Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (460)

Search Parameters:
Keywords = ion spectrometer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1588 KiB  
Article
Scaffold-Free Functional Deconvolution Identifies Clinically Relevant Metastatic Melanoma EV Biomarkers
by Shin-La Shu, Shawna Benjamin-Davalos, Xue Wang, Eriko Katsuta, Megan Fitzgerald, Marina Koroleva, Cheryl L. Allen, Flora Qu, Gyorgy Paragh, Hans Minderman, Pawel Kalinski, Kazuaki Takabe and Marc S. Ernstoff
Cancers 2025, 17(15), 2509; https://doi.org/10.3390/cancers17152509 - 30 Jul 2025
Viewed by 276
Abstract
Background: Melanoma metastasis, driven by tumor microenvironment (TME)-mediated crosstalk facilitated by extracellular vesicles (EVs), remains a major therapeutic challenge. A critical barrier to clinical translation is the overlap in protein cargo between tumor-derived and healthy cell EVs. Objective: To address this, we developed [...] Read more.
Background: Melanoma metastasis, driven by tumor microenvironment (TME)-mediated crosstalk facilitated by extracellular vesicles (EVs), remains a major therapeutic challenge. A critical barrier to clinical translation is the overlap in protein cargo between tumor-derived and healthy cell EVs. Objective: To address this, we developed Scaffold-free Functional Deconvolution (SFD), a novel computational approach that leverages a comprehensive healthy cell EV protein database to deconvolute non-oncogenic background signals. Methods: Beginning with 1915 proteins (identified by MS/MS analysis on an Orbitrap Fusion Lumos Mass Spectrometer using the IonStar workflow) from melanoma EVs isolated using REIUS, SFD applies four sequential filters: exclusion of normal melanocyte EV proteins, prioritization of metastasis-linked entries (HCMDB), refinement via melanocyte-specific databases, and validation against TCGA survival data. Results: This workflow identified 21 high-confidence targets implicated in metabolic-associated acidification, immune modulation, and oncogenesis, and were analyzed for reduced disease-free and overall survival. SFD’s versatility was further demonstrated by surfaceome profiling, confirming enrichment of H7-B3 (CD276), ICAM1, and MIC-1 (GDF-15) in metastatic melanoma EV via Western blot and flow cytometry. Meta-analysis using Vesiclepedia and STRING categorized these targets into metabolic, immune, and oncogenic drivers, revealing a dense interaction network. Conclusions: Our results highlight SFD as a powerful tool for identifying clinically relevant biomarkers and therapeutic targets within melanoma EVs, with potential applications in drug development and personalized medicine. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

18 pages, 923 KiB  
Article
Optimizing Bioactive Compound Recovery from Chestnut Shells Using Pressurized Liquid Extraction and the Box–Behnken Design
by Magdalini Pazara, Georgia Provelengiadi, Martha Mantiniotou, Vassilis Athanasiadis, Iordanis Samanidis, Ioannis Makrygiannis, Ilias F. Tzavellas, Ioannis C. Martakos, Nikolaos S. Thomaidis and Stavros I. Lalas
Processes 2025, 13(7), 2283; https://doi.org/10.3390/pr13072283 - 17 Jul 2025
Viewed by 461
Abstract
Chestnut (Castanea sativa Mill.) is an edible nut recognized for its nutritional attributes, particularly its elevated levels of carbohydrates (starch) and proteins. Chestnuts are popular for their health-promoting properties and hold significant environmental and economic importance in Europe. During this study, after [...] Read more.
Chestnut (Castanea sativa Mill.) is an edible nut recognized for its nutritional attributes, particularly its elevated levels of carbohydrates (starch) and proteins. Chestnuts are popular for their health-promoting properties and hold significant environmental and economic importance in Europe. During this study, after the characterization of the fruit, attention was directed toward the valorization of chestnut shells, a predominant by-product of industrial chestnut processing that is typically discarded. Valuable bioactive compounds were extracted from the shells using Pressurized Liquid Extraction (PLE), a green, efficient, scalable method. Response surface methodology (RSM) was utilized to determine optimal extraction conditions, identified as 40% v/v ethanol as the solvent at a temperature of 160 °C for 25 min under a constant pressure of 1700 psi. High total polyphenol content (113.68 ± 7.84 mg GAE/g dry weight) and notable antioxidant activity—determined by FRAP (1320.28 ± 34.33 μmol AAE/g dw) and DPPH (708.65 ± 24.8 μmol AAE/g dw) assays—were recorded in the optimized extracts. Ultrahigh-performance liquid chromatography coupled with a hybrid trap ion mobility-quadrupole time-of-flight mass spectrometer (UHPLC-TIMS-QTOF-MS) was applied to further characterize the compound profile, enabling the identification of phenolic and antioxidant compounds. These findings highlight the possibility of using chestnut shell residues as a long-term resource to make valuable products for the food, medicine, cosmetics, and animal feed industries. This study contributes to the advancement of waste valorization strategies and circular bioeconomy approaches. Full article
(This article belongs to the Special Issue Research of Bioactive Synthetic and Natural Products Chemistry)
Show Figures

Figure 1

12 pages, 2650 KiB  
Article
Calibration and Detection of Phosphine Using a Corrosion-Resistant Ion Trap Mass Spectrometer
by Dragan Nikolić and Xu Zhang
Biophysica 2025, 5(3), 28; https://doi.org/10.3390/biophysica5030028 - 17 Jul 2025
Viewed by 203
Abstract
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) designed for trace detection of volatiles in sulfuric acid aerosols, with a specific focus on phosphine (PH3). Here, we detail the gas calibration methodology using permeation tube technology for generating certified [...] Read more.
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) designed for trace detection of volatiles in sulfuric acid aerosols, with a specific focus on phosphine (PH3). Here, we detail the gas calibration methodology using permeation tube technology for generating certified ppb-level PH3/H2S/CO2 mixtures, and report results from mass spectra with sufficient resolution to distinguish isotopic envelopes that validate the detection of PH3 at a concentration of 62 ppb. Fragmentation patterns for PH3 and H2S agree with NIST data, and signal-to-noise performance confirms ppb sensitivity over 2.6 h acquisition periods. We further assess spectral interferences from oxygen isotopes and propose a detection scheme based on isolated phosphorus ions (P+) to enable specific and interference-resistant identification of PH3 and other reduced phosphorus species of astrobiological interest in Venus-like environments. This work extends the capabilities of QIT-MS for trace gas analysis in chemically aggressive atmospheric conditions. Full article
(This article belongs to the Special Issue Mass Spectrometry Applications in Biology Research)
Show Figures

Figure 1

11 pages, 2330 KiB  
Article
Separations of Strategic Metals from Spent Electronic Waste Using “Green Methods”
by Urszula Domańska, Anna Wiśniewska and Zbigniew Dąbrowski
Separations 2025, 12(6), 167; https://doi.org/10.3390/separations12060167 - 18 Jun 2025
Viewed by 457
Abstract
Next-generation recycling technologies must be urgently innovated to tackle huge volumes of spent batteries, photovoltaic panels or printed circuit boards (WPCBs). Current e-waste recycling industrial technology is dominated by traditional recycling technologies. Herein, ionic liquids (ILs), deep eutectic solvents (DESs) and promising oxidizing [...] Read more.
Next-generation recycling technologies must be urgently innovated to tackle huge volumes of spent batteries, photovoltaic panels or printed circuit boards (WPCBs). Current e-waste recycling industrial technology is dominated by traditional recycling technologies. Herein, ionic liquids (ILs), deep eutectic solvents (DESs) and promising oxidizing additives that can overcome some traditional recycling methods of metal ions from e-waste, used in our works from last year, are presented. The unique chemical environments of ILs and DESs, with the application of low-temperature extraction procedures, are important environmental aspects known as “Green Methods”. A closed-loop system for recycling zinc and manganese from the “black mass” (BM) of waste, Zn-MnO2 batteries, is presented. The leaching process achieves a high efficiency and distribution ratio using the composition of two solvents (Cyanex 272 + diethyl phosphite (DPh)) for Zn(II) extraction. High extraction efficiency with 100% zinc and manganese recovery is also achieved using DESs (cholinum chloride/lactic acid, 1:2, DES 1, and cholinum chloride/malonic acid, 1:1, DES 2). New, greener recycling approaches to metal extraction from the BM of spent Li-ion batteries are presented with ILs ([N8,8,8,1][Cl], (Aliquat 336), [P6,6,6,14][Cl], [P6,6,6,14][SCN] and [Benzet][TCM]) eight DESs, Cyanex 272 and D2EHPA. A high extraction efficiency of Li(I) (41–92 wt%) and Ni(II) (37–52 wt%) using (Cyanex 272 + DPh) is obtained. The recovery of Ni(II) and Cd(II) from the BM of spent Ni-Cd batteries is also demonstrated. The extraction efficiency of DES 1 and DES 2, contrary to ILs ([P6,6,6,14][Cl] and [P6,6,6,14][SCN]), is at the level of 30 wt% for Ni(II) and 100 wt% for Cd(II). In this mini-review, the option to use ILs, DESs and Cyanex 272 for the recovery of valuable metals from end-of-life WPCBs is presented. Next-generation recycling technologies, in contrast to the extraction of metals from acidic leachate preceded by thermal pre-treatment or from solid material only after thermal pre-treatment, have been developed with ILs and DESs using the ABS method, as well as Cyanex 272 (only after the thermal pre-treatment of WPCBs), with a process efficiency of 60–100 wt%. In this process, four new ILs are used: didecyldimethylammonium propionate, [N10,10,1,1][C2H5COO], didecylmethylammonium hydrogen sulphate, [N10,10,1,H][HSO4], didecyldimethylammonium dihydrogen phosphate, [N10,10,1,1][H2PO4], and tetrabutylphosphonium dihydrogen phosphate, [P4,4,4,4][H2PO4]. The extraction of Cu(II), Ag(I) and other metals such as Al(III), Fe(II) and Zn(II) from solid WPCBs is demonstrated. Various additives are used during the extraction processes. The Analyst 800 atomic absorption spectrometer (FAAS) is used for the determination of metal content in the solid BM. The ICP-OES method is used for metal analysis. The obtained results describe the possible application of ILs and DESs as environmental media for upcycling spent electronic wastes. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Graphical abstract

11 pages, 3316 KiB  
Article
Simultaneous Detection of Polar and Nonpolar Molecules by Nano-ESI MS with Plasma Ignited by an Ozone Generator Power Supply
by Yunshuo Tian, Yifan Meng and Richard N. Zare
Molecules 2025, 30(12), 2546; https://doi.org/10.3390/molecules30122546 - 11 Jun 2025
Viewed by 446
Abstract
We present a simple and cost-effective method for generating a dielectric barrier discharge (DBD) plasma using a commercially available ozone generator power supply. By coupling the plasma source to the extended ion transfer tube of an ambient mass spectrometer, we achieved stable plasma [...] Read more.
We present a simple and cost-effective method for generating a dielectric barrier discharge (DBD) plasma using a commercially available ozone generator power supply. By coupling the plasma source to the extended ion transfer tube of an ambient mass spectrometer, we achieved stable plasma discharge, enabling the post-ionization of nonpolar compounds during the electrospray ionization process. Using this approach, we successfully detected polycyclic aromatic hydrocarbons (PAHs), halogenated PAHs (HPAHs), and other nonpolar pollutants in liquid mixtures, with detection limits on the order of 10 ng/mL. In fish exposed to HPAHs, both polar metabolites and lipids, as well as the nonpolar pollutant 1-chloronaphthalene, were simultaneously detected. Notably, 1-chloronaphthalene accumulated at the highest concentration in gill tissue. This straightforward plasma-assisted technique offers a reliable strategy for expanding the detection capabilities of electrospray mass spectrometry to include nonpolar molecules. Full article
(This article belongs to the Special Issue Advances in the Mass Spectrometry of Chemical and Biological Samples)
Show Figures

Figure 1

20 pages, 13076 KiB  
Article
Enhancement of a Magnetically Controlled Cathodic Arc Source for the Deposition of Multi-Component Hard Nitride Coatings
by Van-Tien Tang, Yin-Yu Chang and Yi-Ru Chen
Materials 2025, 18(10), 2276; https://doi.org/10.3390/ma18102276 - 14 May 2025
Viewed by 597
Abstract
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. [...] Read more.
The creation of coatings by the cathodic arc evaporation method has outstanding advantages: these coatings are highly durable and wear-resistant, especially since the method has an intense ionization process and the atoms can penetrate deep into the surface substrates, resulting in excellent adhesion. Furthermore, this approach provides precise control over the chemical composition and thickness of the coating, ensuring consistent quality across the entire surface. However, uneven evaporation and ejection of molten metal droplets from the cathode during cathode arc deposition produce particles and droplets, resulting in an uneven coating surface. This study presents a new design for a magnetically controlled cathode arc source to effectively reduce particles and droplets during the cathodic arc deposition of multi-component alloy targets for nitride-based hard coatings. The study compares the performance of a new source with a conventional magnetic-controlled arc source for depositing TiAlNbSiN and AlCrSiN films. In the conventional source, the magnetic field is generated by a permanent magnet (PM), whereas in the new source, it is generated and controlled using an electromagnet (EM). Both films are produced using multi-component alloy targets (TiAlNbSi and AlCrSi) with identical composition ratios. The plasma characteristics of the two different arc sources are investigated using an optical emission spectrometer (OES), and the surface morphology, structural characteristics, deposition rate, uniformity, and surface roughness (Sa) are examined using scanning electron microscopy (SEM). When the EM was applied to have high plasma density, the hardness of the TiAlNbSiN film deposited with the novel arc source measured 31.2 ± 1.9 GPa, which is higher than that of the PM arc source (28.3 ± 1.4 GPa). In contrast, the AlCrSiN film created using a typical arc source exhibited a hardness of only 25.5 ± 0.6 GPa. This lower hardness may be due to insufficient ion kinetic energy to enhance stress blocking and increase hardness, or the presence of the h-AlN phase in the film, which was not detected by XRD. The electromagnet arc source, with its adequate ion bombardment velocity, facilitated a complementary effect between grain growth and stress blocking, leading to a remarkable hardness of 32.6 ± 0.5 GPa. Full article
(This article belongs to the Special Issue Advancements in Thin Film Deposition Technologies)
Show Figures

Figure 1

14 pages, 4842 KiB  
Article
Direct Detection of Biosignature Gasses Using Corrosion-Resistant QIT-MS Sensor for Planetary Exploration
by Dragan Nikolić and Stojan M. Madzunkov
Biophysica 2025, 5(2), 17; https://doi.org/10.3390/biophysica5020017 - 3 May 2025
Cited by 1 | Viewed by 570
Abstract
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) for the direct detection of biosignature gasses in chemically reactive planetary atmospheres, such as Venusian clouds. The system employs a Paul trap with hyperbolic titanium alloy electrodes and alumina spacers for chemical durability [...] Read more.
We present a corrosion-resistant quadrupole ion trap mass spectrometer (QIT-MS) for the direct detection of biosignature gasses in chemically reactive planetary atmospheres, such as Venusian clouds. The system employs a Paul trap with hyperbolic titanium alloy electrodes and alumina spacers for chemical durability and precise ion confinement. An yttria-coated iridium filament serves as the thermionic emitter within a modular electron gun capable of axial and radial ionization. Analytes are introduced through fused silica capillaries and crescent inlets into a miniature pressure cell. The testbed integrates high-voltage RF electronics, pressure-regulated sample delivery, and FPGA-based control for real-time tuning. Continuous operation in 98% sulfuric acid vapor for over three months demonstrated no degradation in emitter or sensor performance. Mass spectra revealed H2SO4 fragmentation and thermally induced decomposition up to 425 K. Spectral variations with filament current and electron energy highlight thermal and electron-induced dissociation dynamics. Operational modes include high-resolution scans and selective ion ejection (e.g., CO2+, N2+) to enhance the detection of PH3+, H2S+, and daughter ions. The compact QIT-MS platform is validated for future missions targeting corrosive atmospheres, enabling in situ astrobiological investigations through the detection of biosignature gasses such as phosphine and hydrogen sulfide. Full article
Show Figures

Figure 1

14 pages, 3331 KiB  
Article
Portable Magnetic Field Mapping Measurement System Based on Large-Scale Dipole Magnets in HIAF
by Xiang Zhang, Zidi Wu, Li’an Jin, Jing Yang, Xianjin Ou, Dongsheng Ni, Yue Cheng, Lixia Zhao, Yujin Tong, Weigang Dong, Beimin Wu, Guohong Li and Qinggao Yao
Metrology 2025, 5(2), 22; https://doi.org/10.3390/metrology5020022 - 14 Apr 2025
Viewed by 651
Abstract
The High-Intensity Heavy-Ion Accelerator Facility (HIAF) is a significant national science and technology infrastructure project, constructed by the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). It is designed to provide intense proton, heavy ion beams, and target-produced radioactive ion beams [...] Read more.
The High-Intensity Heavy-Ion Accelerator Facility (HIAF) is a significant national science and technology infrastructure project, constructed by the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). It is designed to provide intense proton, heavy ion beams, and target-produced radioactive ion beams for nuclear physics and related research. Large-aperture, high-precision, room-temperature, and superconducting dipole magnets are extensively used to achieve high-intensity beams. However, for large-scale magnets (particularly superconducting magnets), the traditional Hall probe mapping measurement platform encounters several limitations: a long preparation time, high cost, low testing efficiency, and positional inaccuracies caused by repeated magnet disassembly. This paper presents a new magnetic field mapping measurement system incorporating ultrasonic motors operable in strong magnetic fields (≥7 T), enabling portable, highly efficient, and high-precision magnetic field measurements. After system integration and commissioning, the prototype dipole magnet for the high-precision spectrometer ring (SRing) was measured. The measurement system demonstrated superior accuracy and efficiency compared with traditional Hall probe mapping systems. On this basis, the magnetic field distribution and integral excitation curve of all 11 warm-iron superconducting dipole magnets and 3 anti-irradiation dipole magnets in the HIAF fragment separator (HFRS) were measured. Each magnet took less than 1 day to measure, and all magnetic field measurement results met the physical specifications. Full article
(This article belongs to the Special Issue Advances in Magnetic Measurements)
Show Figures

Figure 1

17 pages, 2952 KiB  
Article
Remediation of Hg-Contaminated Groundwater via Adsorption on Supramolecular Polymers in Batch Process and Column Test
by Zongwu Wang, Wei Liu, Xiaoyan Sun, Qing Zhang, Jiapu Ji, Yimeng Yan and Jianhui Sun
Molecules 2025, 30(7), 1406; https://doi.org/10.3390/molecules30071406 - 21 Mar 2025
Cited by 1 | Viewed by 446
Abstract
Mercury contamination in groundwater seriously affects human health and ecosystem security. The remediation of Hg-contaminated groundwater remains a challenging task. The applicability of an as-synthesized supramolecular polymer (SP) for low-concentration mercury in a high-salinity groundwater matrix has been verified through a batch process [...] Read more.
Mercury contamination in groundwater seriously affects human health and ecosystem security. The remediation of Hg-contaminated groundwater remains a challenging task. The applicability of an as-synthesized supramolecular polymer (SP) for low-concentration mercury in a high-salinity groundwater matrix has been verified through a batch process and column test. The remediation of mercury-contaminated groundwater, particularly in complex high-salinity environments, represents a significant and enduring challenge in environmental science. The batch test study demonstrated that the SP can efficiently adsorb Hg from groundwater with superior selectivity and a high uptake capacity (up to 926.1 ± 165.3 mg g−1). Increasing the pH and dissolved organic matter (DOM) and reducing the ionic strength can facilitate Hg adsorption; the coexistence of heavy metal ions slightly weakens the removal. In terms of its performance as a permeable reactive barrier, the SP can intercept Hg in flowing groundwater with a capacity of up to 3187 mg g−1. A low influent mercury concentration, low pore velocity, and high SP dosage can effectively extend the breakthrough time in column tests. Additionally, the Yan model (R2 = 0.960−0.989) can accurately depict the whole dynamic interception process (150 PVs) of SPs in a fixed column, and the Adams–Bohart model (R2 = 0.916−0.964) describes the initial stage (≤35 PVs) well. Considering the functional group in the SP and the Hg species in groundwater, complexation, electrostatic attraction, ion exchange, and precipitation/co-precipitation are the plausible mechanisms for mercury removal based on the characterization results of scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrometer (FT-IR). These impressive features render the SP a promising candidate for the remediation of trace Hg in saline groundwater using permeable reactive barrier (PRB) technology. Full article
Show Figures

Figure 1

11 pages, 3098 KiB  
Article
A Reinvestigation of Coalescence Reactions of Fullerenes
by Shumei Yang, Jicheng Yang, Jinyang Li, Guanxin Yao, Xianyi Zhang and Xianglei Kong
Inorganics 2025, 13(3), 79; https://doi.org/10.3390/inorganics13030079 - 9 Mar 2025
Viewed by 658
Abstract
Gas-phase studies of fullerenes and metallofullerenes, though less well explored compared to condensed-phase research in recent years, offer critical insights into the mechanisms governing their formation and behavior. In this study, we re-examined the coalescence reactions of fullerenes using a high-resolution Fourier transform [...] Read more.
Gas-phase studies of fullerenes and metallofullerenes, though less well explored compared to condensed-phase research in recent years, offer critical insights into the mechanisms governing their formation and behavior. In this study, we re-examined the coalescence reactions of fullerenes using a high-resolution Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer, especially the effect of electric fields in the source region on the formation of large-sized fullerenes. By varying the voltages on the metal plate where the C60 was deposited, we achieved enhanced control over the coalescence process, revealing distinct distributions of fullerene products that differ from those reported in earlier studies. What is the most attractive is that a negative voltage applied on the metal plate is actually more conducive to the production of large-sized fullerene cations. Notably, we identified previously unobserved species, including doubly charged fullerene cations (e.g., C1602+) and metallofullerene ions (e.g., Y1–2C94–124+), providing new evidence for the complexity of gas-phase fullerene chemistry. These findings underscore the importance of source region electric fields in shaping coalescence outcomes and highlight the potential of gas-phase approaches for synthesizing novel metallofullerenes. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

17 pages, 6304 KiB  
Article
Research on the Mechanical Activation Mechanism of Coal Gangue and Its CO2 Mineralization Effect
by Lei Zhu, Chengyong Liu, Gang Duan, Zhicheng Liu, Ling Jin, Yuejin Zhou and Kun Fang
Sustainability 2025, 17(6), 2364; https://doi.org/10.3390/su17062364 - 7 Mar 2025
Cited by 1 | Viewed by 1041
Abstract
During the extraction and utilization of coal resources, a large amount of CO2 and coal-based solid wastes (CBSW), such as coal gangue, are generated. To reduce the carbon and waste emissions, an effective approach is to mineralize the CO2 with the [...] Read more.
During the extraction and utilization of coal resources, a large amount of CO2 and coal-based solid wastes (CBSW), such as coal gangue, are generated. To reduce the carbon and waste emissions, an effective approach is to mineralize the CO2 with the CBSW and then backfill the mineralized materials into the goaf area. However, efficient CO2 mineralization is challenging due to the low reactivity of coal gangue. To this end, mechanical activation was used for the modification of coal gangue, and the mechanical activation mechanism of coal gangue was revealed from a microcosmic perspective by dry powder laser particle size testing (DPLPST), X-ray diffractometer (XRD) analysis, Fourier-transform infrared spectrometer (FTIR) analysis, and scanning electron microscopy (SEM). The results showed that compared with the unground coal gangue, the average particle size of coal gangue after 0.5 h, 1 h, and 1.5 h milling decreases by 94.3%, 95%, and 95.3%, respectively; additionally, the amorphous structures of the coal gangue after milling increase, and their edges and corners gradually diminish. After the pressure mineralization of coal gangues with different activation times, thermogravimetric (TG) analysis was performed, and the CO2 mineralization effect of the mechanically activated coal gangue was explored. It is found that the carbon fixation capacity of the coal gangue after 0.5 h, 1.0 h, and 1.5 h mechanical activation is increased by 1.18%, 3.20%, and 7.57%, respectively. Through the XRD and SEM, the mechanism of CO2 mineralization in coal gangue was revealed from a microcosmic perspective as follows: during the mineralization process, alkali metal ions of calcium and magnesium in anorthite and muscovite are leached and participate in the mineralization reaction, resulting in the formation of stable carbonates such as calcium carbonate. Full article
Show Figures

Figure 1

8 pages, 1430 KiB  
Communication
Oxygen Isotopic Compositions of San Carlos Olivine Standard NMNH 111312–42
by Kezhen Qu, Hongjie Wu and Guo-Qiang Tang
Appl. Sci. 2025, 15(5), 2445; https://doi.org/10.3390/app15052445 - 25 Feb 2025
Viewed by 498
Abstract
San Carlos olivine geostandard developed by Gene Jarosewich and co-workers at the Smithsonian Institution, named NMNH 111312–44, was the most widespread olivine geostandard used in olivine oxygen isotopic determination. However, the NMNH 111312–44 olivine grains have run out completely. Another set of San [...] Read more.
San Carlos olivine geostandard developed by Gene Jarosewich and co-workers at the Smithsonian Institution, named NMNH 111312–44, was the most widespread olivine geostandard used in olivine oxygen isotopic determination. However, the NMNH 111312–44 olivine grains have run out completely. Another set of San Carlos olivine, whose grains are larger, named NMNH 111312–42, was distributed by the Smithsonian Institution. Whether they have the same oxygen isotopic composition is still unclear. This study analyzed the oxygen isotopic compositions of NMNH 111312–42 and NMNH 111312–44, using a CAMECA IMS–1280 secondary ion mass spectrometer. The results show that NMNH 111312–42 (5.28 ± 0.17‰, 1SD, N = 35) and NMNH 111312–44 (5.22 ± 0.16‰, 1SD, N = 29) olivine grains have indistinguishable δ18O values within analytical error, suggesting that NMNH 111312–42 olivine grains can be taken as the same geostandard as NMNH 111312–44 olivine grains for high-precision oxygen isotope analysis. Full article
Show Figures

Figure 1

18 pages, 11480 KiB  
Article
The Influence of NaCl Internal and External Erosion on the Properties of Steel Scoria Reactive Powder Concrete
by Ligai Bai, Haiyuan Liu, Jian Zhang, Youheng Zhang, Xin Zhang, Kangshuo Xia and Feiting Shi
Coatings 2025, 15(3), 263; https://doi.org/10.3390/coatings15030263 - 23 Feb 2025
Viewed by 718
Abstract
This paper the flexural and compressive strengths of the reactive powder concrete (RPC) with steel scoria and quartz sand containing NaCl are investigated. Moreover, the RPC’s mass, the chloride ion permeability and the carbonation depth (Dc) are determined. The mass ratios [...] Read more.
This paper the flexural and compressive strengths of the reactive powder concrete (RPC) with steel scoria and quartz sand containing NaCl are investigated. Moreover, the RPC’s mass, the chloride ion permeability and the carbonation depth (Dc) are determined. The mass ratios of steel scoria and the NaCl are 0%~20% and 0%~0.25% by mass of binder materials and the quartz sand respectively. The RPC specimens are exposed to the NaCl erosion environment. The scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and X-ray diffraction (XRD) spectrum are acquired for analyzing the mechanism of RPC’s performance. Results show that the flexural strength, the compressive strengths, the mass and the dynamic modulus of elasticity (RDME) of RPC decrease in the form of cubic function with the mass ratio of NaCl. When the mass ratio of steel scoria is 10%, the mechanical strengths and the RDME are the highest. The RPC’s flexural strength, the compressive strength and the RDME decrease by rates of 4.94%~42.28%, 5.11%~48.65% and 8.72%~226.1% after NaCl erosion. Meanwhile, the corresponding mass loss rate, the chloride ion permeability, the Dc are increased by rates of 1.32%~27.63%. RPC with 10% steel scoria shows the lowest performance degradation. The SEM-EDS results show that the pores and cracks inner RPC and the Cl and Ca elements are increased by the NaCl. The Fe and Ca elements are increased by the added steel scoria. The addition of steel scoria exhibit decreasing effect and the added NaCl shows increasing effect on the Ca (OH)2 crystals respectively. Full article
Show Figures

Figure 1

12 pages, 2213 KiB  
Article
Controllable Functionalization of Carbon Dots as Selective and Sensitive Fluorescent Probes for Sensing Cu(II) Ions
by Xiaochun Zheng, Hao Zhang, Haoming Jiang, Lei Sun, Yuanze Sun, Qingcao Liu, Shoutian Ren, Yunpeng Zhuang and Xiaofeng Gong
Crystals 2025, 15(3), 205; https://doi.org/10.3390/cryst15030205 - 21 Feb 2025
Cited by 1 | Viewed by 887
Abstract
Carbon dots (CDs) are efficient fluorescent probes for metal ion detection due to their high sensitivity, nontoxicity and stability, but their rich functional groups lead to simultaneous responses to multiple ions. So, how to realize highly selective detection for specific ions is still [...] Read more.
Carbon dots (CDs) are efficient fluorescent probes for metal ion detection due to their high sensitivity, nontoxicity and stability, but their rich functional groups lead to simultaneous responses to multiple ions. So, how to realize highly selective detection for specific ions is still a challenging task. In this work, “bare CDs” were synthesized using the electrochemical stripping method, followed by grafting with hydroxyl and carboxyl groups following the hydrothermal method with boric acid. Transmission electron microscopy, an X-ray diffractometer, Fourier transform infrared spectroscopy, UV–visible spectrophotometers and a fluorescence spectrometer were used to characterize their morphology, surface functional groups and optical properties, respectively. The modified CDs exhibit a high sensitivity of 65% and selectivity towards Cu2+. Meanwhile, they also exhibited a short response time of less than 1 min and a good stability in terms of pH and ionic strength. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

12 pages, 2633 KiB  
Article
Rapid Microfluidic Ion-Exchange Optode System for Point-of-Care Determination of Sodium Concentration in Serum
by Kuan-Hsun Huang, Cheng-Xue Yu, Chia-Chun Lee, Chin-Chung Tseng and Lung-Ming Fu
Biosensors 2025, 15(2), 104; https://doi.org/10.3390/bios15020104 - 12 Feb 2025
Viewed by 1176
Abstract
A microfluidic system for detecting sodium ions (Na+) has been developed, incorporating a micro finger-pump chip and a micro-spectrometer platform to measure Na+ concentration in human serum. A small volume (10 μL) of serum sample is introduced into the microchip [...] Read more.
A microfluidic system for detecting sodium ions (Na+) has been developed, incorporating a micro finger-pump chip and a micro-spectrometer platform to measure Na+ concentration in human serum. A small volume (10 μL) of serum sample is introduced into the microchip and reacted with a preloaded reagent mixture through a two-step finger-pump actuation process. The resulting purple complex is directed into the detection area of the chip and analyzed using the micro-spectrometer at wavelengths of 555 and 666 nm. The Na+ concentration is then inversely derived from the measured A555/A666 absorbance ratio using self-written software installed on a Raspberry Pi. The entire detection process is completed in just 3 min, offering a significant advantage in meeting clinical needs compared to the traditional reporting turnaround time of several hours in medical institutions. The experimental results indicate a linear relationship between the measured absorbance ratio and Na+ concentration within the range of 1–200 mM, with a correlation coefficient of R2 = 0.9989. Additionally, the detection results from 60 serum samples collected from chronic kidney disease (CKD) patients showed a strong agreement with those obtained using the conventional indirect ion-selective electrode (ISE) method, achieving a correlation coefficient of R2 = 0.9885 and an average recovery rate of 99.4%. In summary, the proposed system provides a practical, affordable, and rapid alternative to conventional Na+ detection methods, making it highly promising for point-of-care (POC) testing applications. Full article
Show Figures

Graphical abstract

Back to TopTop