Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (282)

Search Parameters:
Keywords = irregular vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1860 KiB  
Article
Multi-Objective Vibration Control of a Vehicle-Track-Bridge Coupled System Using Tuned Inerter Dampers Based on the FE-SEA Hybrid Method
by Xingxing Hu, Qingsong Feng, Min Yang and Jian Liu
Appl. Sci. 2025, 15(15), 8675; https://doi.org/10.3390/app15158675 (registering DOI) - 5 Aug 2025
Abstract
To address the adverse effects of Tuned Inertia Dampers (TIDs) on track slab vibrations while controlling high-frequency rail vibrations, a hybrid Finite Element-Statistical Energy Analysis (FE-SEA) method is developed for modeling the vehicle-track-bridge coupled system. Short-wavelength track irregularities are introduced as high-frequency excitation, [...] Read more.
To address the adverse effects of Tuned Inertia Dampers (TIDs) on track slab vibrations while controlling high-frequency rail vibrations, a hybrid Finite Element-Statistical Energy Analysis (FE-SEA) method is developed for modeling the vehicle-track-bridge coupled system. Short-wavelength track irregularities are introduced as high-frequency excitation, and the accuracy and efficiency of this method are validated by comparison with the traditional finite element method (FEM). A vibration control model for track-bridge structures incorporating TIDs is designed, and the effects of the TID’s inertance, stiffness, and damping coefficients on the vertical acceleration responses of the rail and track slab are investigated in detail. The study reveals that although TIDs effectively reduce rail vibrations, they may induce adverse effects on track slab vibrations. Using the vibration acceleration amplitudes of both the rail and track slab as dual control objectives, a multi-objective optimization model is established, and the TID’s optimal parameters are determined using a multi-objective genetic algorithm. The results show that the optimized TID parameters reduce rail acceleration amplitudes by 16.43% and improve the control efficiency by 12.45%, while also addressing the negative effects on track slab vibration. The track slab’s vibration acceleration is reduced by 5.47%, and the vertical displacement and acceleration of the vehicle body are reduced by 14.22% and 47.5%, respectively, thereby enhancing passenger comfort. This study provides new insights and theoretical guidance for vibration control analysis in vehicle-track-bridge coupled systems. Full article
34 pages, 5777 KiB  
Article
ACNet: An Attention–Convolution Collaborative Semantic Segmentation Network on Sensor-Derived Datasets for Autonomous Driving
by Qiliang Zhang, Kaiwen Hua, Zi Zhang, Yiwei Zhao and Pengpeng Chen
Sensors 2025, 25(15), 4776; https://doi.org/10.3390/s25154776 - 3 Aug 2025
Viewed by 167
Abstract
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in [...] Read more.
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in balancing global and local features leads to blurred object boundaries and misclassification; second, conventional convolutions have limited ability to perceive irregular objects, causing information loss and affecting segmentation accuracy. To address these issues, this paper proposes a global–local collaborative attention module and a spider web convolution module. The former enhances feature representation through bidirectional feature interaction and dynamic weight allocation, reducing false positives and missed detections. The latter introduces an asymmetric sampling topology and six-directional receptive field paths to effectively improve the recognition of irregular objects. Experiments on the Cityscapes, CamVid, and BDD100K datasets, collected using vehicle-mounted cameras, demonstrate that the proposed method performs excellently across multiple evaluation metrics, including mIoU, mRecall, mPrecision, and mAccuracy. Comparative experiments with classical segmentation networks, attention mechanisms, and convolution modules validate the effectiveness of the proposed approach. The proposed method demonstrates outstanding performance in sensor-based semantic segmentation tasks and is well-suited for environmental perception systems in autonomous driving. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

22 pages, 6482 KiB  
Article
Surface Damage Detection in Hydraulic Structures from UAV Images Using Lightweight Neural Networks
by Feng Han and Chongshi Gu
Remote Sens. 2025, 17(15), 2668; https://doi.org/10.3390/rs17152668 - 1 Aug 2025
Viewed by 140
Abstract
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial [...] Read more.
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial vehicles (UAVs) enable efficient acquisition of high-resolution visual data across expansive hydraulic environments. However, existing deep learning (DL) models often lack architectural adaptations for the visual complexities of UAV imagery, including low-texture contrast, noise interference, and irregular crack patterns. To address these challenges, this study proposes a lightweight, robust, and high-precision segmentation framework, called LFPA-EAM-Fast-SCNN, specifically designed for pixel-level damage detection in UAV-captured images of hydraulic concrete surfaces. The developed DL-based model integrates an enhanced Fast-SCNN backbone for efficient feature extraction, a Lightweight Feature Pyramid Attention (LFPA) module for multi-scale context enhancement, and an Edge Attention Module (EAM) for refined boundary localization. The experimental results on a custom UAV-based dataset show that the proposed damage detection method achieves superior performance, with a precision of 0.949, a recall of 0.892, an F1 score of 0.906, and an IoU of 87.92%, outperforming U-Net, Attention U-Net, SegNet, DeepLab v3+, I-ST-UNet, and SegFormer. Additionally, it reaches a real-time inference speed of 56.31 FPS, significantly surpassing other models. The experimental results demonstrate the proposed framework’s strong generalization capability and robustness under varying noise levels and damage scenarios, underscoring its suitability for scalable, automated surface damage assessment in UAV-based remote sensing of civil infrastructure. Full article
Show Figures

Figure 1

19 pages, 9284 KiB  
Article
UAV-YOLO12: A Multi-Scale Road Segmentation Model for UAV Remote Sensing Imagery
by Bingyan Cui, Zhen Liu and Qifeng Yang
Drones 2025, 9(8), 533; https://doi.org/10.3390/drones9080533 - 29 Jul 2025
Viewed by 413
Abstract
Unmanned aerial vehicles (UAVs) are increasingly used for road infrastructure inspection and monitoring. However, challenges such as scale variation, complex background interference, and the scarcity of annotated UAV datasets limit the performance of traditional segmentation models. To address these challenges, this study proposes [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly used for road infrastructure inspection and monitoring. However, challenges such as scale variation, complex background interference, and the scarcity of annotated UAV datasets limit the performance of traditional segmentation models. To address these challenges, this study proposes UAV-YOLOv12, a multi-scale segmentation model specifically designed for UAV-based road imagery analysis. The proposed model builds on the YOLOv12 architecture by adding two key modules. It uses a Selective Kernel Network (SKNet) to adjust receptive fields dynamically and a Partial Convolution (PConv) module to improve spatial focus and robustness in occluded regions. These enhancements help the model better detect small and irregular road features in complex aerial scenes. Experimental results on a custom UAV dataset collected from national highways in Wuxi, China, show that UAV-YOLOv12 achieves F1-scores of 0.902 for highways (road-H) and 0.825 for paths (road-P), outperforming the original YOLOv12 by 5% and 3.2%, respectively. Inference speed is maintained at 11.1 ms per image, supporting near real-time performance. Moreover, comparative evaluations with U-Net show that UAV-YOLOv12 improves by 7.1% and 9.5%. The model also exhibits strong generalization ability, achieving F1-scores above 0.87 on public datasets such as VHR-10 and the Drone Vehicle dataset. These results demonstrate that the proposed UAV-YOLOv12 can achieve high accuracy and robustness in diverse road environments and object scales. Full article
Show Figures

Figure 1

26 pages, 78396 KiB  
Article
SWRD–YOLO: A Lightweight Instance Segmentation Model for Estimating Rice Lodging Degree in UAV Remote Sensing Images with Real-Time Edge Deployment
by Chunyou Guo and Feng Tan
Agriculture 2025, 15(15), 1570; https://doi.org/10.3390/agriculture15151570 - 22 Jul 2025
Viewed by 314
Abstract
Rice lodging severely affects crop growth, yield, and mechanized harvesting efficiency. The accurate detection and quantification of lodging areas are crucial for precision agriculture and timely field management. However, Unmanned Aerial Vehicle (UAV)-based lodging detection faces challenges such as complex backgrounds, variable lighting, [...] Read more.
Rice lodging severely affects crop growth, yield, and mechanized harvesting efficiency. The accurate detection and quantification of lodging areas are crucial for precision agriculture and timely field management. However, Unmanned Aerial Vehicle (UAV)-based lodging detection faces challenges such as complex backgrounds, variable lighting, and irregular lodging patterns. To address these issues, this study proposes SWRD–YOLO, a lightweight instance segmentation model that enhances feature extraction and fusion using advanced convolution and attention mechanisms. The model employs an optimized loss function to improve localization accuracy, achieving precise lodging area segmentation. Additionally, a grid-based lodging ratio estimation method is introduced, dividing images into fixed-size grids to calculate local lodging proportions and aggregate them for robust overall severity assessment. Evaluated on a self-built rice lodging dataset, the model achieves 94.8% precision, 88.2% recall, 93.3% mAP@0.5, and 91.4% F1 score, with real-time inference at 16.15 FPS on an embedded NVIDIA Jetson Orin NX device. Compared to the baseline YOLOv8n-seg, precision, recall, mAP@0.5, and F1 score improved by 8.2%, 16.5%, 12.8%, and 12.8%, respectively. These results confirm the model’s effectiveness and potential for deployment in intelligent crop monitoring and sustainable agriculture. Full article
Show Figures

Figure 1

20 pages, 5571 KiB  
Proceeding Paper
A Forecasting Method Based on a Dynamical Approach and Time Series Data for Vehicle Service Parts Demand
by Vinh Long Phan, Makoto Taniguchi and Hidenori Yabushita
Eng. Proc. 2025, 101(1), 3; https://doi.org/10.3390/engproc2025101003 - 21 Jul 2025
Viewed by 179
Abstract
In the automotive industry, the supply of service parts—such as bumpers, batteries, and aero parts—is required even after the end of vehicle production, as customers need them for maintenance and repairs. To earn customer confidence, manufacturers must ensure timely availability of these parts [...] Read more.
In the automotive industry, the supply of service parts—such as bumpers, batteries, and aero parts—is required even after the end of vehicle production, as customers need them for maintenance and repairs. To earn customer confidence, manufacturers must ensure timely availability of these parts while managing inventory efficiently. An excess of inventory can increase warehousing costs, while stock shortages can lead to supply delays. Accurate demand forecasting is essential to balance these factors, considering the changing demand characteristics over time, such as long-term trends, seasonal fluctuations, and irregular variations. This paper introduces a novel method for time series forecasting that employs Ensemble Empirical Mode Decomposition (EEMD) and Dynamic Mode Decomposition (DMD) to analyze service part demand. EEMD decomposes historical order data into multiple modes, and DMD is used to predict transitions within these modes. The proposed method demonstrated an approximately 30% reduction in forecasting error compared to comparative methods, showcasing its effectiveness in accurately predicting service parts demand across various patterns. Full article
Show Figures

Figure 1

30 pages, 2282 KiB  
Article
User Experience of Navigating Work Zones with Automated Vehicles: Insights from YouTube on Challenges and Strengths
by Melika Ansarinejad, Kian Ansarinejad, Pan Lu and Ying Huang
Smart Cities 2025, 8(4), 120; https://doi.org/10.3390/smartcities8040120 - 19 Jul 2025
Viewed by 418
Abstract
Understanding automated vehicle (AV) behavior in complex road environments and user attitudes in such contexts is critical for their safe and effective integration into smart cities. Despite growing deployment, limited public data exist on AV performance in construction zones; highly dynamic settings marked [...] Read more.
Understanding automated vehicle (AV) behavior in complex road environments and user attitudes in such contexts is critical for their safe and effective integration into smart cities. Despite growing deployment, limited public data exist on AV performance in construction zones; highly dynamic settings marked by irregular lane markings, shifting detours, and unpredictable human presence. This study investigates AV behavior in these conditions through qualitative, video-based analysis of user-documented experiences on YouTube, focusing on Tesla’s supervised Full Self-Driving (FSD) and Waymo systems. Spoken narration, captions, and subtitles were examined to evaluate AV perception, decision-making, control, and interaction with humans. Findings reveal that while AVs excel in structured tasks such as obstacle detection, lane tracking, and cautious speed control, they face challenges in interpreting temporary infrastructure, responding to unpredictable human actions, and navigating low-visibility environments. These limitations not only impact performance but also influence user trust and acceptance. The study underscores the need for continued technological refinement, improved infrastructure design, and user-informed deployment strategies. By addressing current shortcomings, this research offers critical insights into AV readiness for real-world conditions and contributes to safer, more adaptive urban mobility systems. Full article
Show Figures

Figure 1

38 pages, 1945 KiB  
Review
Grid Impacts of Electric Vehicle Charging: A Review of Challenges and Mitigation Strategies
by Asiri Tayri and Xiandong Ma
Energies 2025, 18(14), 3807; https://doi.org/10.3390/en18143807 - 17 Jul 2025
Viewed by 823
Abstract
Electric vehicles (EVs) offer a sustainable solution for reducing carbon emissions in the transportation sector. However, their increasing widespread adoption poses significant challenges for local distribution grids, many of which were not designed to accommodate the heightened and irregular power demands of EV [...] Read more.
Electric vehicles (EVs) offer a sustainable solution for reducing carbon emissions in the transportation sector. However, their increasing widespread adoption poses significant challenges for local distribution grids, many of which were not designed to accommodate the heightened and irregular power demands of EV charging. Components such as transformers and distribution networks may experience overload, voltage imbalances, and congestion—particularly during peak periods. While upgrading grid infrastructure is a potential solution, it is often costly and complex to implement. The unpredictable nature of EV charging behavior further complicates grid operations, as charging demand fluctuates throughout the day. Therefore, efficient integration into the grid—both for charging and potential discharging—is essential. This paper reviews recent studies on the impacts of high EV penetration on distribution grids and explores various strategies to enhance grid performance during peak demand. It also examines promising optimization methods aimed at mitigating negative effects, such as load shifting and smart charging, and compares their effectiveness across different grid parameters. Additionally, the paper discusses key challenges related to impact analysis and proposes approaches to improve them in order to achieve better overall grid performance. Full article
Show Figures

Figure 1

26 pages, 3670 KiB  
Article
Video Instance Segmentation Through Hierarchical Offset Compensation and Temporal Memory Update for UAV Aerial Images
by Ying Huang, Yinhui Zhang, Zifen He and Yunnan Deng
Sensors 2025, 25(14), 4274; https://doi.org/10.3390/s25144274 - 9 Jul 2025
Viewed by 281
Abstract
Despite the pivotal role of unmanned aerial vehicles (UAVs) in intelligent inspection tasks, existing video instance segmentation methods struggle with irregular deforming targets, leading to inconsistent segmentation results due to ineffective feature offset capture and temporal correlation modeling. To address this issue, we [...] Read more.
Despite the pivotal role of unmanned aerial vehicles (UAVs) in intelligent inspection tasks, existing video instance segmentation methods struggle with irregular deforming targets, leading to inconsistent segmentation results due to ineffective feature offset capture and temporal correlation modeling. To address this issue, we propose a hierarchical offset compensation and temporal memory update method for video instance segmentation (HT-VIS) with a high generalization ability. Firstly, a hierarchical offset compensation (HOC) module in the form of a sequential and parallel connection is designed to perform deformable offset for the same flexible target across frames, which benefits from compensating for spatial motion features at the time sequence. Next, the temporal memory update (TMU) module is developed by employing convolutional long-short-term memory (ConvLSTM) between the current and adjacent frames to establish the temporal dynamic context correlation and update the current frame feature effectively. Finally, extensive experimental results demonstrate the superiority of the proposed HDNet method when applied to the public YouTubeVIS-2019 dataset and a self-built UAV-Seg segmentation dataset. On four typical datasets (i.e., Zoo, Street, Vehicle, and Sport) extracted from YoutubeVIS-2019 according to category characteristics, the proposed HT-VIS outperforms the state-of-the-art CNN-based VIS methods CrossVIS by 3.9%, 2.0%, 0.3%, and 3.8% in average segmentation accuracy, respectively. On the self-built UAV-VIS dataset, our HT-VIS with PHOC surpasses the baseline SipMask by 2.1% and achieves the highest average segmentation accuracy of 37.4% in the CNN-based methods, demonstrating the effectiveness and robustness of our proposed framework. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

28 pages, 9666 KiB  
Article
An Efficient Path Planning Algorithm Based on Delaunay Triangular NavMesh for Off-Road Vehicle Navigation
by Ting Tian, Huijing Wu, Haitao Wei, Fang Wu and Jiandong Shang
World Electr. Veh. J. 2025, 16(7), 382; https://doi.org/10.3390/wevj16070382 - 7 Jul 2025
Viewed by 342
Abstract
Off-road path planning involves navigating vehicles through areas lacking established road networks, which is critical for emergency response in disaster events, but is limited by the complex geographical environments in natural conditions. How to model the vehicle’s off-road mobility effectively and represent environments [...] Read more.
Off-road path planning involves navigating vehicles through areas lacking established road networks, which is critical for emergency response in disaster events, but is limited by the complex geographical environments in natural conditions. How to model the vehicle’s off-road mobility effectively and represent environments is critical for efficient path planning in off-road environments. This paper proposed an improved A* path planning algorithm based on a Delaunay triangular NavMesh model with off-road environment representation. Firstly, a land cover off-road mobility model is constructed to determine the navigable regions by quantifying the mobility of different geographical factors. This model maps passable areas by considering factors such as slope, elevation, and vegetation density and utilizes morphological operations to minimize mapping noise. Secondly, a Delaunay triangular NavMesh model is established to represent off-road environments. This mesh leverages Delaunay triangulation’s empty circle and maximum-minimum angle properties, which accurately represent irregular obstacles without compromising computational efficiency. Finally, an improved A* path planning algorithm is developed to find the optimal off-road mobility path from a start point to an end point, and identify a path triangle chain with which to calculate the shortest path. The improved road-off path planning A* algorithm proposed in this paper, based on the Delaunay triangulation navigation mesh, uses the Euclidean distance between the midpoint of the input edge and the midpoint of the output edge as the cost function g(n), and the Euclidean distance between the centroids of the current triangle and the goal as the heuristic function h(n). Considering that the improved road-off path planning A* algorithm could identify a chain of path triangles for calculating the shortest path, the funnel algorithm was then introduced to transform the path planning problem into a dynamic geometric problem, iteratively approximating the optimal path by maintaining an evolving funnel region, obtaining a shortest path closer to the Euclidean shortest path. Research results indicate that the proposed algorithms yield optimal path-planning results in terms of both time and distance. The navigation mesh-based path planning algorithm saves 5~20% of path length than hexagonal and 8-directional grid algorithms used widely in previous research by using only 1~60% of the original data loading. In general, the path planning algorithm is based on a national-level navigation mesh model, validated at the national scale through four cases representing typical natural and social landscapes in China. Although the algorithms are currently constrained by the limited data accessibility reflecting real-time transportation status, these findings highlight the generalizability and efficiency of the proposed off-road path-planning algorithm, which is useful for path-planning solutions for emergency operations, wilderness adventures, and mineral exploration. Full article
Show Figures

Figure 1

15 pages, 4334 KiB  
Article
Research on Wheel Polygonal Wear Based on the Vehicle–Track Coupling Vibration of Metro
by Yixuan Shi, Qingzhou Mao, Qunsheng Wang, Huanyun Dai, Xinyu Peng and Cuijun Dong
Machines 2025, 13(7), 587; https://doi.org/10.3390/machines13070587 - 7 Jul 2025
Viewed by 258
Abstract
Wheel polygonal wear of metro deteriorates the vibration environment of the vehicle system, potentially leading to resonance-induced fatigue failure of components. This poses serious risks to operational safety and increases maintenance costs. To address the adverse effects of wheel polygonal wear, dynamic tracking [...] Read more.
Wheel polygonal wear of metro deteriorates the vibration environment of the vehicle system, potentially leading to resonance-induced fatigue failure of components. This poses serious risks to operational safety and increases maintenance costs. To address the adverse effects of wheel polygonal wear, dynamic tracking tests and numerical simulations were conducted. The modal analysis focused on the vehicle–track coupling system, incorporating various track structures to explore the formation mechanisms and key influencing factors of polygonization. Test results revealed dominant polygonal wear patterns of the seventh to ninth order, inducing forced vibrations in the 50–70 Hz frequency range. These frequencies closely match the P2 resonance frequency generated by wheel–rail interaction. When vehicle–track coupling is considered, the track’s frequency response shows multiple peaks within this range, indicating susceptibility to resonance excitation. Additionally, rail joint irregularities act as geometric excitation sources that trigger polygonal development, while the P2 force resonance mode plays a critical role in its amplification. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

22 pages, 2789 KiB  
Article
Longitudinal Tire Force Estimation Method for 4WIDEV Based on Data-Driven Modified Recursive Subspace Identification Algorithm
by Xiaoyu Wang, Te Chen and Jiankang Lu
Algorithms 2025, 18(7), 409; https://doi.org/10.3390/a18070409 - 3 Jul 2025
Viewed by 311
Abstract
For the longitudinal tire force estimation problem of four-wheel independent drive electric vehicles (4WIDEVs), traditional model-based observers have limitations such as high modeling complexity and strong parameter sensitivity, while pure data-driven methods are susceptible to noise interference and have insufficient generalization ability. Therefore, [...] Read more.
For the longitudinal tire force estimation problem of four-wheel independent drive electric vehicles (4WIDEVs), traditional model-based observers have limitations such as high modeling complexity and strong parameter sensitivity, while pure data-driven methods are susceptible to noise interference and have insufficient generalization ability. Therefore, this study proposes a joint estimation framework that integrates data-driven and modified recursive subspace identification algorithms. Firstly, based on the electromechanical coupling mechanism, an electric drive wheel dynamics model (EDWM) is constructed, and multidimensional driving data is collected through a chassis dynamometer experimental platform. Secondly, an improved proportional integral observer (PIO) is designed to decouple the longitudinal force from the system input into a state variable, and a subspace identification recursive algorithm based on correction term with forgetting factor (CFF-SIR) is introduced to suppress the residual influence of historical data and enhance the ability to track time-varying parameters. The simulation and experimental results show that under complex working conditions without noise and interference, with noise influence (5% white noise), and with interference (5% irregular signal), the mean and mean square error of longitudinal force estimation under the CFF-SIR algorithm are significantly reduced compared to the correction-based subspace identification recursive (C-SIR) algorithm, and the comprehensive estimation accuracy is improved by 8.37%. It can provide a high-precision and highly adaptive longitudinal force estimation solution for vehicle dynamics control and intelligent driving systems. Full article
Show Figures

Figure 1

25 pages, 741 KiB  
Article
Curvature-Based Change Detection in Road Segmentation: Ascending Hierarchical Clustering vs. K-Means
by David Jaurès Fotsa-Mbogne, Addie Bernice Nguensie-Wakponou, Jean Michel Nlong, Marcellin Atemkeng and Maurice Tchuente
Mathematics 2025, 13(12), 1921; https://doi.org/10.3390/math13121921 - 9 Jun 2025
Viewed by 409
Abstract
This work addresses the challenge of low-cost road quality monitoring in the context of developing countries. Specifically, we focus on utilizing accelerometer data collected from smartphones as drivers traverse roads in their vehicles. Given the high frequency of data collection by accelerometers, the [...] Read more.
This work addresses the challenge of low-cost road quality monitoring in the context of developing countries. Specifically, we focus on utilizing accelerometer data collected from smartphones as drivers traverse roads in their vehicles. Given the high frequency of data collection by accelerometers, the resulting large datasets pose a computational challenge for anomaly detection using supervised classification algorithms. To mitigate scalability issues, it is beneficial to first group the data into homogeneous continuous sections. This approach aligns with the broader problem of change detection in a finite sequence of data indexed by a totally ordered set, which could represent either a time series or a spatial trajectory. Curvature features are extracted and segmented through adapted Ascending Hierarchical Clustering (AHC) and K-means algorithms suited to sequential road data. Our goal is to segment roads into homogeneous sub-sections that can subsequently be labeled based on the level or type of irregularity. Using an analysis of variance (ANOVA) statistical test, we demonstrate that curvature features are effective for classification, with a Fisher value of 14.28 and a p-value of 9.77×107. We use two change detection algorithms: (1) Ascending Hierarchical Clustering (AHC) and (2) K-means. Based on the dataset and the number of classes, AHC and K-means achieve the following performance metrics, respectively: specificity of 85.52% and 87.48%, true negative rate of 93.6% and 93.73%, accuracy of 84.18% and 82.59%, κ-coefficient of 84.18% and 82.56%, and Rand index of 86.33% and 82.84%. The average computational time for K-means is 333.1 s, compared to 0.312 s for AHC, resulting in a ratio of 1070. Overall, AHC is significantly faster and achieves a better balance of performance compared to K-means. Full article
(This article belongs to the Special Issue Mathematics for Artificial Intelligence and Big Data Analysis)
Show Figures

Figure 1

29 pages, 9734 KiB  
Article
Internet of Things (IoT)-Based Solutions for Uneven Roads and Balanced Vehicle Systems Using YOLOv8
by Momotaz Begum, Abm Kamrul Islam Riad, Abdullah Al Mamun, Thofazzol Hossen, Salah Uddin, Md Nurul Absur and Hossain Shahriar
Future Internet 2025, 17(6), 254; https://doi.org/10.3390/fi17060254 - 9 Jun 2025
Viewed by 703
Abstract
Uneven roads pose significant challenges to vehicle stability, passenger comfort, and safety, especially in snowy and mountainous regions. These problems are often complex and challenging to resolve with traditional detection and stabilization methods. This paper presents a dual-method approach to improving vehicle stability [...] Read more.
Uneven roads pose significant challenges to vehicle stability, passenger comfort, and safety, especially in snowy and mountainous regions. These problems are often complex and challenging to resolve with traditional detection and stabilization methods. This paper presents a dual-method approach to improving vehicle stability by identifying road irregularities and dynamically adjusting the balance. The proposed solution combines YOLOv8 for real-time road anomaly detection with a GY-521 sensor to track the speed of servo motors, facilitating immediate stabilization. YOLOv8 achieves a peak precision of 0.99 at a confidence threshold of 1.0 rate in surface recognition, surpassing conventional sensor-based detection. The vehicle design is divided into two sections: an upper passenger seating area and a lower section that contains the engine and wheels. The GY-521 sensor is strategically placed to monitor road conditions, while the servomotor stabilizes the upper section, ensuring passenger comfort and reducing the risk of accidents. This setup maintains stability even on uneven terrain. Furthermore, the proposed solution significantly reduces collision risk, vehicle wear, and maintenance costs while improving operational efficiency. Its compatibility with various vehicles and capabilities makes it an excellent candidate for enhancing road safety and driving experience in challenging environments. In addition, this work marks a crucial step towards a safer, more sustainable, and more comfortable transportation system. Full article
Show Figures

Figure 1

31 pages, 2119 KiB  
Article
Optimizing Vehicle Placement in the Residual Spaces of Unmarked Parking Areas: A Comparative Study of Heuristic Methods
by Mustafa Hüsrevoğlu, Artur Janowski and Ahmet Emin Karkınlı
Appl. Sci. 2025, 15(12), 6416; https://doi.org/10.3390/app15126416 - 6 Jun 2025
Viewed by 492
Abstract
Optimizing vehicle placement in unmarked parking areas is essential for maximizing space efficiency, particularly in irregular and high-demand urban environments. This study investigates the optimal allocation of additional vehicles in spaces left unoccupied around parked cars by comparing seven heuristic optimization algorithms: Particle [...] Read more.
Optimizing vehicle placement in unmarked parking areas is essential for maximizing space efficiency, particularly in irregular and high-demand urban environments. This study investigates the optimal allocation of additional vehicles in spaces left unoccupied around parked cars by comparing seven heuristic optimization algorithms: Particle Swarm Optimization, Artificial Bee Colony, Gray Wolf Optimizer, Harris Hawks Optimizer, Phasor Particle Swarm Optimization, Multi-Population Based Differential Evolution, and the Colony-Based Search Algorithm. The experiments were conducted in two different parking areas, one designed for parallel parking and the other for perpendicular parking, under three scenarios allowing different levels of cars’ rotational flexibility. The results indicate that MDE consistently outperforms other methods in both speed and robustness, achieving the highest vehicle capacity. These findings provide a foundation for smart parking systems, enabling real-time optimization, reduced congestion, and improved urban mobility. Full article
Show Figures

Figure 1

Back to TopTop