Dual-Drug Delivery via the Self-Assembled Conjugates of Choline-Functionalized Graft Copolymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ionic Graft Copolymers Bearing Cl− or FUS−
2.2. Encapsulation and Micellization
2.3. Drug Release Studies of Ionic and Non-Ionic Drugs
2.4. Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, W.-F. Non-conjugated polymers with intrinsic luminescence for drug delivery. J. Drug Deliv. Sci. Technol. 2020, 59, 101916. [Google Scholar] [CrossRef]
- Bielas, R.; Wróbel-Marek, J.; Kurczyńska, E.U.; Neugebauer, D. Pyranine labeled polymer nanoparticles as fluorescent markers for cell wall staining and imaging of movement within apoplast. Sens. Actuators B Chem. 2019, 297, 126789. [Google Scholar] [CrossRef]
- Shah, A.; Aftab, S.; Nisar, J.; Ashiq, M.; Iftikhar, F. Nanocarriers for targeted drug delivery. J. Drug. Deliv. Sci. Technol. 2021, 62, 102426. [Google Scholar] [CrossRef]
- Edis, Z.; Wang, J.; Waqas, M.; Ijaz, M.; Ijaz, M. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. Int. J. Nanomed. 2021, 16, 1313–1330. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, J.; Dou, H.; Morehead, J.; Rabinow, B.; Gendelman, H.; Destache, C. Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System. J. Neuroimmune Pharmacol. 2006, 1, 340–350. [Google Scholar] [CrossRef]
- Wilczewska, A.; Niemirowicz, K.; Markiewicz, K.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012, 64, 1020–1037. [Google Scholar] [CrossRef]
- Rani, A.; Asgher, M.; Qamae, S.; Khalid, N. Nanostructure-mediated delivery of therapeutic drugs—A comprehensive review. Int. J. Chem. Biochem. Sci. 2019, 15, 5–14. [Google Scholar]
- Natarajan, J.; Nugraha, C.; Ng, X.; Venkatraman, S. Sustained-release from nanocarriers: A review. J. Control. Release 2014, 193, 122–138. [Google Scholar] [CrossRef]
- Salim, M.; Minamikawa, H.; Sugimura, A.; Hashim, R. Amphiphilic designer nano-carriers for controlled release: From drug delivery to diagnostics. Med. Chem. Commun. 2014, 5, 1602–1618. [Google Scholar] [CrossRef]
- Singh, S.; Pandey, V.; Tewari, R.; Agarwal, V. Nanoparticle based drug delivery system: Advantages and applications. Indian. J. Sci. Technol. 2011, 4, 177–184. [Google Scholar] [CrossRef]
- Adams, M.; Lavasanifar, A.; Kwon, G. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Leroux, J. Polymeric micelles—A new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 1999, 48, 101–111. [Google Scholar] [CrossRef]
- Huddleston, J.; Visser, A.; Reichert, W.; Willauer, H.; Broker, G.; Rogers, R. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Freire, M.; Teles, A.; Rocha, M.; Schröder, B.; Neves, C.; Carvalho, P.; Evtuguin, D.; Santos, L.; Coutinho, J. Thermophysical Characterization of Ionic Liquids Able To Dissolve Biomass. J. Chem. Eng. Data. 2011, 56, 4813–4822. [Google Scholar] [CrossRef]
- Moshikur, R.; Chowdhury, M.; Moniruzzaman, M.; Goto, M. Biocompatible ionic liquids and their application in pharmaceutics. Green Chem. 2020, 22, 8116–8139. [Google Scholar] [CrossRef]
- Gomes, J.; Silva, S.; Reis, R. Biocompatible ionic liquids: Fundamental behaviours and applications. Chem. Soc. Rev. 2019, 48, 4317–4335. [Google Scholar] [CrossRef] [PubMed]
- Wood, N.; Stephens, G. Accelerating the discovery of biocompatible ionic liquids. Phys. Chem. Chem. Phys. 2010, 12, 1670–1674. [Google Scholar] [CrossRef] [PubMed]
- Fukaya, Y.; Iizuka, Y.; Sekikawa, K.; Ohno, H. Bio ionic liquids: Room temperature ionic liquids composed wholly of biomaterials. Green Chem. 2007, 9, 1155. [Google Scholar] [CrossRef]
- Pernak, J.; Syguda, A.; Mirska, I.; Pernak, A.; Nawrot, J.; Prądzyńska, A.; Griffin, S.; Rogers, R. Choline-derivative-based ionic liquids. Chem. Eur. J. 2007, 13, 6817–6827. [Google Scholar] [CrossRef]
- Taha, M.; Almeida, M.; Silva, F.; Domingues, P.; Ventura, S.; Coutinho, J.; Freire, M. Novel Biocompatible and Self-buffering Ionic Liquids for Biopharmaceutical Applications. Chem. Eur. J. 2015, 21, 4781–4788. [Google Scholar] [CrossRef] [Green Version]
- Niesyto, K.; Łyżniak, W.; Skonieczna, M.; Neugebauer, D. Biological in vitro evaluation of PIL graft conjugates: Cytotoxicity characteristics. Int. J. Mol. Sci. 2021, 22, 7741. [Google Scholar] [CrossRef] [PubMed]
- Bielas, R.; Siewniak, A.; Skonieczna, M.; Adamiec, M.; Mielańczyk, Ł.; Neugebauer, D. Choline based polymethacrylate matrix with pharmaceutical cations as co-delivery system for antibacterial and anti-inflammatory combined therapy. J. Mol. Liq. 2019, 285, 114–122. [Google Scholar] [CrossRef]
- Ghatak, C.; Rao, V.; Mandal, S.; Ghosh, S.; Sarkar, N. An Understanding of the Modulation of Photophysical Properties of Curcumin inside a Micelle Formed by an Ionic Liquid: A New Possibility of Tunable Drug Delivery System. J. Phys. Chem. B 2012, 116, 3369–3379. [Google Scholar] [CrossRef] [PubMed]
- Kurnik, I.S.; D’Angelo, N.; Mazzola, P.; Chorilli, M.; Kamei, D.; Pereira, J.; Vicente, A.; Lopes, A. Polymeric micelles using cholinium-based ionic liquids for the encapsulation and release of hydrophobic drug molecules. Biomater. Sci. 2021, 9, 2183–2196. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Tahara, Y.; Tamura, M.; Kamiya, N.; Goto, M. Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chem. Commun. 2010, 46, 1452. [Google Scholar] [CrossRef]
- Ali, M.; Moshikur, R.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Biocompatible Ionic Liquid-Mediated Micelles for Enhanced Transdermal Delivery of Paclitaxel. ACS Appl. Mater. Interfaces 2021, 13, 19745–19755. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Sharma, R.; Mahajan, R. An Investigation of Drug Binding Ability of a Surface Active Ionic Liquid: Micellization, Electrochemical, and Spectroscopic Studies. Langmuir 2012, 28, 17238–17246. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Li, Y.; Wang, Z.; Wang, B.; Pan, X.; Zhao, W.; Ma, W.; Zhang, J. Dual Responsive Hyaluronic Acid Graft Poly(ionic liquid) Block Copolymer Micelle for Efficient CD44 Targeted Antitumor Drug Delivery. New J. Chem. 2019, 43, 12275–12282. [Google Scholar] [CrossRef]
- Lu, B.; Zhou, G.; Xiao, F.; He, Q.; Zhang, J. Stimuli-Responsive Poly(ionic liquid) Nanoparticle for Controlled Drug Delivery. J. Mater. Chem. B 2020, 8, 7994–8001. [Google Scholar] [CrossRef]
- Viau, L.; Tourné-Péteilh, C.; Devoisselle, J.; Vioux, A. Ionogels as drug delivery system: One-step sol–gel synthesis using imidazolium ibuprofenate ionic liquid. Chem. Commun. 2010, 46, 228–230. [Google Scholar] [CrossRef]
- Bica, K.; Rodríguez, H.; Gurau, G.; Andreea Cojocaru, O.; Riisager, A.; Fehrmann, R.; Rogers, R. Pharmaceutically active ionic liquids with solids handling, enhanced thermal stability, and fast release. Chem. Commun. 2012, 48, 5422. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, R.; Branco, L.; Marrucho, I.; Araújo, J.; Rebelo, L.; da Ponte, M.; Prudencio, C.; Noronha, J.; Petrovski, Ž. Development of novel ionic liquids based on ampicillin. Med. Chem. Commun. 2012, 3, 494. [Google Scholar] [CrossRef] [Green Version]
- Gorbunova, M.; Lemkina, L.; Borisova, I. New guanidine-containing polyelectrolytes as advanced antibacterial materials. Eur. Polym. J. 2018, 105, 426–433. [Google Scholar] [CrossRef]
- Bica, K.; Rijksen, C.; Nieuwenhuyzen, M.; Rogers, R. In search of pure liquid salt forms of aspirin: Ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys. Chem. Chem. Phys. 2010, 12, 2011. [Google Scholar] [CrossRef]
- Halayqa, M.; Zawadzki, M.; Domańska, U.; Plichta, A. API-ammonium ionic liquid–Polymer compounds as a potential tool for delivery systems. J. Mol. Liq. 2017, 248, 972–980. [Google Scholar] [CrossRef]
- Halayqa, M.; Zawadzki, M.; Domańska, U.; Plichta, A. Polymer–Ionic liquid–Pharmaceutical conjugates as drug delivery systems. J. Mol. Struct. 2019, 1180, 573–584. [Google Scholar] [CrossRef]
- Araújo, J.; Florindo, C.; Pereiro, A.; Vieira, N.; Matias, A.; Duarte, C.; Rebelo, L.; Marrucho, I. Cholinium-based ionic liquids with pharmaceutically active anions. RSC Adv. 2014, 4, 28126–28132. [Google Scholar] [CrossRef]
- Bielas, R.; Łukowiec, D.; Neugebauer, D. Drug delivery via anion exchange of salicylate decorating poly(meth)acrylates based on a pharmaceutical ionic liquid. New J. Chem. 2017, 41, 12801–12807. [Google Scholar] [CrossRef]
- Niesyto, K.; Neugebauer, D. Synthesis and Characterization of Ionic Graft Copolymers: Introduction and In Vitro Release of Antibacterial Drug by Anion Exchange. Polymers. 2020, 12, 2159. [Google Scholar] [CrossRef]
- Niesyto, K.; Neugebauer, D. Linear Copolymers Based on Choline Ionic Liquid Carrying Anti-Tuberculosis Drugs: Influence of Anion Type on Physicochemical Properties and Drug Release. Int. J. Mol. Sci. 2021, 22, 284. [Google Scholar] [CrossRef]
- Marsot, A.; Ménard, A.; Dupouey, J.; Muziotti, C.; Guilhaumou, R.; Blin, O. Population pharmacokinetics of rifampicin in adult patients with osteoarticular infections: Interaction with fusidic acid. Br. J. Clin. Pharmacol. 2017, 83, 1039–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bel, F.; Bourguignon, L.; Tod, M.; Ferry, T.; Goutelle, S. Mechanisms of drug-drug interaction between rifampicin and fusidic acid. Br. J. Clin. Pharm. 2017, 83, 1862–1864. [Google Scholar] [CrossRef] [PubMed]
- Drancourt, M.; Stein, A.; Argenson, J.N.; Roiron, R.; Groulier, P.; Raoult, D. Oral treatment of Staphylococcus spp. infected orthopaedic implants with fusidic acid or ofloxacin in combination with rifampicin. J. Antimicrob. Chemother. 1997, 39, 235–240. [Google Scholar] [PubMed]
No. | nsc | DG (mol.%) | FTMAMA a (mol.%) | DPsc a | Mn a × 10−3 (g/mol) | Ð b |
---|---|---|---|---|---|---|
I | 48 | 26 | 39 | 35 | 273.1 | 1.15 |
II | 133 | 46 | 36 | 28 | 583.5 | 1.03 c |
III | 18 | 65 | 1090.5 | 1.11 |
CMC a (mg/mL) | CA b (°) | |||
---|---|---|---|---|
Cl− (Data from [39]) | FUS− | Cl− (Data from [39]) | FUS− | |
I | 0.013 | 0.025 | 56.3 | 51.0 |
II | 0.020 | 0.020 | 48.3 | 35.3 |
III | 0.011 | 0.012 | 44.3 | 43.2 |
Conjugates | Dual-Drug Systems | Micelles | ||||||
---|---|---|---|---|---|---|---|---|
FUS− | FUS− | RIF | RIF | |||||
ARD (%) | CD (μg/mL) | ARD (%) | CD (μg/mL) | ARD (%) | CD (μg/mL) | ARD (%) | CD (μg/mL) | |
I | 52.82 | 7.18 | 30.84 | 4.31 | 19.19 | 3.29 | 19.65 | 3.37 |
II | 45.23 | 3.80 | 52.11 | 4.65 | 30.57 | 3.88 | 35.64 | 3.70 |
III | 81.32 | 8.21 | 54.84 | 5.57 | 29.91 | 4.03 | 37.37 | 3.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niesyto, K.; Mazur, A.; Neugebauer, D. Dual-Drug Delivery via the Self-Assembled Conjugates of Choline-Functionalized Graft Copolymers. Materials 2022, 15, 4457. https://doi.org/10.3390/ma15134457
Niesyto K, Mazur A, Neugebauer D. Dual-Drug Delivery via the Self-Assembled Conjugates of Choline-Functionalized Graft Copolymers. Materials. 2022; 15(13):4457. https://doi.org/10.3390/ma15134457
Chicago/Turabian StyleNiesyto, Katarzyna, Aleksy Mazur, and Dorota Neugebauer. 2022. "Dual-Drug Delivery via the Self-Assembled Conjugates of Choline-Functionalized Graft Copolymers" Materials 15, no. 13: 4457. https://doi.org/10.3390/ma15134457
APA StyleNiesyto, K., Mazur, A., & Neugebauer, D. (2022). Dual-Drug Delivery via the Self-Assembled Conjugates of Choline-Functionalized Graft Copolymers. Materials, 15(13), 4457. https://doi.org/10.3390/ma15134457