detection and analysis for water quality parameters in the SASB under a changing climate. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

28 pages, 3748 KiB  
Article
Carob–Thyme Intercropping Systems Can Improve Yield Efficiency and Environmental Footprint Compared to Conservation Tillage
by Sofia Matsi, Dimitrios Sarris and Vassilis Litskas
Agronomy 2025, 15(7), 1560; https://doi.org/10.3390/agronomy15071560 - 26 Jun 2025
Viewed by 319
Abstract
Living mulch intercropping systems are considered as nature-based solutions with a low environmental footprint for managing weeds, improving biodiversity and agroecosystem sustainability. In drylands, however, they may increase intra/inter-specific competition for water, reducing crop productivity. We tested conservation tillage (TLG) carob plots with [...] Read more.
Living mulch intercropping systems are considered as nature-based solutions with a low environmental footprint for managing weeds, improving biodiversity and agroecosystem sustainability. In drylands, however, they may increase intra/inter-specific competition for water, reducing crop productivity. We tested conservation tillage (TLG) carob plots with and without irrigation (TLGirr; TLGdry) vs. rainfed intercropping systems of carob and (i) thyme (Thymbra capitata; T-System) or (ii) clover (Trifolium squarrosum; C-System), strategically planted on the south (sun)-exposed soil side (SES) of carobs, to reduce soil temperature/evaporation. Carob water relations, productivity and environmental footprints were examined for three years under semi-arid, low weed-competition (Skarinou-SKR) and arid high weed-competition (Vrysoules-VRY) conditions in Cyprus. Carob yield efficiency (kg/m3) in SKR, was >27% higher for the T-System (p < 0.05; SES cover ca. 85%; year-3), matching a higher leaf water content (p < 0.001) compared to TLGdry. The T-System reached 28% and 56% of TLGirr yields during very dry and normal rainfall years; TLGdry yields approached zero. For VRY, no negative impacts on carob leaf water, at 25% SES cover, were found. SKR’s C-System improved leaf water content (p < 0.05) for only one year. The T-System also outperformed TLGirr and TLGdry in terms of reducing irrigation needs and energy consumption, breaking new grounds for dryland agroforestry. Full article
Show Figures

Figure 1

17 pages, 9972 KiB  
Article
Improving Agricultural Efficiency of Dry Farmlands by Integrating Unmanned Aerial Vehicle Monitoring Data and Deep Learning
by Tung-Ching Su, Tsung-Chiang Wu and Hsin-Ju Chen
Land 2025, 14(6), 1179; https://doi.org/10.3390/land14061179 - 29 May 2025
Viewed by 442
Abstract
This study aimed to address the challenge of monitoring and managing soil moisture in dryland agriculture with supplemental irrigation under increasingly extreme climate conditions. Using unmanned aerial vehicles (UAVs) equipped with hyperspectral sensors, we collected imagery of wheat fields on Kinmen Island at [...] Read more.
This study aimed to address the challenge of monitoring and managing soil moisture in dryland agriculture with supplemental irrigation under increasingly extreme climate conditions. Using unmanned aerial vehicles (UAVs) equipped with hyperspectral sensors, we collected imagery of wheat fields on Kinmen Island at various growth stages. The Modified Perpendicular Drought Index (MPDI) was calculated to quantify soil drought conditions. Simultaneously, soil samples were collected to measure the actual soil moisture content. These datasets were used to develop a Gradient Boosting Regression (GBR) model to estimate soil moisture across the entire field. The resulting AI-based model can guide decisions on the timing and scale of supplemental irrigation, ensuring water is applied only when needed during crop growth. Furthermore, MPDI values and wheat spike samples were used to construct another GBR model for yield prediction. When applying MPDI values from multispectral imagery collected at a similar stage in the following year, the model achieved a prediction accuracy of over 90%. The proposed approach offers a reliable solution for enhancing the resilience and productivity of dryland crops under climate stress and demonstrates the potential of integrating remote sensing and machine learning in precision water management. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Land Cover/Use Monitoring)
Show Figures

Figure 1

25 pages, 5567 KiB  
Article
Study on the Trade-Off and Synergy Between Agricultural Water–Soil Matching and Ecosystem Service Value in the Tailan River Irrigation District of Xinjiang
by Yufan Ruan, Ying He, Yue Qiu and Le Ma
Sustainability 2025, 17(9), 4173; https://doi.org/10.3390/su17094173 - 5 May 2025
Viewed by 638
Abstract
Xinjiang is located in an inland arid area, and it faces significant challenges in water resource supply and demand, with a fragile ecological environment. Exploring the internal relationship between the time–space distribution of agricultural water–soil matching and the evolution of the ecosystem service [...] Read more.
Xinjiang is located in an inland arid area, and it faces significant challenges in water resource supply and demand, with a fragile ecological environment. Exploring the internal relationship between the time–space distribution of agricultural water–soil matching and the evolution of the ecosystem service value (ESV) in the Tailan River Irrigation District of Xinjiang from 2000 to 2020, this study provides theoretical guidance for the balance of agricultural water–soil resources and the healthy and sustainable development of the ecological environment in the irrigation district. By integrating the water–soil matching coefficient and the equivalent factor method, the spatiotemporal distribution of agricultural water–soil matching and the spatiotemporal evolution of the ESV under the change of land use (LU) in the irrigation district are analyzed. Based on the Pearson correlation, the trade-off synergy between the two is explored. The results show that the following occurred in the past 20 years: (1) Grassland and dryland are the two categories of land with the biggest transfer-out and transfer-in areas in the Tailan River Irrigation District, and the conversion areas are mostly in Jiamu Town and Guleawati Township. (2) The area and reclamation rate of the irrigation district increased gradually, among which the highest reclamation rate was 85.93% in Kezile Town and the lowest was 76.37% in Guleawati Township. The average Gini coefficient of agricultural water–soil in the irrigation district is 0.118, which is absolutely fair. (3) Kezile Town has the highest agricultural water consumption, but the matching of agricultural water–soil always fluctuates between the best and the worst. The agricultural water consumption in Communist Youth League Town is the lowest, but the matching of agricultural water–soil has remained the best for many years. (4) The ESV of the irrigation district showed an overall increasing trend, from CNY 243 million in 2000 to CNY 678 million in 2020; in addition, soil conservation, hydrological regulation, grassland, and dryland contributed the most to ESV in each period. (5) There was a significant trade-off relationship between agricultural water–soil matching and ecosystem services in the Tailan River Irrigation District, while there was a significant synergistic relationship between ecosystem services. Full article
Show Figures

Figure 1

18 pages, 6846 KiB  
Article
Satellite-Observed Arid Vegetation Greening and Terrestrial Water Storage Decline in the Hexi Corridor, Northwest China
by Chunyan Cao, Xiaoyu Zhu, Kedi Liu, Yu Liang and Xuanlong Ma
Remote Sens. 2025, 17(8), 1361; https://doi.org/10.3390/rs17081361 - 11 Apr 2025
Cited by 3 | Viewed by 798
Abstract
The interplay between terrestrial water storage and vegetation dynamics in arid regions is critical for understanding ecohydrological responses to climate change and human activities. This study examines the coupling between total water storage anomaly (TWSA) and vegetation greenness changes in the Hexi Corridor, [...] Read more.
The interplay between terrestrial water storage and vegetation dynamics in arid regions is critical for understanding ecohydrological responses to climate change and human activities. This study examines the coupling between total water storage anomaly (TWSA) and vegetation greenness changes in the Hexi Corridor, an arid region in northwestern China consisting of three inland river basins—Shule, Heihe, and Shiyang—from 2002 to 2022. Utilizing TWSA data from GRACE/GRACE-FO satellites and MODIS Enhanced Vegetation Index (EVI) data, we applied a trend analysis and partial correlation statistical techniques to assess spatiotemporal patterns and their drivers across varying aridity gradients and land cover types. The results reveal a significant decline in TWSA across the Hexi Corridor (−0.10 cm/year, p < 0.01), despite a modest increase in precipitation (1.69 mm/year, p = 0.114). The spatial analysis shows that TWSA deficits are most pronounced in the northern Shiyang Basin (−600 to −300 cm cumulative TWSA), while the southern Qilian Mountain regions exhibit accumulation (0 to 800 cm). Vegetation greening is strongest in irrigated croplands, particularly in arid and hyper-arid regions of the study area. The partial correlation analysis highlights distinct drivers: in the wetter semi-humid and semi-arid regions, precipitation plays a dominant role in driving TWSA trends. Such a rainfall dominance gives way to temperature- and human-dominated vegetation greening in the arid and hyper-arid regions. The decoupling of TWSA and precipitation highlights the importance of human irrigation activities and the warming-induced atmospheric water demand in co-driving the TWSA dynamics in arid regions. These findings suggest that while irrigation expansion cause satellite-observed greening, it exacerbates water stress through increased evapotranspiration and groundwater depletion, particularly in most water-limited arid zones. This study reveals the complex ecohydrological dynamics in drylands, emphasizing the need for a holistic view of dryland greening in the context of global warming, the escalating human demand of freshwater resources, and the efforts in achieving sustainable development. Full article
Show Figures

Figure 1

18 pages, 6034 KiB  
Article
How Urban Expansion and Climatic Regimes Affect Groundwater Storage in China’s Major River Basins: A Comparative Analysis of the Humid Yangtze and Semi-Arid Yellow River Basins
by Weijing Zhou and Lu Hao
Remote Sens. 2025, 17(7), 1292; https://doi.org/10.3390/rs17071292 - 4 Apr 2025
Viewed by 621
Abstract
This study investigated and compared the spatiotemporal evolution and driving factors of groundwater storage anomalies (GWSAs) under the dual pressures of climate change and urban expansion in two contrasting river basins of China. Integrating GRACE and GLDAS data with multi-source remote sensing data [...] Read more.
This study investigated and compared the spatiotemporal evolution and driving factors of groundwater storage anomalies (GWSAs) under the dual pressures of climate change and urban expansion in two contrasting river basins of China. Integrating GRACE and GLDAS data with multi-source remote sensing data and using attribution analysis, we reveal divergent urban GWSA dynamics between the humid Yangtze River Basin (YZB) and semi-arid Yellow River Basin (YRB). The GWSAs in YZB urban grids showed a marked increasing trend at 3.47 mm/yr (p < 0.05) during 2002–2020, aligning with the upward patterns observed in agricultural land types including dryland and paddy fields, rather than exhibiting the anticipated decline. Conversely, GWSAs in YRB urban grids experienced a pronounced decline (−5.59 mm/yr, p < 0.05), exceeding those observed in adjacent dryland regions (−5.00 mm/yr). The contrasting climatic regimes form the fundamental drivers. YZB’s humid climate (1074 mm/yr mean precipitation) with balanced seasonality amplified groundwater recharge through enhanced surface runoff (+6.1%) driven by precipitation increases (+7.4 mm/yr). In contrast, semi-arid YRB’s water deficit intensified, despite marginal precipitation gains (+3.5 mm/yr), as amplified evapotranspiration (+4.1 mm/yr) exacerbated moisture scarcity. Human interventions further differentiated trajectories: YZB’s urban clusters demonstrated GWSA growth across all city types, highlighting the synergistic effects of urban expansion under humid climates through optimized drainage infrastructure and reduced evapotranspiration from impervious surfaces. Conversely, YRB’s over-exploitation due to rapid urbanization coupled with irrigation intensification drove cross-sector GWSA depletion. Quantitative attribution revealed climate change dominated YZB’s GWSA dynamics (86% contribution), while anthropogenic pressures accounted for 72% of YRB’s depletion. These findings provide critical insights for developing basin-specific management strategies, emphasizing climate-adaptive urban planning in water-rich regions versus demand-side controls in water-stressed basins. Full article
Show Figures

Figure 1

23 pages, 36573 KiB  
Article
An Automated Framework for Interaction Analysis of Driving Factors on Soil Salinization in Central Asia and Western China
by Lingyue Wang, Ping Hu, Hongwei Zheng, Jie Bai, Ying Liu, Olaf Hellwich, Tie Liu, Xi Chen and Anming Bao
Remote Sens. 2025, 17(6), 987; https://doi.org/10.3390/rs17060987 - 11 Mar 2025
Cited by 2 | Viewed by 885
Abstract
Soil salinization is a global ecological and environmental problem, which is particularly serious in arid areas. The formation process of soil salinity is complex, and the interactive effects of natural causes and anthropogenic activities on soil salinization are elusive. Therefore, we propose an [...] Read more.
Soil salinization is a global ecological and environmental problem, which is particularly serious in arid areas. The formation process of soil salinity is complex, and the interactive effects of natural causes and anthropogenic activities on soil salinization are elusive. Therefore, we propose an automated machine learning framework for predicting soil salt content (SSC), which can search for the optimal model without human intervention. At the same time, post hoc interpretation methods and graph theory knowledge are introduced to visualize the nonlinear interactions of variables related to SSC. The proposed method shows robust and adaptive performance in two typical arid regions (Central Asia and Xinjiang Province in western China) under different environmental conditions. The optimal algorithms for the Central Asia and Xinjiang regions are Extremely Randomized Trees (ET) and eXtreme Gradient Boosting (XGBoost), respectively. Moreover, precipitation and minimum air temperature are important feature variables for salt-affected soils in Central Asia and Xinjiang, and their strongest interaction effects are latitude and normalized difference water index. In both study areas, meteorological factors exhibit the greatest effect on SSC, and demonstrate strong spatiotemporal interactions. Soil salinization intensifies with long-term climate warming. Regions with severe SSC variation are mainly distributed around the irrigation water source and in low-terrain basins. From 1950 to 2100, the regional mean SSC (g/kg) varies by +20.94% and +64.76% under extreme scenarios in Central Asia and Xinjiang, respectively. In conclusion, our study provides a novel automated approach for interaction analysis of driving factors on soil salinization in drylands. Full article
Show Figures

Figure 1

18 pages, 11008 KiB  
Article
Influence of Soil Amendment Application on Growth and Yield of Hedysarum scoparium Fisch. et Mey and Avena sativa L. Under Saline Conditions in Dry-Land Regions
by Ahmad Azeem, Wenxuan Mai, Bilquees Gul and Aysha Rasheed
Plants 2025, 14(6), 855; https://doi.org/10.3390/plants14060855 - 9 Mar 2025
Viewed by 942
Abstract
Globally, salt stress is one of the most significant abiotic stresses limiting crop production in dry-land regions. Nowadays, growing crops in dry-land regions under saline irrigation is the main focus. Soil amendment with organic materials has shown the potential to mitigate the adverse [...] Read more.
Globally, salt stress is one of the most significant abiotic stresses limiting crop production in dry-land regions. Nowadays, growing crops in dry-land regions under saline irrigation is the main focus. Soil amendment with organic materials has shown the potential to mitigate the adverse effects of salinity on plants. This study aimed to examine the ameliorative impact of soil amendment (manure + sandy, compost + sandy, clay + sandy and sandy soil) on the growth, yield, physiological, and biochemical attributes of Hedysarum scoparium Fisch. et Mey (HS) and Avena sativa L. (OT) under fresh and saline water irrigation in dry-land regions. The results showed that salt stress negatively affected both plant species’ growth, physiological traits, yield, and chloride ions. In response to saline irrigation, plants of both species increased catalase (CAT) and ascorbate peroxidase (APX) activities as part of a self-defense mechanism to minimize damage. Salt stress also significantly raised levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and chloride ions (Cl). However, soil amendment treatments like manure + sandy and compost + sandy soil countered the negative effects of saline irrigation, significantly improving plant growth and yield compared with sandy soil. Thus, organic soil amendment is a promising strategy for sustainable crop production under saline irrigation in dry-land regions. This study provides valuable insights into enhancing agricultural production by fostering resilient halophytes and salt-tolerant plant species in challenging environments. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

11 pages, 429 KiB  
Article
13C Isotope Discrimination Variation in Guar [Cyamopsis tetragronoloba (L.) Taub.] Under Water-Deficit Conditions
by Aurora Manley, Waltram Ravelombola, Curtis Adams, Rajan Shrestha, Philip Hinson and Calvin Trostle
Int. J. Plant Biol. 2025, 16(1), 31; https://doi.org/10.3390/ijpb16010031 - 1 Mar 2025
Viewed by 1705
Abstract
Guar is a legume cultivated for its high seed galactomannan content. India is the major guar producer globally and the U.S. has the largest guar market worldwide. Guar is drought-tolerant and suitable as a summer rotational crop in dryland farming systems. Studies have [...] Read more.
Guar is a legume cultivated for its high seed galactomannan content. India is the major guar producer globally and the U.S. has the largest guar market worldwide. Guar is drought-tolerant and suitable as a summer rotational crop in dryland farming systems. Studies have shown correlations between carbon δ13 isotope (C13) discrimination and water-use efficiency in other crops. The objective of this study was to assess the variation in carbon δ13 isotope discrimination among 30 guar accessions. Accessions were grown under greenhouse conditions in 3.79 L pots, including drought-stressed and well-watered treatments. For each accession, beginning at the V5–V8 growth stage, one pot was continuously irrigated, whereas irrigation was withheld from the other until wilting symptoms appeared after 50 days. Each treatment pair (well-watered/drought-stressed) was organized in a completely randomized design with three replications. Aboveground fresh and dry biomass data were collected, and the dry leaves were used for C13 isotope analysis. The results showed an increase in leaf C13 under drought stress. There were no differences among genotypes in C13 for well-watered plants (p = 0.63), but drought-stressed plants differed (p < 0.001). Significant positive correlations were identified between C13 under drought stress and the fresh (r = 0.70) and dry biomass (r = 0.68) of drought-stressed plants. These results demonstrate that C13 has potential as a criterion to identify drought-tolerant guar lines. Full article
(This article belongs to the Section Plant Response to Stresses)
Show Figures

Figure 1

21 pages, 6979 KiB  
Article
Nitrogen and Gray Water Footprints of Various Cropping Systems in Irrigation Districts: A Case from Ningxia, China
by Huan Liu, Xiaotong Liu, Tianpeng Zhang, Xinzhong Du, Ying Zhao, Jiafa Luo, Weiwen Qiu, Shuxia Wu and Hongbin Liu
Water 2025, 17(5), 717; https://doi.org/10.3390/w17050717 - 1 Mar 2025
Viewed by 804
Abstract
Under the influence of water resource conservation policies, the annual water diversion volumes in irrigation areas have been steadily decreasing, leading to substantial changes in regional cropping systems. These shifts have profoundly impacted agricultural reactive nitrogen (Nr) emissions and surface water quality. This [...] Read more.
Under the influence of water resource conservation policies, the annual water diversion volumes in irrigation areas have been steadily decreasing, leading to substantial changes in regional cropping systems. These shifts have profoundly impacted agricultural reactive nitrogen (Nr) emissions and surface water quality. This study focuses on the Yellow River Irrigation area of Ningxia, China, and employs a life cycle assessment method to quantitatively analyze fluctuations in the nitrogen footprint (NF) and gray water footprint (GWF) across three cropping systems—rice-maize intercropping, rice monoculture, and maize monoculture—during 2021–2023. The results indicate that rice monoculture exhibited significant variability in NF values (197.89–497.57 kg Neq·ha−1), with NO₃ leaching identified as the primary loss pathway (102.33–269.48 kg Neq·ha−1). The GWF analysis revealed that in 2021, the region’s GWF peaked at 23.18 × 104 m3·ha−1, with water pollution predominantly concentrated in Pingluo County (8 × 104 m3·ha−1). LMDI analysis identified nitrogen fertilizer application as the main contributor to variations in NF, while surface water pollution was indirectly influenced by crop yield. Furthermore, gray correlation analysis highlighted a significant coupling relationship between NF and GWF, with nitrogen fertilizer application having the most pronounced impact on GWF. Therefore, in the face of the gradual tightening of water resources in the irrigation areas, the current situation of reduced water diversion should be adopted as early as possible, and initiatives such as the reduction of nitrogen fertilizer application and the adjustment of the planting area of dryland crops should be accelerated to cope with the problem of nitrogen pollution brought about by changes in the cropping system. Full article
(This article belongs to the Special Issue Basin Non-Point Source Pollution)
Show Figures

Figure 1

20 pages, 11261 KiB  
Article
Subsoiling Before Wheat Sowing Enhances Grain Yield and Water Use Efficiency of Maize in Dryland Winter Wheat and Summer Maize Double Cropping System Under One-Off Irrigation Practice During the Wheat Season
by Yanmin Peng, Kainan Zhao, Jun Zhang, Kaiming Ren, Junhao Zhang, Jinhua Guo, Rongrong Wang, Huishu Xiao, Peipei Jiang, Ninglu Xu, Ming Huang, Jinzhi Wu and Youjun Li
Plants 2025, 14(5), 738; https://doi.org/10.3390/plants14050738 - 28 Feb 2025
Viewed by 721
Abstract
The winter wheat and summer maize double cropping system is the primary cropping pattern for wheat and maize in dryland areas of China. The management of tillage in this system is typically conducted before wheat sowing. However, few studies have validated and quantified [...] Read more.
The winter wheat and summer maize double cropping system is the primary cropping pattern for wheat and maize in dryland areas of China. The management of tillage in this system is typically conducted before wheat sowing. However, few studies have validated and quantified the impact of tillage methods before wheat sowing and irrigation practices during the wheat season on the yield formation and water use efficiency of summer maize. Therefore, this study hypothesized that subsoiling before wheat sowing improves maize yield and WUE by enhancing soil moisture retention and plant development. A three-year field experiment with a two-factor split-plot design was conducted at the junction of the Loess Plateau and the Huang-Huai-Hai Plain in China for validation, from 2019 to 2022. Three tillage methods before wheat sowing (RT: rotary tillage; PT: plowing, SS: subsoiling) were assigned to the main plots, and two irrigation practices during wheat growing season (W0: zero-irrigation; W1: one-off irrigation) were assigned to subplots. We measured the soil moisture, grain yield, dry matter accumulation, nitrogen (N), phosphorus (P), and potassium (K) accumulation, and water use efficiency of summer maize. The results indicated that subsoiling before wheat sowing increased soil water storage at the sowing of summer maize, thereby promoting dry matter and nutrient accumulation. Compared to rotary tillage and plowing, subsoiling before wheat sowing increased grain yield and water use efficiency of maize by an average of 19.5% and 21.8%, respectively. One-off irrigation during the wheat season had negative effects on pre-sowing soil water storage and maize productivity in terms of yield and dry matter accumulation. However, subsoiling before wheat sowing can mitigate these negative effects of one-off irrigation. Correlation analysis and path model results indicated that tillage methods before wheat sowing had a greater impact on soil water storage and maize productivity than irrigation practices during wheat growing season. The most direct factor affecting maize yield was dry matter accumulation, whereas the most direct factor affecting water use efficiency was nutrient accumulation. The technique for order preference by similarity to an ideal solution (TOPSIS) comprehensive evaluation indicated that subsoiling before wheat sowing was superior for achieving high maize yield and water use efficiency under the practice of one-off irrigation during the wheat season. These findings offer practical guidance for optimizing soil water use and maize productivity in drylands. Full article
Show Figures

Figure 1

20 pages, 4405 KiB  
Article
Wheat Nitrogen Use and Grain Protein Characteristics Under No-Tillage: A Greater Response to Drip Fertigation Compared to Intensive Tillage
by Yuyan Fan, Wen Li, Limin Zhang, Jinxiao Song, Depeng Wang, Jianfu Xue, Yuechao Wang and Zhiqiang Gao
Agronomy 2025, 15(3), 588; https://doi.org/10.3390/agronomy15030588 - 27 Feb 2025
Viewed by 662
Abstract
No-tillage (NT) has been widely recognized for significantly enhancing crop yield and nitrogen (N) use efficiency in dryland agricultural systems globally. However, in irrigated fields, NT has demonstrated adverse effects on wheat yield, and limited information is available regarding its impact on N [...] Read more.
No-tillage (NT) has been widely recognized for significantly enhancing crop yield and nitrogen (N) use efficiency in dryland agricultural systems globally. However, in irrigated fields, NT has demonstrated adverse effects on wheat yield, and limited information is available regarding its impact on N uptake and use efficiencies, and grain protein characteristics. Previous studies concluded that drip fertigation (DF) achieved superior yield gain over the conventional N fertilizer broadcasting with flood irrigation (BF) under NT compared to rotary tillage (RT) and intensive tillage (PRT; first plowing followed by rotary tillage). This study measured tissue N concentration, grain protein content and composition, dough processing quality traits, and the activities of N metabolism enzymes in flag leaves and developing grains. The objectives were to (1) evaluate the response of N use traits and grain quality to DF, and (2) elucidate the relationship between gains in yield and N uptake across varying tillage methods. Results revealed that DF significantly increased N uptake by 35.4–38.0%, 22.1–22.2%, and 16.0–16.6% over BF under NT, RT, and PRT, respectively. This boosted N uptake predominantly contributed to enhanced N use efficiency (grain production per unit of total soil mineral and fertilizer N input). Regression analysis indicated that increased N pre-anthesis uptake was the primary driver of yield improvement by DF (r2 > 0.99, P < 0.01). Furthermore, NT demonstrated superior improvements by DF in N nutrition index, grain protein content, gliadin content, wet gluten content, and water absorption rate compared to RT and PRT. In conclusion, wheat N use and grain protein under NT responded greater to DF than intensive tillage. Therefore, our findings emphasize that transitioning from conventional water and N management to DF is an effective and practical strategy for enhancing N uptake, achieving high yield, improving N use efficiency, and enriching grain protein content, particularly under NT conditions. Full article
Show Figures

Figure 1

Back to TopTop