Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = ionic graft copolymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3747 KiB  
Article
Alginate Heterografted Copolymer Thermo-Induced Hydrogel Reinforced by PAA-g-P(boc-L-Lysine): Effects on Hydrogel Thermoresponsiveness
by Aikaterini-Ariadni Moschidi and Constantinos Tsitsilianis
Polymers 2024, 16(24), 3555; https://doi.org/10.3390/polym16243555 - 20 Dec 2024
Viewed by 932
Abstract
In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). [...] Read more.
In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend. Especially, the sol-gel behavior altered to soft gel–strong gel behavior due to the formation of a semi-interpenetrating network based on the hydrophobic self-organization of the PAA-g-P(b-LL). In addition, the critical characteristics, namely Tc,thermothickening (temperature above which the viscosity increases steeply) and ΔT (transition temperature window), shifted and broadened to lower temperatures, respectively, due to the influence of the hydrophobic side chains P(b-LL) on the LCST of the PNIPAM-based grafted chains of the alginate. The effect of ionic strength was also examined, showing that this is another important factor affecting the thermoresponsiveness of the hydrogel. Again, the thermoresponsive profile of the hydrogel was changed significantly by the presence of salt. All the formulations showed self-healing capability and tolerance injectability, suitable for potential bioapplications in living bodies. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Hydrogels)
Show Figures

Figure 1

20 pages, 3049 KiB  
Article
Coassembly of a Hybrid Synthetic–Biological Chitosan-g-Poly(N-isopropylacrylamide) Copolymer with DNAs of Different Lengths
by Maria Karayianni, Elena-Daniela Lotos, Marcela Mihai and Stergios Pispas
Polymers 2024, 16(21), 3101; https://doi.org/10.3390/polym16213101 - 4 Nov 2024
Viewed by 1297
Abstract
Natural polysaccharides can serve as carriers of genes owing to their intrinsic biocompatibility, biodegradability, and low toxicity. Additionally, they can be easily chemically modified, e.g., through grafting, leading to hybrid synthetic–biological copolymers with additional functionalities. In this work we report on the electrostatic [...] Read more.
Natural polysaccharides can serve as carriers of genes owing to their intrinsic biocompatibility, biodegradability, and low toxicity. Additionally, they can be easily chemically modified, e.g., through grafting, leading to hybrid synthetic–biological copolymers with additional functionalities. In this work we report on the electrostatic interaction between a chitosan-g-poly(N-isopropylacrylamide) (Chit-g-PNIPAM) copolymer and DNA macromolecules of different lengths (i.e., 50 and 2000 bp), towards the construction of polyplexes that can serve as potential gene delivery systems. At the basic science level, the work aims to elucidate the effects of DNA length on the structural and physicochemical properties of the thermoresponsive hybrid macromolecular assemblies. The protonated amino groups on the chitosan backbone enable electrostatic binding with the anionic phosphate groups of the DNA molecules, while the PNIPAM side chains are expected to impart thermoresponsive properties to the formed polyplexes. Different amino to phosphate group (N/P) mixing ratios were examined, aiming to produce stable dispersions. The physicochemical properties of the resulting polyplexes were investigated by dynamic and electrophoretic light scattering (DLS and ELS), while their morphology was studied by scanning-transmission electron microscopy (STEM). Moreover, their response to changes in temperature and ionic strength, as well as their stability against biological media, was also examined. Finally, the binding affinity of the copolymer towards DNA was evaluated through fluorescence spectroscopy, using ethidium bromide quenching assays, while infrared spectroscopy was used to investigate the structure of the incorporated DNA chains. Full article
(This article belongs to the Special Issue Recent Developments in Biodegradable and Biobased Polymers II)
Show Figures

Figure 1

14 pages, 5326 KiB  
Article
Piperacillin/Tazobactam Co-Delivery by Micellar Ionic Conjugate Systems Carrying Pharmaceutical Anions and Encapsulated Drug
by Katarzyna Niesyto, Aleksy Mazur and Dorota Neugebauer
Pharmaceutics 2024, 16(2), 198; https://doi.org/10.3390/pharmaceutics16020198 - 30 Jan 2024
Cited by 4 | Viewed by 1806
Abstract
Previously obtained amphiphilic graft copolymers based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA) ionic liquid were used as the matrices of three types of nanocarriers, i.e., conjugates with ionic piperacillin (PIP) and micelles with tazobactam (TAZ), which represented single systems, and dual systems bearing PIP anions [...] Read more.
Previously obtained amphiphilic graft copolymers based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA) ionic liquid were used as the matrices of three types of nanocarriers, i.e., conjugates with ionic piperacillin (PIP) and micelles with tazobactam (TAZ), which represented single systems, and dual systems bearing PIP anions and encapsulated TAZ for co-delivery. The exchange of Cl anions in TMAMA units with PIP ones resulted in a yield of 45.6–72.7 mol.%. The self-assembling properties were confirmed by the critical micelle concentration (CMC), which, after ion exchange, increased significantly (from 0.011–0.020 mg/mL to 0.041–0.073 mg/mL). The amphiphilic properties were beneficial for TAZ encapsulation to reach drug loading contents (DLCs) in the ranges of 37.2–69.5 mol.% and 50.4–80.4 mol.% and to form particles with sizes of 97–319 nm and 24–192 nm in the single and dual systems, respectively. In vitro studies indicated that the ionically conjugated drug (PIP) was released in quantities of 66–81% (7.8–15.0 μg/mL) from single-drug systems and 21–25% (2.6–3.9 μg/mL) from dual-drug systems. The release of encapsulated TAZ was more efficient, achieving 47–98% (7.5–9.0 μg/mL) release from the single systems and 47–69% (9.6–10.4 μg/mL) release from the dual ones. Basic cytotoxicity studies showed non-toxicity of the polymer matrices, while the introduction of the selected drugs induced cytotoxicity against normal human bronchial epithelial cells (BEAS-2B) with the increase in concentration. Full article
Show Figures

Figure 1

19 pages, 4062 KiB  
Article
Ionic Liquid-Based Polymer Matrices for Single and Dual Drug Delivery: Impact of Structural Topology on Characteristics and In Vitro Delivery Efficiency
by Katarzyna Niesyto, Shadi Keihankhadiv, Aleksy Mazur, Anna Mielańczyk and Dorota Neugebauer
Int. J. Mol. Sci. 2024, 25(2), 1292; https://doi.org/10.3390/ijms25021292 - 20 Jan 2024
Cited by 7 | Viewed by 1977
Abstract
Previously reported amphiphilic linear and graft copolymers, derived from the ionic liquid [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA_Cl‾), along with their conjugates obtained through modification either before or after polymerization with p-aminosalicylate anions (TMAMA_PAS‾), were employed as matrices in drug delivery systems (DDSs). Based on [...] Read more.
Previously reported amphiphilic linear and graft copolymers, derived from the ionic liquid [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA_Cl‾), along with their conjugates obtained through modification either before or after polymerization with p-aminosalicylate anions (TMAMA_PAS‾), were employed as matrices in drug delivery systems (DDSs). Based on the counterion type in TMAMA units, they were categorized into single drug systems, manifesting as ionic polymers with chloride counterions and loaded isoniazid (ISO), and dual drug systems, featuring ISO loaded in self-assembled PAS conjugates. The amphiphilic nature of these copolymers was substantiated through the determination of the critical micelle concentration (CMC), revealing an increase in values post-ion exchange (from 0.011–0.063 mg/mL to 0.027–0.181 mg/mL). The self-assembling properties were favorable for ISO encapsulation, with drug loading content (DLC) ranging between 15 and 85% in both single and dual systems. In vitro studies indicated ISO release percentages between 16 and 61% and PAS release percentages between 20 and 98%. Basic cytotoxicity assessments using the 2,5-diphenyl-2H-tetrazolium bromide (MTT) test affirmed the non-toxicity of the studied systems toward human non-tumorigenic lung epithelial cell line (BEAS-2B) cell lines, particularly in the case of dual systems bearing both ISO and PAS simultaneously. These results confirmed the effectiveness of polymeric carriers in drug delivery, demonstrating their potential for co-delivery in combination therapy. Full article
Show Figures

Figure 1

23 pages, 6961 KiB  
Article
Structural Characterization and Physicochemical Properties of Functionally Porous Proton-Exchange Membrane Based on PVDF-SPA Graft Copolymers
by Maria Ponomar, Valentina Ruleva, Veronika Sarapulova, Natalia Pismenskaya, Victor Nikonenko, Alina Maryasevskaya, Denis Anokhin, Dimitri Ivanov, Jeet Sharma, Vaibhav Kulshrestha and Bruno Améduri
Int. J. Mol. Sci. 2024, 25(1), 598; https://doi.org/10.3390/ijms25010598 - 2 Jan 2024
Cited by 5 | Viewed by 2458
Abstract
Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) [...] Read more.
Fluorinated proton-exchange membranes (PEMs) based on graft copolymers of dehydrofluorinated polyvinylidene fluoride (D-PVDF), 3-sulfopropyl acrylate (SPA), and 1H, 1H, 2H-perfluoro-1-hexene (PFH) were prepared via free radical copolymerization and characterized for fuel cell application. The membrane morphology and physical properties were studied via small-(SAXS) and wide-angle X-ray scattering (WAXS), SEM, and DSC. It was found that the crystallinity degree is 17% for PEM-RCF (co-polymer with SPA) and 16% for PEM-RCF-2 (copolymer with SPA and PFH). The designed membranes possess crystallite grains of 5–6 nm in diameter. SEM images reveal a structure with open pores on the surface of diameters from 20 to 140 nm. Their transport and electrochemical characterization shows that the lowest membrane area resistance (0.9 Ωcm2) is comparable to perfluorosulfonic acid PEMs (such as Nafion®) and polyvinylidene fluoride (PVDF) based CJMC cation-exchange membranes (ChemJoy Polymer Materials, China). Key transport and physicochemical properties of new and commercial membranes were compared. The PEM-RCF permeability to NaCl diffusion is rather high, which is due to a relatively low concentration of fixed sulfonate groups. Voltammetry confers that the electrochemical behavior of new PEM correlates to that of commercial cation-exchange membranes, while the ionic conductivity reveals an impact of the extended pores, as in track-etched membranes. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems 5.0)
Show Figures

Figure 1

18 pages, 6627 KiB  
Article
Thermoresponsive Alginate-Graft-pNIPAM/Methyl Cellulose 3D-Printed Scaffolds Promote Osteogenesis In Vitro
by Aikaterini Gialouri, Sofia Falia Saravanou, Konstantinos Loukelis, Maria Chatzinikolaidou, George Pasparakis and Nikolaos Bouropoulos
Gels 2023, 9(12), 984; https://doi.org/10.3390/gels9120984 - 15 Dec 2023
Cited by 7 | Viewed by 3313
Abstract
In this work, a sodium alginate-based copolymer grafted by thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains was used as gelator (Alg-g-PNIPAM) in combination with methylcellulose (MC). It was found that the mechanical properties of the resulting gel could be enhanced by the addition of [...] Read more.
In this work, a sodium alginate-based copolymer grafted by thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains was used as gelator (Alg-g-PNIPAM) in combination with methylcellulose (MC). It was found that the mechanical properties of the resulting gel could be enhanced by the addition of MC and calcium ions (Ca2+). The proposed network is formed via a dual crosslinking mechanism including ionic interactions among Ca2+ and carboxyl groups and secondary hydrophobic associations of PNIPAM chains. MC was found to further reinforce the dynamic moduli of the resulting gels (i.e., a storage modulus of ca. 1500 Pa at physiological body and post-printing temperature), rendering them suitable for 3D printing in biomedical applications. The polymer networks were stable and retained their printed fidelity with minimum erosion as low as 6% for up to seven days. Furthermore, adhered pre-osteoblastic cells on Alg-g-PNIPAM/MC printed scaffolds presented 80% viability compared to tissue culture polystyrene control, and more importantly, they promoted the osteogenic potential, as indicated by the increased alkaline phosphatase activity, calcium, and collagen production relative to the Alg-g-PNIPAM control scaffolds. Specifically, ALP activity and collagen secreted by cells were significantly enhanced in Alg-g-PNIPAM/MC scaffolds compared to the Alg-g-PNIPAM counterparts, demonstrating their potential in bone tissue engineering. Full article
(This article belongs to the Special Issue Design of Polymeric Hydrogels Biomaterials)
Show Figures

Graphical abstract

13 pages, 3248 KiB  
Article
Characterization of Graft Copolymers Synthesized from p-Aminosalicylate Functionalized Monomeric Choline Ionic Liquid
by Aleksy Mazur and Dorota Neugebauer
Pharmaceutics 2023, 15(11), 2556; https://doi.org/10.3390/pharmaceutics15112556 - 30 Oct 2023
Cited by 2 | Viewed by 1643
Abstract
An ionic liquid based on the monomeric choline, specifically [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (TMAMA), underwent biofunctionalization through an ion exchange reaction with the model drug anion: p-aminosalicylate (PAS), a primary antibiotic for tuberculosis treatment. This modified biocompatible IL monomer (TMAMA/PAS) was subsequently copolymerized with [...] Read more.
An ionic liquid based on the monomeric choline, specifically [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (TMAMA), underwent biofunctionalization through an ion exchange reaction with the model drug anion: p-aminosalicylate (PAS), a primary antibiotic for tuberculosis treatment. This modified biocompatible IL monomer (TMAMA/PAS) was subsequently copolymerized with methyl methacrylate (MMA) to directly synthesize the well-defined graft conjugates with regulated content of ionic fraction with PAS anions (up to 49%), acting as drug delivery systems. The length of the polymeric side chains was assessed by the monomer conversions, yielding a degree of polymerization ranging from 12 to 89. The density of side chains was controlled by “grafting from” using the multifunctional macroinitiators. In vitro drug release, triggered by the ion exchange between the pharmaceutical and phosphate anions in a PBS medium, occurred in the range of 71–100% (2.8–9.8 μg/mL). Owing to significant drug content and consistent release profiles, these particular graft copolymers, derived from biomodified IL monomers with ionically attached pharmaceutical PAS in the side chains, are recognized as potentially effective drug delivery vehicles. Full article
(This article belongs to the Special Issue Ionic Liquids in Pharmaceutical and Biomedical Applications)
Show Figures

Figure 1

42 pages, 6015 KiB  
Article
Electrochemical Properties and Structure of Membranes from Perfluorinated Copolymers Modified with Nanodiamonds
by Vasily T. Lebedev, Yuri V. Kulvelis, Alexandr V. Shvidchenko, Oleg N. Primachenko, Alexei S. Odinokov, Elena A. Marinenko, Alexander I. Kuklin and Oleksandr I. Ivankov
Membranes 2023, 13(11), 850; https://doi.org/10.3390/membranes13110850 - 25 Oct 2023
Viewed by 2054
Abstract
In this study, we aimed to design and research proton-conducting membranes based on Aquivion®-type material that had been modified with detonation nanodiamonds (particle size 4–5 nm, 0.25–5.0 wt. %). These nanodiamonds carried different functional groups (H, OH, COOH, F) that provided [...] Read more.
In this study, we aimed to design and research proton-conducting membranes based on Aquivion®-type material that had been modified with detonation nanodiamonds (particle size 4–5 nm, 0.25–5.0 wt. %). These nanodiamonds carried different functional groups (H, OH, COOH, F) that provided the hydrophilicity of the diamond surface with positive or negative potential, or that strengthened the hydrophobicity of the diamonds. These variations in diamond properties allowed us to find ways to improve the composite structure so as to achieve better ion conductivity. For this purpose, we prepared three series of membrane films by first casting solutions of perfluorinated Aquivion®-type copolymers with short side chains mixed with diamonds dispersed on solid substrates. Then, we removed the solvent and the membranes were structurally stabilized during thermal treatment and transformed into their final form with –SO3H ionic groups. We found that the diamonds with a hydrogen-saturated surface, with a positive charge in aqueous media, contributed to the increase in proton conductivity of membranes to a greater rate. Meanwhile, a more developed conducting diamond-copolymer interface was formed due to electrostatic attraction to the sulfonic acid groups of the copolymer than in the case of diamonds grafted with negatively charged carboxyls, similar to sulfonic groups of the copolymer. The modification of membranes with fluorinated diamonds led to a 5-fold decrease in the conductivity of the composite, even when only a fraction of diamonds of 1 wt. % were used, which was explained by the disruption in the connectivity of ion channels during the interaction of such diamonds mainly with fluorocarbon chains of the copolymer. We discussed the specifics of the mechanism of conductivity in composites with various diamonds in connection with structural data obtained in neutron scattering experiments on dry membranes, as well as ideas about the formation of cylindrical micelles with central ion channels and shells composed of hydrophobic copolymer chains. Finally, the characteristics of the network of ion channels in the composites were found depending on the type and amount of introduced diamonds, and correlations between the structure and conductivity of the membranes were established. Full article
(This article belongs to the Special Issue Proton-Conducting Membranes - 2nd Edition)
Show Figures

Figure 1

17 pages, 8083 KiB  
Article
Sodium Salt of Partially Carboxymethylated Sodium Alginate-Graft-Poly(Acrylonitrile): II Superabsorbency, Salt Sensitivity and Swelling Kinetics of Hydrogel, H-Na-PCMSA-g-PAN
by Jignesh Trivedi and Arvind Chourasia
Gels 2023, 9(5), 407; https://doi.org/10.3390/gels9050407 - 12 May 2023
Cited by 8 | Viewed by 1983
Abstract
The water absorption measurements of a novel superabsorbent anionic hydrogel, H-Na-PCMSA-g-PAN, has been reported first time in water with a poor conductivity, 0.15 M saline (NaCl, CaCl2, and AlCl3) solutions, and simulated urine (SU) solutions at various times. The hydrogel [...] Read more.
The water absorption measurements of a novel superabsorbent anionic hydrogel, H-Na-PCMSA-g-PAN, has been reported first time in water with a poor conductivity, 0.15 M saline (NaCl, CaCl2, and AlCl3) solutions, and simulated urine (SU) solutions at various times. The hydrogel has been prepared by the saponification of the graft copolymer, Na-PCMSA-g-PAN (%G = 316.53, %GE = 99.31). Results indicated that as compared to the swelling capacity values evaluated in water with a poor conductivity, the ability of the hydrogel to swell in various saline solutions with the same concentration is significantly reduced at all different durations. The swelling tends to be Na+ > Ca2+ > Al3+ at the same saline concentration in the solution. Studies of the absorbency in various aqueous saline (NaCl) solutions also revealed that the swelling capacity decreased as the ionic strength of the swelling medium rose, which is consistent with the experimental results and Flory’s equation. Furthermore, the experimental results strongly suggested that second-order kinetics governs the swelling process of the hydrogel in various swelling media. The swelling characteristics and equilibrium water contents for the hydrogel in various swelling media have also been researched. The hydrogel samples have been successfully characterized by FTIR to show the change in chemical environment to COO and CONH2 groups after swelling in different swelling media. The samples have also been characterized by SEM technique. Full article
Show Figures

Figure 1

17 pages, 3467 KiB  
Article
Vinylbenzyl Chloride/Styrene-Grafted SBS Copolymers via TEMPO-Mediated Polymerization for the Fabrication of Anion Exchange Membranes for Water Electrolysis
by Andrea Roggi, Elisa Guazzelli, Claudio Resta, Gabriele Agonigi, Antonio Filpi and Elisa Martinelli
Polymers 2023, 15(8), 1826; https://doi.org/10.3390/polym15081826 - 8 Apr 2023
Cited by 9 | Viewed by 3677
Abstract
In this work, a commercial SBS was functionalized with the 2,2,6,6-tetramethylpiperidin-N-oxyl stable radical (TEMPO) via free-radical activation initiated with benzoyl peroxide (BPO). The obtained macroinitiator was used to graft both vinylbenzyl chloride (VBC) and styrene/VBC random copolymer chains from SBS to [...] Read more.
In this work, a commercial SBS was functionalized with the 2,2,6,6-tetramethylpiperidin-N-oxyl stable radical (TEMPO) via free-radical activation initiated with benzoyl peroxide (BPO). The obtained macroinitiator was used to graft both vinylbenzyl chloride (VBC) and styrene/VBC random copolymer chains from SBS to create g-VBC-x and g-VBC-x-co-Sty-z graft copolymers, respectively. The controlled nature of the polymerization as well as the use of a solvent allowed us to reduce the extent of the formation of the unwanted, non-grafted (co)polymer, thereby facilitating the graft copolymer’s purification. The obtained graft copolymers were used to prepare films via solution casting using chloroform. The –CH2Cl functional groups of the VBC grafts were then quantitatively converted to –CH2(CH3)3N+ quaternary ammonium groups via reaction with trimethylamine directly on the films, and the films, therefore, were investigated as anion exchange membranes (AEMs) for potential application in a water electrolyzer (WE). The membranes were extensively characterized to assess their thermal, mechanical, and ex situ electrochemical properties. They generally presented ionic conductivity comparable to or higher than that of a commercial benchmark as well as higher water uptake and hydrogen permeability. Interestingly, the styrene/VBC-grafted copolymer was found to be more mechanically resistant than the corresponding graft copolymer not containing the styrene component. For this reason, the copolymer g-VBC-5-co-Sty-16-Q with the best balance of mechanical, water uptake, and electrochemical properties was selected for a single-cell test in an AEM-WE. Full article
(This article belongs to the Special Issue Advanced Polymer for Membrane Applications)
Show Figures

Figure 1

24 pages, 4187 KiB  
Article
Temperature- and pH-Responsive Super-Absorbent Hydrogel Based on Grafted Cellulose and Capable of Heavy Metal Removal from Aqueous Solutions
by Hebat-Allah S. Tohamy, Mohamed El-Sakhawy, Beata Strachota, Adam Strachota, Ewa Pavlova, Silvia Mares Barbosa and Samir Kamel
Gels 2023, 9(4), 296; https://doi.org/10.3390/gels9040296 - 2 Apr 2023
Cited by 23 | Viewed by 3265
Abstract
In this work, we prepared highly swelling, stimuli-responsive hydrogels capable of the highly efficient adsorption of inorganic pollutants. The hydrogels were based on hydroxypropyl methyl cellulose (HPMC) grafted with acrylamide (AM) and 3-sulfopropyl acrylate (SPA) and were synthesized via the growth (radical polymerization) [...] Read more.
In this work, we prepared highly swelling, stimuli-responsive hydrogels capable of the highly efficient adsorption of inorganic pollutants. The hydrogels were based on hydroxypropyl methyl cellulose (HPMC) grafted with acrylamide (AM) and 3-sulfopropyl acrylate (SPA) and were synthesized via the growth (radical polymerization) of the grafted copolymer chains on HPMC, which was activated by radical oxidation. These grafted structures were crosslinked to an infinite network by a small amount of di-vinyl comonomer. HPMC was chosen as a cheap hydrophilic and naturally sourced polymer backbone, while AM and SPA were employed to preferentially bond coordinating and cationic inorganic pollutants, respectively. All the gels displayed a pronounced elastic character, as well as considerably high values of stress at break (several hundred %). The gel with the highest fraction of the ionic comonomer SPA (with an AM/SPA ratio = 0.5) displayed the highest equilibrium swelling ratio (12,100%), the highest volume response to temperature and pH, and the fastest swelling kinetics, but also the lowest modulus. The other gels (with AM/SPA = 1 and 2) displayed several times higher moduli but more modest pH responses and only very modest temperature sensitivity. Cr(VI) adsorption tests indicated that the prepared hydrogels removed this species from water very efficiently: between 90 and 96% in one step. The hydrogels with AM/SPA ratios of 0.5 and 1 appeared to be promising regenerable (via pH) materials for repeated Cr(VI) adsorption. Full article
(This article belongs to the Special Issue Hydrogels: Synthesis, Characterization and Applications)
Show Figures

Figure 1

15 pages, 3239 KiB  
Article
Pharmaceutical Functionalization of Monomeric Ionic Liquid for the Preparation of Ionic Graft Polymer Conjugates
by Aleksy Mazur, Katarzyna Niesyto and Dorota Neugebauer
Int. J. Mol. Sci. 2022, 23(23), 14731; https://doi.org/10.3390/ijms232314731 - 25 Nov 2022
Cited by 8 | Viewed by 2031
Abstract
Polymerizable choline-based ionic liquid (IL), i.e., [2-(methacryloyloxy)ethyl]-trimethylammonium (TMAMA/Cl¯), was functionalized by an ion exchange reaction with pharmaceutical anions, i.e., cloxacillin (CLX¯) and fusidate (FUS¯), as the antibacterial agents. The modified biocompatible IL monomers (TMAMA/CLX¯, TMAMA/FUS¯) were copolymerized with methyl methacrylate (MMA) to prepare [...] Read more.
Polymerizable choline-based ionic liquid (IL), i.e., [2-(methacryloyloxy)ethyl]-trimethylammonium (TMAMA/Cl¯), was functionalized by an ion exchange reaction with pharmaceutical anions, i.e., cloxacillin (CLX¯) and fusidate (FUS¯), as the antibacterial agents. The modified biocompatible IL monomers (TMAMA/CLX¯, TMAMA/FUS¯) were copolymerized with methyl methacrylate (MMA) to prepare the graft copolymers (19–50 mol% of TMAMA units) serving as the drug (co)delivery systems. The in vitro drug release, which was driven by the exchange reaction of the pharmaceutical anions to phosphate ones in PBS medium, was observed for 44% of CLX¯ (2.7 μg/mL) and 53% of FUS¯ (3.6 μg/mL) in the single systems. Similar amounts of released drugs were detected for the dual system, i.e., 41% of CLX¯ (2.2 μg/mL) and 33% of FUS¯ (2.0 μg/mL). The investigated drug ionic polymer conjugates were examined for their cytotoxicity by MTT test, showing a low toxic effect against human bronchial epithelial cells (BEAS-2B) and normal human dermal fibroblasts (NHDF) as the normal cell lines. The satisfactory drug contents and the release profiles attained for the well-defined graft polymers with ionically bonded pharmaceuticals in the side chains make them promising drug carriers in both separate and combined drug delivery systems. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

10 pages, 3085 KiB  
Article
Polyelectrolyte Multilayers Composed of Polyethyleneimine-Grafted Chitosan and Polyacrylic Acid for Controlled-Drug-Delivery Applications
by Eliz Selmin Paker and Mehmet Senel
J. Funct. Biomater. 2022, 13(3), 131; https://doi.org/10.3390/jfb13030131 - 28 Aug 2022
Cited by 10 | Viewed by 2617
Abstract
In this work, polyethyleneimine (PEI)-grafted chitosan (Chi-g-PEI) was prepared for the fabrication of layer-by-layer (LBL) films for use in sustained-drug-delivery applications. Chi-g-PEI and polyacrylic acid (PAA) multilayer films were formed using the LBL technique. Methylene blue (MB) was used as a model drug [...] Read more.
In this work, polyethyleneimine (PEI)-grafted chitosan (Chi-g-PEI) was prepared for the fabrication of layer-by-layer (LBL) films for use in sustained-drug-delivery applications. Chi-g-PEI and polyacrylic acid (PAA) multilayer films were formed using the LBL technique. Methylene blue (MB) was used as a model drug for the investigation of loading and release capabilities of the LBL films. Characterizations of the synthesized copolymer were performed using Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance spectroscopy (NMR), Thermogravimetric analysis (TGA), and X-ray Powder Diffraction (XRD) techniques, and the thickness of the LBL films was measured using Atomic force microscopy (AFM). The drug-loading and -release behaviors of the LBL films were assessed using a UV–visible spectrophotometer. The results showed that the loading capacity and release rate of MB were affected by ionic strength and pH. In addition, it was demonstrated that PEI-grafted chitosan is a good candidate for the assembling of LBL films for drug-delivery applications. Full article
(This article belongs to the Special Issue Biomaterials for Drug Delivery)
Show Figures

Figure 1

13 pages, 1940 KiB  
Article
Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(para-phenylene vinylene) and Poly(para-phenylene ethynylene) on the Polymer’s Photoluminescent Properties
by Thomas Kerr-Phillips, Mona Damavandi, Lisa I. Pilkington, Kathryn A. Whitehead, Jadranka Travas-Sejdic and David Barker
Polymers 2022, 14(14), 2767; https://doi.org/10.3390/polym14142767 - 6 Jul 2022
Cited by 3 | Viewed by 2565
Abstract
The conformation of a fluorescent polymer, in the solid state or in solution, plays a critical role in the polymer’s fluorescent properties. Thus, grafted side chains on a fluorescent polymer can directly influence its optical properties. In this study, the effect of grafted [...] Read more.
The conformation of a fluorescent polymer, in the solid state or in solution, plays a critical role in the polymer’s fluorescent properties. Thus, grafted side chains on a fluorescent polymer can directly influence its optical properties. In this study, the effect of grafted polymeric side chains on the photoluminescent properties of poly(para-phenylene vinylene) (PPV) and poly(para-phenylene ethynylene) (PPE) were investigated. Low- and high-molecular-weight grafts of neutral poly(n-butyl acrylate), cationic poly(trimethylaminoethyl methacrylate) and anionic poly(sulfopropyl acrylate) were grafted onto PPVs and PPEs, and the effect of the grafting on the graft copolymer’s absorption and emission wavelengths, the fluorescence intensity and the quantum yield were studied. The results indicate that in the case of the ionic grafts, contrary to the expectations, the polymers have a reduced quantum yield. This contrasts with the copolymers with uncharged side chains (PnBA), where a major increase in the quantum yield is seen for the self-quenching conjugated pristine polymers. These results reinforce that the molecular conformation of the polymer in a solid or solution plays a critical role in fluorescent polymers photoluminescent properties. Full article
(This article belongs to the Special Issue Status and Progress of Soluble Polymers)
Show Figures

Graphical abstract

12 pages, 2254 KiB  
Article
Dual-Drug Delivery via the Self-Assembled Conjugates of Choline-Functionalized Graft Copolymers
by Katarzyna Niesyto, Aleksy Mazur and Dorota Neugebauer
Materials 2022, 15(13), 4457; https://doi.org/10.3390/ma15134457 - 24 Jun 2022
Cited by 12 | Viewed by 2246
Abstract
Graft copolymers based on a choline ionic liquid (IL), [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (TMAMA), were obtained by atom transfer radical polymerization. The presence of chloride counterions in the trimethylammonium groups promoted anion exchange to introduce fusidate anions (FUS, 32–55 mol.%) as the pharmaceutical anions. Both [...] Read more.
Graft copolymers based on a choline ionic liquid (IL), [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (TMAMA), were obtained by atom transfer radical polymerization. The presence of chloride counterions in the trimethylammonium groups promoted anion exchange to introduce fusidate anions (FUS, 32–55 mol.%) as the pharmaceutical anions. Both the choline-based IL copolymers and their ionic drug-carrier conjugates (FUS systems as the first type, 26–208 nm) formed micellar structures (CMC = 0.011–0.025 mg/mL). The amphiphilic systems were advantageous for the encapsulation of rifampicin (RIF, 40–67 mol.%), a well-known antibiotic, resulting in single-drug (RIF systems as the second type, 40–95 nm) and dual-drug systems (FUS/RIF as the third type, 31–65 nm). The obtained systems released significant amounts of drugs (FUS > RIF), which could be adjusted by the content of ionic units and the length of the copolymer side chains. The dual-drug systems released 31–55% FUS (4.3–5.6 μg/mL) and 19–31% RIF (3.3–4.0 μg/mL), and these results were slightly lower than those for the single-drug systems, reaching 45–81% for FUS (3.8–8.2 μg/mL) and 20–37% for RIF (3.4–4.0 μg/mL). The designed polymer systems show potential as co-delivery systems for combined therapy against drug-resistant strains using two drugs in one formula instead of the separate delivery of two drugs. Full article
Show Figures

Figure 1

Back to TopTop