Immobilization of Bioimprinted Phospholipase D and Its Catalytic Behavior for Transphosphatidylation in the Biphasic System
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PLD Immobilization
2.3. Optimization of Immobilized Bioimprinted PLD Microencapsulation
2.4. Characterization Methods
2.5. Free and Immobilized PLD Activity Determination
2.6. Assessment of Thermal Stability
2.7. Storage Stability and Reusability
2.8. Statistical Analysis
3. Results
3.1. Variables That Affect Bioimprinted PLD Immobilization
3.2. Characterization of Immobilized Bioimprinted PLD
3.2.1. SEM Analysis
3.2.2. FTIR Spectra
3.2.3. X-Ray Diffraction
3.3. Transphosphatidylation Reaction Optimization
3.3.1. Temperature
3.3.2. pH
3.3.3. Substrate Mass Ratio
3.3.4. Reaction Time
3.4. Stability and Reusability
3.4.1. Thermal Stability
3.4.2. Storage Stability
3.4.3. Reusability
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, H.Y.; Huang, B.X.; Spector, A.A. Phosphatidylserine in the brain: Metabolism and function. Prog. Lipid Res. 2014, 56, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kato-Kataoka, A.; Sakai, M.; Ebina, R.; Nonaka, C.; Asano, T.; Miyamori, T. Soybean-derived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints. J. Clin. Biochem. Nutr. 2010, 47, 246–255. [Google Scholar] [CrossRef]
- Bruton, A.; Nauman, J.; Hanes, D.; Gard, M.; Senders, A. Phosphatidylserine for the treatment of pediatric attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. J. Altern. Complement. Med. 2021, 27, 312–322. [Google Scholar] [CrossRef]
- Doma, K.M.; Lewis, E.D.; Barracato, J.M.; Brink, L.R.; Gratson, A.A.; Pandey, N.; Crowley, D.C.; Evans, M. A randomized, double-blind, placebo-controlled, parallel study investigating the efficacy of a whole coffee cherry extract and phosphatidylserine formulation on cognitive performance of healthy adults with self-perceived memory problems. Neurol. Ther. 2023, 12, 777–794. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, I.; Chaudhary, M.N.; Ali, K.; Mushtaq, A.; Jiang, B.; Zheng, L.; Pan, Y.; Hu, J.; Zou, X. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition. Chem. Phys. Lipids 2024, 264, 105422. [Google Scholar] [CrossRef]
- Naeini, M.B.; Momtazi-Borojeni, A.A.; Ganjali, S.; Kontush, A.; Jaafari, M.R.; Sahebkar, A. Phosphatidylserine-containing liposomes: Therapeutic potentials against hypercholesterolemia and atherosclerosis. Eur. J. Pharmacol. 2021, 908, 174308. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, Y.; Li, S.; Wu, D.; Xu, Y.; Hu, J. Phosphatidylserine-functionalized liposomes-in-microgels for delivering genistein to effectively treat ulcerative colitis. J. Mater. Chem. B 2023, 11, 10404–10417. [Google Scholar] [CrossRef]
- Garcia-Loza, I.; Perna-Barrull, D.; Aguilera, E.; Almenara-Fuentes, L.; Gomez-Muñoz, L.; Greco, D.; Vila, M.; Salvado, M.; Mancera-Arteu, M.; Olszowy, M.W.; et al. Targeting macrophages with phosphatidylserine-rich liposomes as a potential antigen-specific immunotherapy for type 1 diabetes. J. Autoimmun. 2024, 145, 103196. [Google Scholar] [CrossRef]
- Damnjanović, J.; Iwasaki, Y. Phospholipase D as a catalyst: Application in phospholipid synthesis, molecular structure and protein engineering. J. Biosci. Bioeng. 2013, 116, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, B.; Wang, J.; Li, H.; Zhao, B. High-yield and sustainable production of phosphatidylserine in purely aqueous solutions via adsorption of phosphatidylcholine on triton-X-100-modified silica. J. Agric. Food Chem. 2017, 65, 10767–10774. [Google Scholar] [CrossRef]
- Wang, J.; Qi, X.; Yu, W.; Zhang, X.; Zhang, T.; Li, B. Highly efficient biosynthesis of phosphatidylserine by the surface adsorption-catalysis in purely aqueous media and mechanism study by biomolecular simulation. Mol. Catal. 2021, 502, 111397. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Zhang, X.; Hu, Q.; Yu, W.; Wang, H.; Duan, D.; Li, J.; Zhao, B. Docking and molecular dynamics studies on the mechanism of phospholipase D-mediated transphosphatidylation to construct the reaction kinetic model: Application in phosphatidylserine production. J. Taiwan Inst. Chem. Eng. 2019, 96, 82–92. [Google Scholar] [CrossRef]
- Li, B.; Duan, D.; Wang, J.; Li, H.; Zhang, X.; Zhao, B. Improving phospholipase D activity and selectivity by bio-imprinting-immobilization to produce phosphatidylglycerol. J. Biotechnol. 2018, 281, 67–73. [Google Scholar] [CrossRef]
- Guzik, U.; Hupert-Kocurek, K.; Wojcieszyńska, D. Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules 2014, 19, 8995–9018. [Google Scholar] [CrossRef]
- Liu, C.; Saeki, D.; Matsuyama, H. A novel strategy to immobilize enzymes on microporous membranes via dicarboxylic acid halides. RSC Adv. 2017, 7, 48199–48207. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, M.; Li, X.; Liu, B.; Li, B.; Wang, J. Immobilization of bio-imprinted phospholipase D and its catalytic behavior for transphosphatidylation in the biphasic system. Appl. Biochem. Biotechnol. 2023, 195, 7808–7820. [Google Scholar] [CrossRef]
- Qian, J.; Huang, A.; Wang, L.; Zhao, C.; Li, Q. Comparison of bio-imprinted Aspergillus niger lipase by oleic acid or olive oil to improve esterification performance. Int. J. Biol. Macromol. 2025, 306, 141348. [Google Scholar] [CrossRef]
- Qian, J.; Shi, B.; Li, Q.; Gou, L.; Zhao, C.; Huang, A. Synthesis of sucrose 6-acetate by immobilized aspergillus Niger lipase imprinted with oleic acid and sorbitol. Food Chem. 2025, 468, 142231. [Google Scholar] [CrossRef]
- Liu, D.M.; Chen, J.; Shi, Y.P. Advances on methods and easy separated support materials for enzymes immobilization. Trends Anal. Chem. 2018, 102, 332–342. [Google Scholar] [CrossRef]
- Tyagi, V.; Kaushik, S.; Tyagi, S.; Akiyama, T. Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sust. Energ. Rev. 2011, 15, 1373–1391. [Google Scholar] [CrossRef]
- Yeo, Y.; Baek, N.; Park, K. Microencapsulation methods for delivery of protein drugs. Biotechnol. Bioprocess Eng. 2001, 6, 213–230. [Google Scholar] [CrossRef]
- de Vos, P.; Lazarjani, H.A.; Poncelet, D.; Faas, M.M. Polymers in cell encapsulation from an enveloped cell perspective. Adv. Drug Deliv. Rev. 2014, 67, 15–34. [Google Scholar] [CrossRef]
- Kazi, G.A.; Yamamoto, O. Effectiveness of the sodium alginate as surgical sealant materials. Wound Med. 2019, 24, 18–23. [Google Scholar] [CrossRef]
- Burey, P.; Bhandari, B.R.; Howes, T.; Gidley, M.J. Hydrocolloid gel particles: Formation, characterization, and application. Crit. Rev. Food Sci. Nutr. 2008, 48, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Da, S.; Pereira, A.L.; Fraga, J.M.; Diniz, M.C.; Fontes-Sant’Ana, G.F.F.; Amaral, P. High catalytic activity of lipase from Yarrowia lipolytica immobilized by microencapsulation. Int. J. Mol. Sci. 2018, 19, 3393. [Google Scholar]
- da Silva Carvalho, A.G.; da Costa Machado, M.T.; Barros, H.D.d.F.Q.; Cazarin, C.B.B.; Junior, M.R.M.; Hubinger, M.D. Anthocyanins from jussara (Euterpe edulis Martius) extract carried by calcium alginate beads pre-prepared using ionic gelation. Powder Technol. 2019, 345, 283–291. [Google Scholar] [CrossRef]
- Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol. 2007, 40, 175–181. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Đorđević, V.; Karlović, S.; Pavlović, V.; Komes, D.; Ježek, D.; Bugarski, B.; Nedović, V. Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract. Food Hydrocoll. 2015, 51, 361–374. [Google Scholar] [CrossRef]
- Tello, F.; Falfan-Cortés, R.N.; Martinez-Bustos, F.; da Silva, V.M.; Hubinger, M.D.; Grosso, C. Alginate and pectin-based particles coated with globular proteins: Production, characterization and anti-oxidative properties. Food Hydrocoll. 2015, 43, 670–678. [Google Scholar] [CrossRef]
- Akil, E.; Pereira, A.D.S.; El-Bacha, T.; Amaral, P.F.F.; Torres, A.G. Efficient production of bioactive structured lipids by fast acidolysis catalyzed by Yarrowia lipolytica lipase, free and immobilized in chitosan-alginate beads, in solvent-free medium. Int. J. Biol. Macromol. 2020, 163, 910–918. [Google Scholar] [CrossRef]
- Scuto, F.R.; Ciarlantini, C.; Chiappini, V.; Pietrelli, L.; Piozzi, A.; Girelli, A.M. Design of a 3D amino-functionalized rice Husk Ash nano-silica/chitosan/alginate composite as support for laccase immobilization. Polymers 2023, 15, 3127. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Yang, Y.; Yuan, H.; Liu, X. Cagelike mesoporous silica encapsulated with microcapsules for immobilized laccase and 2, 4-DCP degradation. J. Environ. Sci. 2015, 38, 52–62. [Google Scholar] [CrossRef]
- Shakeri, F.; Ariaeenejad, S.; Ghollasi, M.; Motamedi, E. Synthesis of two novel bio-based hydrogels using sodium alginate and chitosan and their proficiency in physical immobilization of enzymes. Sci. Rep. 2022, 12, 2072. [Google Scholar] [CrossRef]
- Guo, B.; Wang, J.; Zhang, M.; Shang, H.; Du, R.; Wang, F.; Wang, H.; Xu, J.; Zhu, H. Efficient biosynthesis of phosphatidylserine in a biphasic system through parameter optimization. Processes 2023, 11, 2368. [Google Scholar] [CrossRef]
- Saqib, A.A.; Hassan, M.; Khan, N.F.; Baig, S. Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochem. 2010, 45, 641–646. [Google Scholar] [CrossRef]
- Zohar-Perez, C.; Chet, I.; Nussinovitch, A. Irregular textural features of dried alginate–filler beads. Food Hydrocoll. 2004, 18, 249–258. [Google Scholar] [CrossRef]
- Han, Q.; Wang, Z.; Xia, J.; Chen, S.; Zhang, X.; Ding, M. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 2012, 101, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Facchinatto, W.M.; Fiamingo, A.; Dos Santos, D.M.; Campana-Filho, S.P. Characterization and physical-chemistry of methoxypoly (ethylene glycol)-g-chitosan. Int. J. Biol. Macromol. 2019, 124, 828–837. [Google Scholar] [CrossRef]
- Omidi, S.; Kakanejadifard, A. Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: Synthesis, characterization, antibacterial, and antioxidant activities. Carbohydr. Polym. 2019, 208, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Fontes, G.C.; Calado, V.M.A.; Rossi, A.M.; Rocha-Leão, M.H.M.d. Characterization of antibiotic-loaded alginate-OSA starch microbeads produced by ionotropic pregelation. Biomed. Res. Int. 2013, 2013, 472626. [Google Scholar] [CrossRef]
- Komoto, D.; Furuike, T.; Tamura, H. Preparation of polyelectrolyte complex gel of sodium alginate with chitosan using basic solution of chitosan. Int. J. Biol. Macromol. 2019, 126, 54–59. [Google Scholar] [CrossRef]
- Pereira, A.d.S.; Diniz, M.M.; De Jong, G.; Gama Filho, H.S.; Dos Anjos, M.J.; Finotelli, P.V.; Fontes-Sant’Ana, G.C.; Amaral, P.F. Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase: Morphological, physico-chemical and kinetic characteristics. Int. J. Biol. Macromol. 2019, 139, 621–630. [Google Scholar] [CrossRef]
- Muley, A.B.; Chaudhari, S.A.; Mulchandani, K.H.; Singhal, R.S. Extraction and characterization of chitosan from prawn shell waste and its conjugation with cutinase for enhanced thermo-stability. Int. J. Biol. Macromol. 2018, 111, 1047–1058. [Google Scholar] [CrossRef]
- Prieto, M.; Vázquez, J.A.; Murado, M. A new and general model to describe, characterize, quantify and classify the interactive effects of temperature and pH on the activity of enzymes. Analyst 2015, 140, 3587–3602. [Google Scholar] [CrossRef]
- Song, S.; Cheong, L.-Z.; Guo, Z.; Kristensen, K.; Glasius, M.; Jensen, H.M.; Bertelsen, K.; Tan, T.; Xu, X. Phospholipase D (PLD) catalyzed synthesis of phosphatidyl-glucose in biphasic reaction system. Food Chem. 2012, 135, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Melo, R.L.F.; Freire, T.M.; Valério, R.B.R.; Neto, F.S.; de Castro Bizerra, V.; Fernandes, B.C.C.; de Sousa Junior, P.G.; da Fonseca, A.M.; Soares, J.M.; Fechine, P.B.A.; et al. Enhancing biocatalyst performance through immobilization of lipase (Eversa® Transform 2.0) on hybrid amine-epoxy core-shell magnetic nanoparticles. Int. J. Biol. Macromol. 2024, 264, 130730. [Google Scholar] [CrossRef]
- Hermanová, S.; Zarevúcká, M.; Bouša, D.; Pumera, M.; Sofer, Z. Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale 2015, 7, 5852–5858. [Google Scholar] [CrossRef]
- Uesugi, Y.; Hatanaka, T. Phospholipase D mechanism using Streptomyces PLD. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2009, 1791, 962–969. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, L.; Wu, G.; Wang, X.; Jin, Q.; Qi, X.; Zhang, H. Design of amino-functionalized hollow mesoporous silica cube for enzyme immobilization and its application in synthesis of phosphatidylserine. Colloids Surf. B Biointerfaces 2021, 202, 111668. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Wang, J.; Guo, B.; Zhu, H.; Li, H. Immobilization of phospholipase D on Fe3O4@SiO2-graphene oxide nanocomposites: A strategy to improve catalytic stability and reusability in the efficient production of phosphatidylserine. Molecules 2025, 30, 912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, L.; Wu, G.; Wang, X.; Jin, Q.; Qi, X.; Zhang, H. A novel immobilized enzyme enhances the conversion of phosphatidylserine in two-phase system. Biochem. Eng. J. 2021, 172, 108035. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Long, N.; Zhang, R. Efficient immobilization of phospholipase D on novel polymer supports with hierarchical pore structures. Int. J. Biol. Macromol. 2019, 141, 60–67. [Google Scholar] [CrossRef]
- Yin, L.; Feng, W.; Hu, Y.; Mao, X. Phase-specific immobilization of phospholipase D as an efficient pickering emulsion interfacial catalyst for converting Antarctic Krill Oil phospholipid. ACS Appl. Mater. Interfaces 2024, 17, 1834–1846. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Zhang, H.; Mao, X. Cellulose nanofibril-stabilized Pickering emulsion as a high-performance interfacial biocatalysis system for the synthesis of phosphatidylserine. Food Chem. 2023, 399, 133865. [Google Scholar] [CrossRef] [PubMed]








| Run | Factor | IE (%) | AR (%) | |||
|---|---|---|---|---|---|---|
| SA (%) | CTS (%) | CaCl2 (M) | CT (min) | |||
| 1 | 1.0(1) | 0.3(1) | 0.1(1) | 1(1) | 55.24 | 62.42 |
| 2 | 1.0(1) | 0.6(2) | 0.2(2) | 2(2) | 58.48 | 80.12 |
| 3 | 1.0(1) | 0.9(3) | 0.3(3) | 3(3) | 46.42 | 46.88 |
| 4 | 1.5(2) | 0.3(1) | 0.2(2) | 3(3) | 52.35 | 54.44 |
| 5 | 1.5(2) | 0.6(2) | 0.3(3) | 1(1) | 78.56 | 105.27 |
| 6 | 1.5(2) | 0.9(3) | 0.1(1) | 2(2) | 45.18 | 44.73 |
| 7 | 2.5(3) | 0.3(1) | 0.3(3) | 2(2) | 51.35 | 52.38 |
| 8 | 2.5(3) | 0.6(2) | 0.1(1) | 3(3) | 68.92 | 86.84 |
| 9 | 2.5(3) | 0.9(3) | 0.2(2) | 1(1) | 41.19 | 35.84 |
| K1 | 160.15 | 158.93 | 169.34 | 175.00 | ||
| K2 | 176.09 | 205.96 | 152.02 | 155.01 | ||
| K3 | 161.46 | 132.80 | 176.33 | 167.69 | ||
| k1 | 53.38 | 52.98 | 56.45 | 58.33 | ||
| k2 | 58.70 | 68.65 | 50.67 | 51.67 | ||
| k3 | 53.82 | 44.27 | 58.78 | 55.90 | ||
| R | 5.31 | 24.39 | 8.10 | 6.66 | ||
| Priority order | CTS > CaCl2 > CT > SA | |||||
| Optimal level | 1.5 | 0.6 | 0.3 | 1 | ||
| Optimal combination | SA (1.5%) CTS (0.6%) CaCl2 (0.3 M) CT (1 min) | |||||
| Support/Method | Immobilization Efficiency (%) | PS Yield (%) | Time | Ref. |
|---|---|---|---|---|
| Chitosan–sodium alginate/microencapsulation | 78.56 | 94.68 | 20 min | this study |
| Amino hollow mesoporous silica cube/cross-linking | 87.15 | 90.40 | 10 h | [49] |
| Fe3O4@SiO2–GO/adsorption | 84.4 | 95.1 | 90 min | [50] |
| non-porous SiO2/cross-linking | / | 97 | 6 h | [16] |
| Ordered mesoporous silica cube/adsorption | 76.27 | 91.2 | 2 h | [51] |
| Epoxy resin hierarchical porous polymer/adsorption | / | 95.5 | 40 min | [52] |
| Janus-poly-polystyrene/adsorption | / | 93 | 2 h | [53] |
| Cellulose nanofibrils/cellulose-binding domain | 56.3 | 95.4 | 2 h | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, B.; Shang, H.; Wang, J.; Liu, H.; Zhu, H. Immobilization of Bioimprinted Phospholipase D and Its Catalytic Behavior for Transphosphatidylation in the Biphasic System. Processes 2025, 13, 3424. https://doi.org/10.3390/pr13113424
Guo B, Shang H, Wang J, Liu H, Zhu H. Immobilization of Bioimprinted Phospholipase D and Its Catalytic Behavior for Transphosphatidylation in the Biphasic System. Processes. 2025; 13(11):3424. https://doi.org/10.3390/pr13113424
Chicago/Turabian StyleGuo, Bishan, Huiyi Shang, Juntan Wang, Hongwei Liu, and Haihua Zhu. 2025. "Immobilization of Bioimprinted Phospholipase D and Its Catalytic Behavior for Transphosphatidylation in the Biphasic System" Processes 13, no. 11: 3424. https://doi.org/10.3390/pr13113424
APA StyleGuo, B., Shang, H., Wang, J., Liu, H., & Zhu, H. (2025). Immobilization of Bioimprinted Phospholipase D and Its Catalytic Behavior for Transphosphatidylation in the Biphasic System. Processes, 13(11), 3424. https://doi.org/10.3390/pr13113424
