Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(para-phenylene vinylene) and Poly(para-phenylene ethynylene) on the Polymer’s Photoluminescent Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. General Atom Transfer Radical Polymerization Method
3. Results and Discussion
3.1. Grafting of Poly(cation), Poly(anion) and Poly(n-butly actrylate) from PPVs and PPEs
3.2. Optical Properties of the Grafted Copolymers
3.2.1. PPVs and PPEs Grafted with Uncharged Side Chains
3.2.2. PPVs and PPEs Grafted with Ionic Side Chains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Badi, N.; Chan-Seng, D.; Lutz, J. Microstructure Control: An Underestimated Parameter in Recent Polymer Design. Macromol. Chem. Phys. 2013, 214, 135–142. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Tsarevsky, N.V.J. Macromolecular Engineering by Atom Transfer Radical Polymerization. Am. Chem. Soc. 2014, 136, 6513–6533. [Google Scholar] [CrossRef]
- Strover, L.T.; Malmström, J.; Travas-Sejdic, J. Graft Copolymers with Conducting Polymer Backbones: A Versatile Route to Functional Materials. Chem. Rec. 2016, 16, 393–418. [Google Scholar] [CrossRef] [PubMed]
- de Boer, B.; Stalmach, U.; van Hutten, P.F.; Melzer, C.; Krasnikov, V.V.; Hadziioannou, G. Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers. Polymer 2001, 42, 9097–9109. [Google Scholar] [CrossRef] [Green Version]
- Baek, P.; Kerr-Phillips, T.; Damavandi, M.; Chaudhary, O.J.; Malmstrom, J.; Chan, E.W.C.; Shaw, P.; Burn, P.; Barker, D.; Travas-Sejdic, J. Highly processable, rubbery poly(n-butyl acrylate) grafted poly(phenylene vinylene)s. Eur. Polym. J. 2016, 84, 355–365. [Google Scholar] [CrossRef]
- Sun, Z.; Xiao, K.; Keum, J.K.; Yu, X.; Hong, K.; Browning, J.; Ivanov, I.N.; Chen, J.; Alonzo, J.; Li, D.; et al. PS-b-P3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics. Adv. Mater. 2011, 23, 5529–5535. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Lv, X.; Zhang, P.; Liu, B.; Gao, L.; Duan, J.; Ma, B.; Wu, Z. Uncontactless detection of improvised explosives TATP realized by Au NCs tailored PPV flexible photoelectric Schottky sensor. Nano Sel. 2020, 1, 419–431. [Google Scholar] [CrossRef]
- Wu, W.; Bazan, G.C.; Liu, B. Conjugated-Polymer-Amplified Sensing, Imaging, and Therapy. Chem 2017, 2, 760–790. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, A.R.G.; Peng, H.; Barker, D.; Travas-Sejdic, J. Switch on or switch off: An optical DNA sensor based on poly(p-phenylenevinylene) grafted magnetic beads. Biosens. Bioelectron. 2012, 35, 498–502. [Google Scholar] [CrossRef]
- Jadoun, S.; Riaz, U. Polymers for Light-Emitting Devices and Displays; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 77. [Google Scholar]
- Salem, A.M.S.; El-Sheikh, S.M.; Harraz, F.A.; Ebrahim, S.; Soliman, M.; Hafez, H.S.; Ibrahim, I.A.; Abdel-Mottaleb, M.S.A. Inverted polymer solar cell based on MEH-PPV/PC61BM coupled with ZnO nanoparticles as electron transport layer. Appl. Surf. Sci. 2017, 425, 156–163. [Google Scholar] [CrossRef]
- Suryana, R.; Tyas, L.K.; Nurosyid, F. Variation of MEH-PPV layers with/without PEDOT:PSS layer in organic solar cells. IOP Conf. Ser. Mater. Sci. Eng. 2018, 333, 012022. [Google Scholar] [CrossRef]
- Bilby, D.; Kim, B.G.; Kim, J. Recent design strategies for polymer solar cell materials. Pure Appl. Chem. 2010, 83, 127–139. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, P.; Liao, X.; Chen, Y.J. Recent advances of computational chemistry in organic solar cell research. Mater. Chem. C 2020, 8, 15920–15939. [Google Scholar] [CrossRef]
- Videlot, C.; El Kassmi, A.; Fichou, D. Photovoltaic properties of octithiophene-based Schottky and p/n junction cells: Influence of molecular orientation. Sol. Energy Mater. Solar Cells 2000, 63, 69–82. [Google Scholar] [CrossRef]
- Anonymous. Handbook of Fluorescence Spectroscopy and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 1. [Google Scholar]
- Zhu, Q.; Zhan, R.; Liu, B. Homogeneous Detection of Trypsin in Protein Mixtures Based on Fluorescence Resonance Energy Transfer between Anionic Conjugated Polymer and Fluorescent Probe. Macromol. Rapid Commun. 2010, 31, 1060–1064. [Google Scholar] [CrossRef]
- Tang, Y.; He, F.; Yu, M.; Wang, S.; Li, Y.; Zhu, D. Radical Scavenging Mediating Reversible Fluorescence Quenching of an Anionic Conjugated Polymer: Highly Sensitive Probe for Antioxidants. Chem. Mater. 2006, 18, 3605–3610. [Google Scholar] [CrossRef]
- Huang, F.; Wang, X.; Wang, D.; Yang, W.; Cao, Y. Synthesis and properties of a novel water-soluble anionic polyfluorenes for highly sensitive biosensors. Polymer 2005, 46, 12010–12015. [Google Scholar] [CrossRef]
- Chen, D.; Cui, C.; Tong, N.; Zhou, H.; Wang, X.; Wang, R. Water-Soluble and Low-Toxic Ionic Polymer Dots as Invisible Security Ink for MultiStage Information Encryption. ACS Appl. Mater. Interfaces 2019, 11, 1480–1486. [Google Scholar] [CrossRef]
- Roy, S.; Gunukula, A.; Ghosh, B.; Chakraborty, C. A folic acid-sensitive polyfluorene based “turn-off” fluorescence nanoprobe for folate receptor overexpressed cancer cell imaging. Sens. Actuators B Chem. 2019, 291, 337–344. [Google Scholar] [CrossRef]
- Raymond, F.R.; Ho, H.; Peytavi, R.; Bissonnette, L.; Boissinot, M.; Picard, F.J.; Leclerc, M.; Bergeron, M.G. Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support. BMC Biotechnol. 2005, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Rochat, S.; Swager, T.M. Fluorescence Sensing of Amine Vapors Using a Cationic Conjugated Polymer Combined with Various Anions. Angew. Chem. Int. Ed. 2014, 53, 9792–9796. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, T.; Yoshida, S.; Yoshida, A.; Uchiyama, S. Cationic Fluorescent Polymeric Thermometers with the Ability to Enter Yeast and Mammalian Cells for Practical Intracellular Temperature Measurements. Anal. Chem. 2013, 85, 9815–9823. [Google Scholar] [CrossRef]
- Madkour, A.E.; Dabkowski, J.M.; Nüsslein, K.; Tew, G.N. Fast Disinfecting Antimicrobial Surfaces. Langmuir 2009, 25, 1060–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damavandi, M.; Pilkington, L.I.; Whitehead, K.A.; Wilson-Nieuwenhuis, J.; McBrearty, J.; Dempsey-Hibbert, N.; Travis-Sejdic, J.; Barker, D. Poly(para-phenylene ethynylene) (PPE)- and poly(para-phenylene vinylene) (PPV)-poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) graft copolymers exhibit selective antimicrobial activity. Eur. Polym. J. 2018, 98, 368–374. [Google Scholar] [CrossRef]
- Ji, X.; Yao, Y.; Li, J.; Yan, X.; Huang, F.J. A Supramolecular Cross-Linked Conjugated Polymer Network for Multiple Fluorescent Sensing. Am. Chem. Soc. 2013, 135, 74–77. [Google Scholar] [CrossRef]
- Yong, X.; Wan, W.; Su, M.; You, W.; Lu, X.; Yan, Y.; Qu, J.; Liu, R.; Masuda, T. Thiourea-functionalized poly(phenyleneethynylene): Fluorescent chemosensors for anions and cations. Polym. Chem. 2013, 4, 4126–4133. [Google Scholar] [CrossRef]
- Feng, X.; Liu, L.; Wang, S.; Zhu, D. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem. Soc. Rev. 2010, 39, 2411–2419. [Google Scholar] [CrossRef]
- Damavandi, M.; Baek, P.; Pilkington, L.I.; Javed Chaudhary, O.; Burn, P.; Travas-Sejdic, J.; Barker, D. Synthesis of grafted poly(p-phenyleneethynylene) via ARGET ATRP: Towards nonaggregating and photoluminescence materials. Eur. Polym. J. 2017, 89, 263–271. [Google Scholar] [CrossRef]
- Niwa, K.; Ichino, Y.; Ohmiya, Y. Quantum Yield Measurements of Firefly Bioluminescence Reactions Using a Commercial Luminometer. Chem. Lett. 2010, 39, 291–293. [Google Scholar] [CrossRef]
- Pokhrel, M.; Gangadharan, A.K.; Sardar, D.K. High upconversion quantum yield at low pump threshold in Er3+/Yb3+ doped La2O2S phosphor. Mater. Lett. 2013, 99, 86–89. [Google Scholar] [CrossRef]
- Gulur Srinivas, A.R.; Kerr-Phillips, T.; Peng, H.; Barker, D.; Travas-Sejdic, J. Water-soluble anionic poly(p-phenylene vinylenes) with high luminescence. Polym. Chem. 2013, 4, 2506–2514. [Google Scholar] [CrossRef]
- Nakamura, Y.; Wan, Y.; Mays, J.W.; Iatrou, H.; Hadjichristidis, N. Radius of Gyration of Polystyrene Combs and Centipedes in Solution. Macromolecules 2000, 33, 8323–8328. [Google Scholar] [CrossRef]
- Ast, S.; Schwarze, T.; Müller, H.; Sukhanov, A.; Michaelis, S.; Wegener, J.; Wolfbeis, O.S.; Körzdörfer, T.; Dürkop, A.; Holdt, H. A Highly K+-Selective Phenylaza-[18]crown-6-Lariat-Ether-Based Fluoroionophore and Its Application in the Sensing of K+ Ions with an Optical Sensor Film and in Cells. Chem. Eur. J. 2013, 19, 14911–14917. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Sousa, F.; Merca, A.; Bögge, H.; Miró, P.; Fernández, J.; Poblet, J.; Bo, C. Supramolecular Chemistry on a Cluster Surface: Fixation/Complexation of Potassium and Ammonium Ions with Crown-Ether-Like Rings. Angew. Chem. Int. Ed. 2009, 48, 5934–5937. [Google Scholar] [CrossRef] [PubMed]
- Egbe, D.A.M.; Tillmann, H.; Birckner, E.; Klemm, E. Synthesis and Properties of Novel Well-Defined Alternating PPE/PPV Copolymers. Macromol. Chem. Phys. 2001, 202, 2712–2726. [Google Scholar] [CrossRef]
- Köhler, A.; Hoffmann, S.T.; Bässler, H.J. An Order–Disorder Transition in the Conjugated Polymer MEH-PPV. Am. Chem. Soc. 2012, 134, 11594–11601. [Google Scholar] [CrossRef]
- Lan, M.; Zhao, S.; Xie, Y.; Zhao, J.; Guo, L.; Niu, G.; Li, Y.; Sun, H.; Zhang, H.; Liu, W.; et al. Water-Soluble Polythiophene for Two-Photon Excitation Fluorescence Imaging and Photodynamic Therapy of Cancer. ACS Appl. Mater. Interfaces 2017, 9, 14590–14595. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, Y.; Wu, J.; Chen, S.; Chen, Y.Z.; Zhou, X.; Jiang, Y.; Tan, C. Fluorescence Array-Based Sensing of Metal Ions Using Conjugated Polyelectrolytes. ACS Appl. Mater. Interfaces 2015, 7, 6882–6888. [Google Scholar] [CrossRef]
- Shin, S.; Lim, J.; Gu, M.; Yu, C.; Hong, M.; Char, K.; Choi, T. Dimensionally controlled water-dispersible amplifying fluorescent polymer nanoparticles for selective detection of charge-neutral analytes. Polym. Chem. 2017, 8, 7507–7514. [Google Scholar] [CrossRef]
- Facchin, M.; Scarso, A.; Selva, M.; Perosa, A.; Riello, P. Towards life in hydrocarbons: Aggregation behaviour of “reverse” surfactants in cyclohexane. RSC Adv. 2017, 7, 15337–15341. [Google Scholar] [CrossRef] [Green Version]
- Haberhauer, G.; Gleiter, R.; Burkhart, C. Planarized Intramolecular Charge Transfer: A Concept for Fluorophores with both Large Stokes Shifts and High Fluorescence Quantum Yields. Chem. Eur. J. 2016, 22, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Iakimov, N.P.; Zotkin, M.A.; Dets, E.A.; Abramchuk, S.S.; Arutyunian, A.M.; Grozdova, I.D.; Melik-Nubarov, N. Evaluation of critical packing parameter in the series of polytyrosine-PEG amphiphilic copolymers. Colloid Polym. Sci. 2021, 299, 1543–1555. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Mitchell, D.J.; Ninham, B.W.J. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Chem. Soc. Faraday Trans. 2 1976, 72, 1525–1568. [Google Scholar] [CrossRef]
- Jaffe, H.H.; Miller, A.L.J. The fates of electronic excitation energy. Chem. Educ. 1966, 43, 469. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, G.; Ding, D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev. 2020, 49, 8179–8234. [Google Scholar] [CrossRef]
- Zimmermann, J.Ö.; Zeug, A.; Röder, B. A generalization of the Jablonski diagram to account for polarization and anisotropy effects in time-resolved experiments. Phys. Chem. Chem. Phys. 2003, 5, 2964–2969. [Google Scholar] [CrossRef]
- Liu, X.; Xu, Z.; Cole, J.M.J. Molecular Design of UV–vis Absorption and Emission Properties in Organic Fluorophores: Toward Larger Bathochromic Shifts, Enhanced Molar Extinction Coefficients, and Greater Stokes Shifts. Phys. Chem. C 2013, 117, 16584–16595. [Google Scholar] [CrossRef]
R2 Values | |||
---|---|---|---|
PPV | −Ln(M/M0) For 1st Order | 1/[M] For 2nd Order | 1/[M]2 For 3rd Order |
PnBA | 0.958 | 0.980 | 0.977 |
PMETAC | 0.885 | 0.941 | 0.976 |
PSPA | 0.995 | 0.983 | 0.952 |
PPE | −Ln(M/M0) | 1/[M] | 1/[M]2 |
PnBA | 0.974 | 0.997 | 0.988 |
PMETAC | 0.987 | 0.975 | 0.928 |
PSPA | 0.995 | 0.989 | 0.968 |
Polymer | λmax abs (nm) | λmax em | Stokes Shift (nm) | Φsolution (%) |
---|---|---|---|---|
PPVOH | 461 | 550 | 89 | 53 |
PPVMI | 451 | 545 | 94 | 59 |
PPV-g-PnBA (4 h) | 378 | 489 | 111 | 30 |
PPV-g-PnBA (8 h) | 378 | 497 | 119 | 71 |
PPV-g-PnBA (24 h) | 378 | 502 | 124 | 86 |
PPEOH | 450 | 478 | 28 | 32 |
PPEMI | 435 | 473 | 38 | 87 |
PPE-g-nBA (8 h) | 428 | 468 | 40 | 71 |
PPE-g-nBA (24 h) | 428 | 473 | 45 | 90 |
Polymer | λmax abs (nm) | λmax em (nm) | Stokes Shift (nm) | Φsolution (%) |
---|---|---|---|---|
PPVOH | 458 | 550 | 92 | 53 |
PPVMI | 456 | 545 | 89 | 59 |
PPV-g-PMETAC (LMw) | 436 | 535 | 99 | 58 |
PPV-g-PMETAC (HMw) | 436 | 537 | 101 | 32 |
PPV-g-PSPA (LMw) | 349 | 470 | 121 | 43 |
PPV-g-PSPA (HMw) | 349 | 470 | 121 | 17 |
PPEOH | 435 | 477 | 42 | 32 |
PPEMI | 428 | 471 | 43 | 87 |
PPE-g-PMETAC (LMw) | 428 | 493 | 65 | 49 |
PPE-g-PMETAC (HMw) | 428 | 497 | 69 | 25 |
PPE-g-PSPA (LMw) | 422 | 470 | 48 | 52 |
PPE-g-PSPA (HMw) | 422 | 474 | 52 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerr-Phillips, T.; Damavandi, M.; Pilkington, L.I.; Whitehead, K.A.; Travas-Sejdic, J.; Barker, D. Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(para-phenylene vinylene) and Poly(para-phenylene ethynylene) on the Polymer’s Photoluminescent Properties. Polymers 2022, 14, 2767. https://doi.org/10.3390/polym14142767
Kerr-Phillips T, Damavandi M, Pilkington LI, Whitehead KA, Travas-Sejdic J, Barker D. Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(para-phenylene vinylene) and Poly(para-phenylene ethynylene) on the Polymer’s Photoluminescent Properties. Polymers. 2022; 14(14):2767. https://doi.org/10.3390/polym14142767
Chicago/Turabian StyleKerr-Phillips, Thomas, Mona Damavandi, Lisa I. Pilkington, Kathryn A. Whitehead, Jadranka Travas-Sejdic, and David Barker. 2022. "Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(para-phenylene vinylene) and Poly(para-phenylene ethynylene) on the Polymer’s Photoluminescent Properties" Polymers 14, no. 14: 2767. https://doi.org/10.3390/polym14142767
APA StyleKerr-Phillips, T., Damavandi, M., Pilkington, L. I., Whitehead, K. A., Travas-Sejdic, J., & Barker, D. (2022). Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(para-phenylene vinylene) and Poly(para-phenylene ethynylene) on the Polymer’s Photoluminescent Properties. Polymers, 14(14), 2767. https://doi.org/10.3390/polym14142767