Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = iron uptake and metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 895 KiB  
Article
Divergent Immune–Metabolic Profiles in Endometriosis and Ovarian Cancer: A Cross-Sectional Analysis
by Manuela Neri, Elisabetta Sanna, Paolo Albino Ferrari, Clelia Madeddu, Eleonora Lai, Valerio Vallerino and Antonio Macciò
Cancers 2025, 17(14), 2325; https://doi.org/10.3390/cancers17142325 - 12 Jul 2025
Viewed by 344
Abstract
Background/Objectives: Endometriosis and high-grade serous ovarian cancer (HGS-OC) share common features within the peritoneal immune microenvironment, yet they exhibit divergent clinical outcomes. This study aimed to dissect the immune–metabolic landscape of the peritoneal cavity in patients with endometriosis and ovarian cancer by evaluating [...] Read more.
Background/Objectives: Endometriosis and high-grade serous ovarian cancer (HGS-OC) share common features within the peritoneal immune microenvironment, yet they exhibit divergent clinical outcomes. This study aimed to dissect the immune–metabolic landscape of the peritoneal cavity in patients with endometriosis and ovarian cancer by evaluating macrophage polarization, intracellular signaling pathways, and iron-driven oxidative stress. Methods: A prospective cohort study enrolled 40 patients with endometriosis, 198 with ascitic ovarian cancer (178 HGS-OC), and 200 controls with benign gynecological conditions. Peritoneal and peripheral blood samples were analyzed via flow cytometry for macrophage (M1/M2) polarization markers, mTOR/AKT expression, and glucose uptake. Inflammatory markers (IL-6, CRP), oxidative stress (ROS), and iron metabolism parameters (hepcidin, ferritin, transferrin, serum/free iron) were quantified. Results: HGS-OC displayed a predominance of M1-polarized tumor-associated macrophages (TAMs) (CD14⁺/CD80⁺/Glut1⁺) and a high M1/M2 ratio (2.5 vs. 0.8 and 0.9; p = 0.019), correlating positively with IL-6 (p = 0.015), ROS (p = 0.023), hepcidin (p = 0.038), and ferritin (p = 0.043). Conversely, endometriosis showed a dominant M2 profile (CD14⁺/CD163⁺), elevated intracellular mTOR and AKT expression in both TAMs and epithelial cells (p < 0.01), and significantly higher ascitic ROS and free iron levels (p = 0.047 and p < 0.0001, respectively). In endometriosis, the M1/M2 ratio correlated inversely with free iron (p = 0.041), while ROS levels were directly associated with iron overload (p = 0.0034). Conclusions: Endometriosis exhibits a distinct immune–metabolic phenotype characterized by M2 macrophage predominance and iron-induced oxidative stress, contrasting with the inflammatory, M1-rich profile of HGS-OC. These findings suggest that iron metabolism and macrophage plasticity contribute to disease persistence in endometriosis and may inform future immunomodulatory strategies. Full article
Show Figures

Figure 1

20 pages, 2296 KiB  
Article
Enhancing Soil Health and Corn Productivity with a Co-Fermented Microbial Inoculant (CFMI-8): A Field-Based Evaluation
by Raul De Jesus Cano, Judith M. Daniels, Martha Carlin and Don Huber
Microorganisms 2025, 13(7), 1638; https://doi.org/10.3390/microorganisms13071638 - 11 Jul 2025
Viewed by 403
Abstract
Soil degradation and declining fertility threaten sustainable agriculture and crop productivity. This study evaluates the effects of CFMI-8, a co-fermented microbial inoculant comprising eight bacterial strains selected through genomic and metabolic modeling, on soil health, nutrient availability, and corn performance. Conducted in a [...] Read more.
Soil degradation and declining fertility threaten sustainable agriculture and crop productivity. This study evaluates the effects of CFMI-8, a co-fermented microbial inoculant comprising eight bacterial strains selected through genomic and metabolic modeling, on soil health, nutrient availability, and corn performance. Conducted in a randomized complete block design at Findlay Farm, Wisconsin, the field trial assessed soil biological activity, nutrient cycling, and crop yield responses to CFMI-8 treatment. Treated soils exhibited significant increases in microbial organic carbon (+224.1%) and CO2 respiration (+167.1%), indicating enhanced microbial activity and organic matter decomposition. Improvements in nitrate nitrogen (+20.2%), cation exchange capacity (+23.1%), and potassium (+27.3%) were also observed. Corn yield increased by 28.6%, with corresponding gains in silage yield (+9.6%) and nutritional quality. Leaf micronutrient concentrations, particularly iron, manganese, boron, and zinc, were significantly higher in treated plants. Correlation and Random Forest analyses identified microbial activity and nitrogen availability as key predictors of yield and nutrient uptake. These results demonstrate CFMI-8’s potential to enhance soil fertility, promote nutrient cycling, and improve crop productivity under field conditions. The findings support microbial inoculants as viable tools for regenerative agriculture and emphasize the need for long-term studies to assess sustainability impacts. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 356 KiB  
Review
Soil Properties and Microelement Availability in Crops for Human Health: An Overview
by Lucija Galić, Vesna Vukadinović, Iva Nikolin and Zdenko Lončarić
Crops 2025, 5(4), 40; https://doi.org/10.3390/crops5040040 - 7 Jul 2025
Viewed by 419
Abstract
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). [...] Read more.
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). In recent years, there has been a growing focus on vitality and longevity, which are closely associated with the sufficient intake of essential microelements. This review focuses on these nine elements, whose bioavailability in the food chain is critically determined by their geochemical behavior in soils. There is a necessity for an understanding of the sources, soil–plant transfer, and plant uptake mechanisms of these microelements, with particular emphasis on the influence of key soil properties, including pH, redox potential, organic matter content, and mineral composition. There is a dual challenge of microelement deficiencies in agricultural soils, leading to inadequate crop accumulation, and the potential for localized toxicities arising from anthropogenic inputs or geogenic enrichment. A promising solution to microelement deficiencies in crops is biofortification, which enhances nutrient content in food by improving soil and plant uptake. This strategy includes agronomic methods (e.g., fertilization, soil amendments) and genetic approaches (e.g., marker-assisted selection, genetic engineering) to boost microelement density in edible tissues. Moreover, emphasizing the need for advanced predictive modeling techniques, such as ensemble learning-based digital soil mapping, enhances regional soil microelement management. Integrating machine learning with digital covariates improves spatial prediction accuracy, optimizes soil fertility management, and supports sustainable agriculture. Given the rising global population and the consequent pressures on agricultural production, a comprehensive understanding of microelement dynamics in the soil–plant system is essential for developing sustainable strategies to mitigate deficiencies and ensure food and nutritional security. This review specifically focuses on the bioavailability of these nine essential microelements (Se, Zn, Cu, B, Mn, Mo, Fe, Ni, and Cl), examining the soil–plant transfer mechanisms and their ultimate implications for human health within the soil–plant–human system. The selection of these nine microelements for this review is based on their recognized dual importance: they are not only essential for various plant metabolic functions, but also play a critical role in human nutrition, with widespread deficiencies reported globally in diverse populations and agricultural systems. While other elements, such as cobalt (Co) and iodine (I), are vital for health, Co is primarily required by nitrogen-fixing microorganisms rather than directly by all plants, and the main pathway for iodine intake is often marine-based rather than soil-to-crop. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
13 pages, 967 KiB  
Review
Interactions Between Iron Metabolism and the Endocannabinoid System in Bacterial Infections
by Kayle Brenna Dickson, Juan Zhou and Christian Lehmann
Antibiotics 2025, 14(6), 614; https://doi.org/10.3390/antibiotics14060614 - 18 Jun 2025
Viewed by 416
Abstract
Iron is a key nutritional requirement for a variety of physiological functions, and its metabolism is tightly controlled under homeostatic conditions. The endocannabinoid system (ECS) represents an additional physiological system with a key role in maintaining homeostasis that is known for its role [...] Read more.
Iron is a key nutritional requirement for a variety of physiological functions, and its metabolism is tightly controlled under homeostatic conditions. The endocannabinoid system (ECS) represents an additional physiological system with a key role in maintaining homeostasis that is known for its role in modulating immune responses. Recent research has highlighted intriguing interactions between these systems, including the suppression of iron uptake by the ECS and alterations to the iron-catalyzed Fenton reaction. These interactions are particularly interesting in the context of bacterial infections. As iron is a vital nutrient for bacteria, modulating iron levels using the ECS may be able to control bacterial growth. This review aims to explore the current understanding of how the ECS affects iron homeostasis and its implications for bacterial pathogenesis. In this study, we provide an overview of both iron metabolism and the ECS, focusing on harnessing these systems to develop novel therapeutic strategies to modulate iron metabolism in bacterial infections. By elucidating these complex interactions, we hope to provide new insights into the development of novel treatments for bacterial infections. Full article
Show Figures

Figure 1

17 pages, 1694 KiB  
Article
Enhancing Bioconversion of Crude Glycerol into Butanol and 1,3-Propanediol After Pretreatment by Coupling Fermentation and In Situ Recovery: Effect of Initial pH Control
by Alejandro Ortega, Alejo Valles, Miguel Capilla, Carmen Gabaldón, Francisco Javier Álvarez-Hornos and Paula Marzal
Fermentation 2025, 11(6), 339; https://doi.org/10.3390/fermentation11060339 - 11 Jun 2025
Viewed by 685
Abstract
The sharp rise in the worldwide production of biodiesel has created an excess in the crude glycerol market, so it is essential to develop new added-value alternatives for crude glycerol. This paper describes a study on fermenting high concentrations of two types of [...] Read more.
The sharp rise in the worldwide production of biodiesel has created an excess in the crude glycerol market, so it is essential to develop new added-value alternatives for crude glycerol. This paper describes a study on fermenting high concentrations of two types of medium-pure crude glycerol to solvents by Clostridium pasteurianum. The effect of media composition (iron, yeast extract, and vitamins) on solvents production was assessed by a full factorial design with pure glycerol. Granular activated carbon (GAC) adsorption was highly effective in removing impurities from crude glycerol. Following GAC pretreatment, fermentation of glycerol at initial concentration as high as 60 g L−1 was possible, resulting in a butanol production of ~9 g L−1. Based on these results, a batch fermentation with in situ gas stripping and pH controlled at ≥6.5 was shown to be the best alternative to enhance biomass growth, glycerol uptake, and solvent production. The combination of controlling pH in the early stages of fermentation with in situ butanol removal stabilised the metabolism of the strain and showed that the fermentation performance with crude glycerol is very similar to that of pure glycerol. With a notable uptake of glycerol (>83%), solvent production was >11 g L−1 butanol (yield > 0.21 g g−1glycerol consumed) and >6 g L−1 1,3-propanediol (yield > 0.13 g g−1glycerol consumed). Setting the fermentation conditions to achieve a high uptake of high levels of glycerol with a similar product distribution is of great interest for the viability of the industrial processing of crude glycerol into chemicals via biological conversion. Full article
Show Figures

Figure 1

17 pages, 1687 KiB  
Article
Sex Hormones and Iron-Related Biomarkers Associate with EMT Features and Tumor Stage in Colorectal Cancer: A Serum- and Tissue-Based Analysis
by Rosanna Squitti, Anastasia De Luca, Altea Severino, Gianluca Rizzo, Federica Marzi, Luca Emanuele Amodio, Gabriella Vicano, Antonio Focaccio, Vincenzo Tondolo and Mauro Rongioletti
Int. J. Mol. Sci. 2025, 26(11), 5163; https://doi.org/10.3390/ijms26115163 - 28 May 2025
Viewed by 553
Abstract
Sex steroid hormones and systemic iron metabolism are emerging as modulators of colorectal cancer (CRC) development and progression. However, information linking systemic factors to tumor characteristics and epithelial–mesenchymal transition (EMT) is limited, particularly in a sex-specific context. We measured serum levels of sex [...] Read more.
Sex steroid hormones and systemic iron metabolism are emerging as modulators of colorectal cancer (CRC) development and progression. However, information linking systemic factors to tumor characteristics and epithelial–mesenchymal transition (EMT) is limited, particularly in a sex-specific context. We measured serum levels of sex hormones [testosterone, estradiol, progesterone, Luteinizing Hormone (LH), Follicle-Stimulating Hormone (FSH), Carcinoembryonic antigen (CEA)] and iron-related biomarkers (iron, transferrin, ferritin, % transferrin saturation, ceruloplasmin, and the ceruloplasmin/transferrin ratio) in 82 CRC patients and 31 healthy controls. EMT-related proteins [mediator of ErbB2-driven cell motility 1 (MEMO1), E-cadherin, fibronectin, vimentin, and vinculin] were quantified by Western blotting in tumor and adjacent normal mucosa. Non-parametric tests and Spearman correlations were applied, stratified by sex and corrected for age and anemia where appropriate. Progesterone levels were significantly lower in male CRC patients (median 0.17 ng/mL vs. 0.20 ng/mL, p = 0.04) and higher in female patients (0.17 ng/mL vs. 0.10 ng/mL, p = 0.0077) compared with controls. The iron-related biomarkers indicated a pattern of iron deficiency, including in non-anemic patients, with reduced % transferrin saturation (p < 0.01) and an elevated ceruloplasmin/transferrin ratio (p = 0.02). Correlations were found between iron status, tumor stage, and hormonal levels. Progesterone correlated with EMT protein expression in healthy mucosa (e.g., fibronectin in females: ρ = 0.567, p = 0.014; vimentin in males: ρ = −0.446, p = 0.007), but not in tumor tissue. In the healthy mucosa of male patients, ceruloplasmin/transferrin correlated with MEMO1 (ρ = 0.419, p = 0.04), vinculin (ρ = 0.299, p = 0.041), and vimentin (ρ = 0.394, p = 0.07); transferrin levels inversely correlated with MEMO1 expression (ρ = −0.392, p = 0.032), and vimentin showed a positive correlation with serum iron (ρ = 0.350, p = 0.043). Furthermore, fibronectin expression inversely correlated with iron in the sole tumor tissue of female patients (ρ = −0.366, p = 0.040). These findings support the role of sex hormones and iron metabolism in CRC biology, suggesting that EMT might be accompanied by altered iron uptake and redox remodeling, which can enhance cellular motility and the metastatic potential. Full article
Show Figures

Figure 1

13 pages, 8315 KiB  
Article
Immunohistochemical Detection of Iron-Related Proteins in Sertoli Cell-Only Patterns in Canine Testicular Lesions
by Rebecca Leandri, Karen Power, Manuela Martano and Gionata De Vico
Animals 2025, 15(10), 1377; https://doi.org/10.3390/ani15101377 - 9 May 2025
Viewed by 642
Abstract
Sertoli cell-only (SCO) tubules are a histologic pattern characterized by the absence of germ cells within seminiferous tubules, leading to infertility in both humans and dogs. While its association with testicular tumors has been documented, the role of iron metabolism in SCO tubules [...] Read more.
Sertoli cell-only (SCO) tubules are a histologic pattern characterized by the absence of germ cells within seminiferous tubules, leading to infertility in both humans and dogs. While its association with testicular tumors has been documented, the role of iron metabolism in SCO tubules remains unclear. This study investigates the immunolabeling of key iron-related proteins (Transferrin Receptor 1, Transferrin Receptor 2, and Ferritin Heavy chain 1) and Proliferating Cell Nuclear Antigen (PCNA) in canine SCO tubules within distinct microenvironments: seminomas, Sertoli cell tumors, and isolated. We confirm the presence and distribution of iron-related proteins in Sertoli cells as a part of a Sertoli cell-only pattern across different microenvironments. Our findings suggest a potential increase in iron uptake in association with tumors, and the cytoplasmic PCNA immunolabeling suggests a preferential activation of cell survival rather than proliferation, potentially facilitating neoplastic transformation. In contrast, Sertoli cells in the isolated Sertoli cell-only pattern exhibit nuclear PCNA immunolabeling, possibly correlated to the state of immaturity of Sertoli cells. These findings highlight the role of iron homeostasis and apoptosis in testicular tumorigenesis. Immunohistochemistry revealed that Sertoli cells in SCO tubules actively uptake iron in all conditions, yet their capacity to utilize it for proliferation appears restricted. Interestingly, PCNA labeling exhibits a pattern dependent on the microenvironment: in tumor-associated SCO tubules, it showed cytoplasmic localization, characteristic of an anti-apoptotic function, whereas isolated SCO tubules showed nuclear PCNA labeling, suggesting a potential role in DNA synthesis and repair. These findings highlight the interplay between iron homeostasis and cellular survival mechanisms, offering novel perspectives on its pathophysiology and implications for testicular cancer development. Full article
Show Figures

Figure 1

21 pages, 3602 KiB  
Article
Ferric Uptake Regulator Contributes to Pseudomonas donghuensis HYS-Induced Iron Metabolic Disruption in Caenorhabditis elegans
by Donghao Gao, Liwen Shen, Yelong Lin, Shuo Huang and Zhixiong Xie
Microorganisms 2025, 13(5), 1081; https://doi.org/10.3390/microorganisms13051081 - 6 May 2025
Viewed by 470
Abstract
Iron is essential for vital biological processes, with its metabolism closely linked to host–pathogen interactions. Pseudomonas donghuensis HYS, with its superior iron uptake capacity, demonstrates pronounced virulence toward Caenorhabditis elegans. However, the virulence mechanisms remain unexplored. Ferric uptake regulator (Fur) regulates iron [...] Read more.
Iron is essential for vital biological processes, with its metabolism closely linked to host–pathogen interactions. Pseudomonas donghuensis HYS, with its superior iron uptake capacity, demonstrates pronounced virulence toward Caenorhabditis elegans. However, the virulence mechanisms remain unexplored. Ferric uptake regulator (Fur) regulates iron homeostasis and pathogenicity in bacteria, yet its role in HYS-mediated C. elegans pathogenesis requires systematic investigation. In this study, comparing the pathogenic processes of HYS and P. aeruginosa PA14 revealed that HYS causes stronger, irreversible toxicity via distinct mechanisms. Transcriptomics revealed that HYS infection disrupts C. elegans iron metabolism pathways, specifically iron transport, and iron–sulfur cluster utilization. Fur was identified as a pivotal regulator in HYS virulence and was indispensable for its colonization. Specifically, Fur was critical for disrupting nematode iron metabolism, as fur deletion eliminated this effect. While Fur regulated two HYS siderophores, neither of them mediated in the iron metabolism disruption of C. elegans. Screening identified Fur-regulated virulence factors to further investigate the function of Fur in HYS virulence, particularly alkaline proteases, and type II secretion system components. This study highlight that HYS can disrupt the iron metabolism pathway in C. elegans; Fur serves as a pivotal positive regulator in HYS-induced damage, particularly in disrupting iron metabolism through a siderophore-independent pathway. These findings expand the understanding of Pseudomonas pathogenicity and Fur-mediated virulence regulation. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

25 pages, 14263 KiB  
Article
The Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) 3 Regulates the Myogenic Differentiation of Yunan Black Pig Muscle Satellite Cells (MuSCs) In Vitro via Iron Homeostasis and the PI3K/AKT Pathway
by Wei Zhang, Minying Zhang, Jiaqing Zhang, Sujuan Chen, Keke Zhang, Xuejing Xie, Chaofan Guo, Jiyuan Shen, Xiaojian Zhang, Huarun Sun, Liya Guo, Yuliang Wen, Lei Wang and Jianhe Hu
Cells 2025, 14(9), 656; https://doi.org/10.3390/cells14090656 - 29 Apr 2025
Viewed by 562
Abstract
The myogenic differentiation of muscle satellite cells (MuSCs) is an important biological process that plays a key role in the regeneration and repair of skeletal muscles. However, the mechanisms regulating myoblast myogenesis require further investigation. In this study, we found that STEAP3 is [...] Read more.
The myogenic differentiation of muscle satellite cells (MuSCs) is an important biological process that plays a key role in the regeneration and repair of skeletal muscles. However, the mechanisms regulating myoblast myogenesis require further investigation. In this study, we found that STEAP3 is involved in myogenic differentiation based on the Yunan black pig MuSCs model in vitro using cell transfection and other methods. Furthermore, the expression of myogenic differentiation marker genes MyoG and MyoD and the number of myotubes formed by the differentiation of cells from the si-STEAP3 treated group were significantly decreased but increased in the STEAP3 overexpression group compared to that in the control group. STEAP3 played a role in iron ion metabolism, affecting myogenic differentiation via the uptake of iron ions and enhancing IRP-IRE homeostasis. STEAP3 also activated the PI3K/AKT pathway, thus promoting myoblast differentiation of Yunan black pig MuSCs. The results of this study showed that STEAP3 overexpression increased intracellular iron ion content and activated the homeostatic IRP-IRE system to regulate intracellular iron ion metabolism. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

20 pages, 6044 KiB  
Article
Coordinated Regulation of Iron-Acquisition Genes and Citrate Biosynthesis Drives Seasonal Iron Deficiency Adaptation in ‘Yali’ Pears (Pyrus bretschneideri Rehd.)
by Shuilin Liu, Ming Zhang, Huiying Wang, Yue Xu, Chaodie Wen, Jianguang Zhang, Yuxing Zhang and Haiyan Shi
Horticulturae 2025, 11(5), 460; https://doi.org/10.3390/horticulturae11050460 - 25 Apr 2025
Viewed by 430
Abstract
Iron deficiency chlorosis severely limits the productivity of ‘Yali’ pears in alkaline soils. This study systematically investigated the physiological and molecular responses of ‘Yali’ pears to varying degrees of iron deficiency, focusing on the roles of PbFRO2 (Pyrus bretschneideri Ferric Reductase Oxidase 2) [...] Read more.
Iron deficiency chlorosis severely limits the productivity of ‘Yali’ pears in alkaline soils. This study systematically investigated the physiological and molecular responses of ‘Yali’ pears to varying degrees of iron deficiency, focusing on the roles of PbFRO2 (Pyrus bretschneideri Ferric Reductase Oxidase 2), PbIRT1 (Pyrus bretschneideri Iron-Regulated Transporter 1), and PbCS2 (Pyrus bretschneideri Citrate Synthase 2) in iron uptake and homeostasis. Based on field observations, pear trees were categorized into normal, moderately chlorotic, and severely chlorotic groups. Results demonstrated that moderate iron deficiency upregulated PbFRO2 (2.86–7.09-fold), enhanced root ferric reductase (FCR) activity, and promoted Fe3+ reduction and Fe2+ transport. In contrast, severe deficiency suppressed the expression of these genes and reduced photosynthetic efficiency. Leaf citrate content significantly increased with chlorosis severity, while root citrate content exhibited seasonal fluctuations, peaking in July. Multivariate analyses (PCA and PLS-DA) revealed distinct physiological clustering: normal and moderately chlorotic groups overlapped, whereas the severely chlorotic group formed a separate cluster, reflecting a transition from compensatory activation to metabolic collapse. PbFRO2 emerged as a central regulator, driving root iron storage in spring and redistribution in summer. These findings elucidate a biphasic adaptation strategy, where moderate deficiency triggers gene-mediated iron mobilization, whereas severe stress disrupts homeostasis. This study provides critical insights into iron metabolism dynamics and proposes PbFRO2 as a molecular target for breeding iron-efficient pear cultivars. Full article
Show Figures

Figure 1

19 pages, 4684 KiB  
Article
Effects of Biogas Slurry on Microbial Phosphorus Metabolism in Soil of Camellia oleifera Plantations
by Quanxun Chen, Jianbo Cheng, Guangliang Tian, Tengbin He, Hu Wang, Tao Zhang, Jianming Hong, Liangyu Dai and Tianling Fu
Land 2025, 14(4), 718; https://doi.org/10.3390/land14040718 - 27 Mar 2025
Viewed by 557
Abstract
The use of biogas slurry as an alternative to chemical fertilizers for supplying phosphorus to plants is gaining increasing attention. However, the mechanisms by which biogas slurry activates soil phosphorus and influences phosphorus-metabolizing microorganisms are not yet fully understood. This study characterized the [...] Read more.
The use of biogas slurry as an alternative to chemical fertilizers for supplying phosphorus to plants is gaining increasing attention. However, the mechanisms by which biogas slurry activates soil phosphorus and influences phosphorus-metabolizing microorganisms are not yet fully understood. This study characterized the effects of controlled biogas slurry application gradients (0, 13, 27, 40, and 53) on the soil phosphorus structure, camellia oleifera (CO) phosphorus content, microbial phosphorus metabolism functional gene abundance, and phosphorus transformation functions in CO plantation soils. Increasing the dosage of biogas slurry effectively enhanced soil phosphorus levels and significantly increased the proportions of aluminum-bound phosphorus (Al-P) and iron-bound phosphorus (Fe-P). Under simulated conditions, the contents of soil Al-P, Fe-P, and organic phosphorus significantly decreased and transformed into occluded phosphorus (O-P) and calcium-bound phosphorus (Ca-P), while under field conditions, due to spatial heterogeneity, the changes in soil phosphorus and its forms were not distinctly evident. The application of biogas slurry did not significantly alter the major phyla of phosphorus-metabolizing microorganisms in the soil, but significant changes in the abundance of different microorganisms were observed. The abundance of dominant bacterial communities such as Chloroflexi_bacterium increased, while the abundance of communities such as Actinomycetia_bacterium decreased. By influencing the expression of soil microbial functional genes related to inorganic phosphorus solubilization, organic phosphorus mineralization, phosphorus deficiency response regulation, and phosphorus transport, the solubility of inorganic phosphorus and the mineralization rate of organic phosphorus in the soil were enhanced. Additionally, it may weaken microbial phosphorus uptake by inhibiting intercellular phosphorus transport in microorganisms, thereby improving the utilization of soil phosphorus by CO. Full article
Show Figures

Figure 1

21 pages, 1297 KiB  
Review
Brassinosteroids in Micronutrient Homeostasis: Mechanisms and Implications for Plant Nutrition and Stress Resilience
by Laiba Usmani, Adiba Shakil, Iram Khan, Tanzila Alvi, Surjit Singh and Debatosh Das
Plants 2025, 14(4), 598; https://doi.org/10.3390/plants14040598 - 17 Feb 2025
Cited by 3 | Viewed by 2055
Abstract
Brassinosteroids (BRs) are crucial plant hormones that play a significant role in regulating various physiological processes, including micronutrient homeostasis. This review delves into the complex roles of BRs in the uptake, distribution, and utilization of essential micronutrients such as iron (Fe), zinc (Zn), [...] Read more.
Brassinosteroids (BRs) are crucial plant hormones that play a significant role in regulating various physiological processes, including micronutrient homeostasis. This review delves into the complex roles of BRs in the uptake, distribution, and utilization of essential micronutrients such as iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and boron (B). BRs influence the expression of key transporter genes responsible for the absorption and internal distribution of these micronutrients. For iron, BRs enhance the expression of genes related to iron reduction and transport, improve root architecture, and strengthen stress tolerance mechanisms. Regarding zinc, BRs regulate the expression of zinc transporters and support root development, thereby optimizing zinc uptake. Manganese homeostasis is managed through the BR-mediated regulation of manganese transporter genes and chlorophyll production, essential for photosynthesis. For copper, BRs influence the expression of copper transporters and maintain copper-dependent enzyme activities crucial for metabolic functions. Finally, BRs contribute to boron homeostasis by regulating its metabolism, which is vital for cell wall integrity and overall plant development. This review synthesizes recent findings on the mechanistic pathways through which BRs affect micronutrient homeostasis and discusses their implications for enhancing plant nutrition and stress resilience. Understanding these interactions offers valuable insights into strategies for improving micronutrient efficiency in crops, which is essential for sustainable agriculture. This comprehensive analysis highlights the significance of BRs in micronutrient management and provides a framework for future research aimed at optimizing nutrient use and boosting plant productivity. Full article
Show Figures

Figure 1

23 pages, 2096 KiB  
Article
Long-Term Variability in the Content of Some Metals and Metalloids in Aesculus Flowers: A Four-Year Study Using ICP OES and PCA Analysis
by Veronica D’Eusanio, Elia Frignani, Andrea Marchetti, Laura Pigani, Mirco Rivi and Fabrizio Roncaglia
Molecules 2025, 30(4), 908; https://doi.org/10.3390/molecules30040908 - 15 Feb 2025
Viewed by 757
Abstract
This study investigates the content of some metals and metalloids in the flowers of three Aesculus cultivars (AHP, Aesculus hippocastanum pure species, with white flowers; AHH, Aesculus hippocastanum hybrid species, with pink flowers; and AXC, Aesculus × carnea, with red flowers) over [...] Read more.
This study investigates the content of some metals and metalloids in the flowers of three Aesculus cultivars (AHP, Aesculus hippocastanum pure species, with white flowers; AHH, Aesculus hippocastanum hybrid species, with pink flowers; and AXC, Aesculus × carnea, with red flowers) over a four-year period (2016–2019) using inductively coupled plasma optical emission spectrometry (ICP OES) and principal component analysis (PCA). The research focuses on assessing macro- and micro-elemental compositions, identifying variations in mineral uptake, and exploring potential correlations with soil composition. Results highlight significant differences in elemental profiles among the three species, despite similar total ash content. Potassium and phosphorus emerged as dominant macroelements, with AXC showing lower magnesium levels compared to AHP and AHH. Particularly intriguing was the detection of antimony in all cultivars, raising questions about its role and bioaccumulation pathways in floral tissues. Iron and aluminum concentrations varied significantly across species, indicating species-specific metal transport mechanisms. Nickel content showed temporal fluctuations, potentially influenced by climatic conditions and soil properties. PCA revealed distinct clustering patterns, linking elemental concentrations to specific species and years. This comprehensive analysis enhances understanding of metal absorption and distribution in ornamental plants, providing insights into their metabolic processes and potential implications for environmental monitoring and phytoremediation strategies. Full article
Show Figures

Graphical abstract

17 pages, 1496 KiB  
Review
Antioxidant Potential of Lactoferrin and Its Protective Effect on Health: An Overview
by Quintín Rascón-Cruz, Tania Samanta Siqueiros-Cendón, Luis Ignacio Siañez-Estrada, Celina María Villaseñor-Rivera, Lidia Esmeralda Ángel-Lerma, Joel Arturo Olivas-Espino, Dyada Blanca León-Flores, Edward Alexander Espinoza-Sánchez, Sigifredo Arévalo-Gallegos and Blanca Flor Iglesias-Figueroa
Int. J. Mol. Sci. 2025, 26(1), 125; https://doi.org/10.3390/ijms26010125 - 26 Dec 2024
Cited by 12 | Viewed by 2482
Abstract
Chronic diseases, including cardiovascular and neurodegenerative diseases and cancer, are significant global health challenges. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, is a critical factor in the progression of these pathologies. Lactoferrin (Lf), a multifunctional [...] Read more.
Chronic diseases, including cardiovascular and neurodegenerative diseases and cancer, are significant global health challenges. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, is a critical factor in the progression of these pathologies. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, has emerged as a promising therapeutic agent due to its potent antioxidant, anti-inflammatory, and iron-regulating properties. Lf plays a pivotal role in iron homeostasis by chelating iron, modulating its cellular uptake, and reducing ROS production, thereby mitigating oxidative stress-related tissue damage. Lf also demonstrates neuroprotective potential in diseases like Parkinson’s and Alzheimer’s, where it alleviates oxidative damage, regulates iron metabolism, and enhances antioxidant defenses. Furthermore, its ability to enhance endogenous antioxidant mechanisms, such as superoxide dismutase and glutathione peroxidase, underscores its systemic protective effects. Lf’s anti-inflammatory and antimicrobial activities also contribute to its broad-spectrum protective role in chronic diseases. This review consolidates evidence of Lf’s mechanisms in mitigating oxidative stress and highlights its therapeutic potential as a versatile molecule for preventing and managing chronic conditions linked to oxidative damage. Full article
(This article belongs to the Special Issue New Insights into Lactoferrin)
Show Figures

Figure 1

13 pages, 1583 KiB  
Article
Iron Deficiency in Tomatoes Reversed by Pseudomonas Strains: A Synergistic Role of Siderophores and Plant Gene Activation
by Belén Montero-Palmero, Jose A. Lucas, Blanca Montalbán, Ana García-Villaraco, Javier Gutierrez-Mañero and Beatriz Ramos-Solano
Plants 2024, 13(24), 3585; https://doi.org/10.3390/plants13243585 - 22 Dec 2024
Cited by 1 | Viewed by 1139
Abstract
An alkaline pH in soils reduces Fe availability, limiting Fe uptake, compromising plant growth, and showing chlorosis due to a decrease in chlorophyll content. To achieve proper Fe homeostasis, dicotyledonous plants activate a battery of strategies involving not only Fe absorption mechanisms, but [...] Read more.
An alkaline pH in soils reduces Fe availability, limiting Fe uptake, compromising plant growth, and showing chlorosis due to a decrease in chlorophyll content. To achieve proper Fe homeostasis, dicotyledonous plants activate a battery of strategies involving not only Fe absorption mechanisms, but also releasing phyto-siderophores and recruiting siderophore-producing bacterial strains. A screening for siderophore-producing bacterial isolates from the rhizosphere of Pinus pinea was carried out, resulting in two Pseudomonas strains, Z8.8 and Z10.4, with an outstanding in vitro potential to solubilize Fe, Mn, and Co. The delivery of each strain to 4-week-old iron-starved tomatoes reverted chlorosis, consistent with enhanced Fe contents up to 40%. Photosynthesis performance was improved, revealing different strategies. While Z8.8 increased energy absorption together with enhanced chlorophyll “a” content, followed by enhanced energy dissipation, Z10.4 lowered pigment contents, indicating a better use of absorbed energy, leading to a better survival rate. The systemic reprogramming induced by both strains reveals a lower expression of Fe uptake-related genes, suggesting that both strains have activated plant metabolism to accelerate Fe absorption faster than controls, consistent with increased Fe content in leaves (47% by Z8.8 and 42% by Z10.4), with the difference probably due to the ability of Z8.8 to produce auxins affecting root structure. In view of these results, both strains are effective candidates to develop biofertilizers. Full article
Show Figures

Figure 1

Back to TopTop