Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = ion beam assisted deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7165 KiB  
Article
Structural and Performance Studies of Lanthanum–Nitrogen Co-Doped Titanium Dioxide Thin Films Under UV Aging
by Pengcheng Cao, Li Zhang and Yanbo Yuan
Micromachines 2025, 16(8), 842; https://doi.org/10.3390/mi16080842 - 23 Jul 2025
Viewed by 400
Abstract
In this study, lanthanum–nitrogen co-doped titanium dioxide (La-N-TiO2) thin films were fabricated using Ion Beam Assisted Deposition (IBAD) and subjected to accelerated ultraviolet (UV) aging experiments to systematically investigate the impact of co-doping on the films’ resistance to UV aging. X-ray [...] Read more.
In this study, lanthanum–nitrogen co-doped titanium dioxide (La-N-TiO2) thin films were fabricated using Ion Beam Assisted Deposition (IBAD) and subjected to accelerated ultraviolet (UV) aging experiments to systematically investigate the impact of co-doping on the films’ resistance to UV aging. X-ray diffraction (XRD) analysis revealed that La-N co-doping inhibits the phase transition from anatase to rutile, significantly enhancing the phase stability of the films. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) characterizations indicated that co-doping increased the density and surface uniformity of the films, thereby delaying the expansion of cracks and increase in roughness induced by UV exposure. Energy-dispersive X-ray spectroscopy (EDS) results confirmed the successful incorporation of La and N into the TiO2 lattice, enhancing the chemical stability of the films. Contact angle tests demonstrated that La-N co-doping markedly improved the hydrophobicity of the films, inhibiting the rapid decay of hydrophilicity during UV aging. After three years of UV aging, the co-doped films maintained high structural integrity and photocatalytic performance, exhibiting excellent resistance to UV aging. These findings offer new insights into the long-term stability of photovoltaic self-cleaning materials. Full article
Show Figures

Figure 1

22 pages, 4799 KiB  
Article
Design and Deposition of Ultra-Broadband Beam-Splitting Coatings
by Yunyun Shi, Haochuan Li, Sibao Zhang, Changxin Luo, Jiangheng Sun, Chenrui Lv, Jiaoteng Ding and Yongsheng Yao
Coatings 2025, 15(6), 695; https://doi.org/10.3390/coatings15060695 - 9 Jun 2025
Viewed by 368
Abstract
This study aims to develop a stress-optimized ultra-broadband beam-splitting coating that integrates four spectral bands by analyzing the beam-splitting properties of coatings spanning visible to medium and long-wave infrared regions. A beam-splitting coating was deposited on a Ge substrate using ion-beam-assisted thermal evaporation, [...] Read more.
This study aims to develop a stress-optimized ultra-broadband beam-splitting coating that integrates four spectral bands by analyzing the beam-splitting properties of coatings spanning visible to medium and long-wave infrared regions. A beam-splitting coating was deposited on a Ge substrate using ion-beam-assisted thermal evaporation, employing Ge, ZnS, and YbF3 as coating materials. The designed coating exhibits high reflectance in the 0.5–0.8 μm and 0.9–1.7 μm wavelength bands while maintaining high transmittance in the 3–5 μm and 8–12 μm bands. The optimal deposition process for a single-layer coating was established, at a 45° incidence angle, the beam-splitting coating achieved an average reflectance (Rave) of 86.6% in the 0.9–1.7 μm band and 93.7% in the 0.9–1.7 μm band, alongside an average transmittance (Tave) of 91.36% in the 3–5 μm band and 91.3% in the 8–12 μm band. The antireflection coating achieved a single-side Tave of 98.5% in the 3–5 μm band and 97% in the 8–12 μm band. The coating uniformity exceeded 99.6%. To optimize the surface profile, a single-layer Ge coating was added to the rear surface, resulting in a root mean square deviation of less than 0.0007 μm, achieved the same precision of the surface profile successfully. The deposited beam-splitting coating possessed high surface profile precision, and successfully achieved high reflectance in the visible to short-wave infrared range and high transmittance in the medium- and long-wave infrared range. The coating demonstrated excellent adhesion, abrasion resistance, and structural integrity, with no wrinkling, cracking, or delamination. Full article
Show Figures

Graphical abstract

13 pages, 3806 KiB  
Article
Influence of the Annealing Temperature on the Properties of {ZnO/CdO}30 Superlattices Deposited on c-Plane Al2O3 Substrate by MBE
by Anastasiia Lysak, Aleksandra Wierzbicka, Piotr Dłużewski, Marcin Stachowicz, Jacek Sajkowski and Ewa Przezdziecka
Crystals 2025, 15(2), 174; https://doi.org/10.3390/cryst15020174 - 10 Feb 2025
Viewed by 758
Abstract
{CdO/ZnO}m superlattices (SLs) have been grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PA-MBE). The observation of satellite peaks in the XRD studies of the as-grown and annealed samples confirms the presence of a periodic superlattice structure. The properties [...] Read more.
{CdO/ZnO}m superlattices (SLs) have been grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PA-MBE). The observation of satellite peaks in the XRD studies of the as-grown and annealed samples confirms the presence of a periodic superlattice structure. The properties of as-grown and annealed SLs deposited on c-oriented sapphire were investigated by transmission electron microscopy, X-ray diffraction and temperature dependent PL studies. The deformation of the SLs structure was observed after rapid thermal annealing. As the thermal annealing temperature increases, the diffusion of Cd ions from the quantum well layers into the ZnO barrier increases. The formation of CdZnO layers causes changes in the luminescence spectrum in the form of peak shifts, broadening and changes in the spacing of the satellite peaks visible in X-ray analysis. Full article
(This article belongs to the Special Issue Materials and Devices Grown via Molecular Beam Epitaxy)
Show Figures

Figure 1

22 pages, 3244 KiB  
Review
Solution Deposition Planarization as an Alternative to Electro-Mechanical Polishing for HTS Coated-Conducters
by Laura Piperno and Giuseppe Celentano
Coatings 2025, 15(1), 45; https://doi.org/10.3390/coatings15010045 - 3 Jan 2025
Viewed by 1001
Abstract
Mechanically flexible substrates are increasingly utilized in electronics and advanced energy technologies like solar cells and high-temperature superconducting coated conductors (HTS-CCs). These substrates offer advantages, such as large surface areas and reduced manufacturing costs through reel-to-reel processing, but often lack the surface smoothness [...] Read more.
Mechanically flexible substrates are increasingly utilized in electronics and advanced energy technologies like solar cells and high-temperature superconducting coated conductors (HTS-CCs). These substrates offer advantages, such as large surface areas and reduced manufacturing costs through reel-to-reel processing, but often lack the surface smoothness needed for optimal performance. For HTS-CCs, specific orientation and high crystalline quality are essential, requiring buffer layers to prepare the amorphous substrate for superconductor deposition. Techniques, such as mechanical polishing, electropolishing, and chemical-mechanical polishing, can help achieve an optimally levelled surface suitable for the subsequent steps of sputtering and ion-beam-assisted deposition (IBAD) necessary for texturing. This review examines Solution Deposition Planarization (SDP) as a cost-effective alternative to traditional electro-mechanical polishing for HTS coated conductors. SDP achieves surface roughness levels below 1 nm through multiple oxide layer coatings, offering reduced production costs. Comparative studies demonstrate planarization efficiencies of up to 20%. Ongoing research aims to enhance SDP’s efficiency for industrial applications in CC production. Full article
Show Figures

Figure 1

20 pages, 5573 KiB  
Article
New Gold(I) Complexes as Potential Precursors for Gas-Assisted Methods: Structure, Volatility, Thermal Stability, and Electron Sensitivity
by Aleksandra Butrymowicz-Kubiak, Tadeusz M. Muzioł, Piotr Madajski and Iwona B. Szymańska
Molecules 2025, 30(1), 146; https://doi.org/10.3390/molecules30010146 - 2 Jan 2025
Cited by 1 | Viewed by 904
Abstract
We report the synthesis and characterization of new, user-friendly gold(I) [Au4(μ-(NH)2CC2F5)4]n coordination polymer and [Au2Cl2(NH2(NH=)CC2F5)2]n complex. These compounds were [...] Read more.
We report the synthesis and characterization of new, user-friendly gold(I) [Au4(μ-(NH)2CC2F5)4]n coordination polymer and [Au2Cl2(NH2(NH=)CC2F5)2]n complex. These compounds were investigated for potential application as precursors in chemical vapor deposition (CVD) and focused electron/ion beam-induced deposition (FEBID/FIBID), which are additive methods to produce nanomaterials. Single-crystal X-ray diffraction, elemental analysis, and infrared spectroscopy were used to determine the complexes’ composition and structure. We studied their thermal stability and volatility using thermal analysis and variable-temperature infrared spectroscopy (VT IR) and by conducting sublimation experiments. The gold(I) amidinate [Au2(μ-(NH)2CC2F5)2]n sublimates at 413 K under 10−2 mbar pressure. The electron-induced decomposition of the complexes’ molecules in the gas phase and of their thin layers on silicon substrates was analyzed using electron impact mass spectrometry (EI MS) and microscopy studies (SEM/EDX), respectively, to provide insights for FEBID and FIBID precursor design. The [Au2Cl2(NH2(NH=)CC2F5)2]n hydrogen chloride molecules evolved during heating, with the formation of gold(I) amidinate. The obtained results revealed that the new gold(I) amidinate may be a promising source of metal for nanomaterial fabrication by gas-assisted methods. Full article
Show Figures

Graphical abstract

16 pages, 2582 KiB  
Article
Surface Characteristics and Performance Optimization of W-Doped Vanadium Dioxide Thin Films
by Chuen-Lin Tien, Chun-Yu Chiang, Jia-Kai Tien, Ching-Chiun Wang and Shih-Chin Lin
Surfaces 2024, 7(4), 1109-1124; https://doi.org/10.3390/surfaces7040073 - 20 Dec 2024
Viewed by 984
Abstract
This study explores the surface characteristics evaluation and performance optimization of tungsten (W)-doped vanadium dioxide (VO2) thin films. W-doped vanadium dioxide films were deposited on B270 glass substrates using an electron beam evaporation technique combined with the ion beam-assisted deposition (IAD) [...] Read more.
This study explores the surface characteristics evaluation and performance optimization of tungsten (W)-doped vanadium dioxide (VO2) thin films. W-doped vanadium dioxide films were deposited on B270 glass substrates using an electron beam evaporation technique combined with the ion beam-assisted deposition (IAD) method. The Taguchi method was used to analyze the performance optimization of VO2 thin films, and L16 orthogonal array design and Minitab software were used for optimization calculations. The surface roughness, visible light transmittance, infrared transmittance, and residual stress of un-doped and tungsten-doped (3–5%) VO2 thin films are set as the quality performance indicators of thin films. The goal is to identify the key factors that affect the performance of VO2 thin films during deposition and optimize their process parameters. The experimental results showed that a VO2 thin film with 3% tungsten doping, an oxygen flow rate of 60 sccm, a heating temperature of 280 °C, and a film thickness of 60 nm exhibited the lowest surface roughness of 2.12 nm. A VO2 thin film with 5% tungsten doping, an oxygen flow rate of 0 sccm, a heating temperature of 280 °C, and a film thickness of 60 nm had the highest visible light transmittance at 64.33%. When the oxygen flow rate was 60 sccm, the heating temperature was 295 °C, the film thickness was 150 nm, and the tungsten doping was 5%, the VO2 thin film showed the lowest infrared transmittance of 31.34%. A thin film with 5% tungsten doping, an oxygen flow rate of 20 sccm, a heating temperature of 265 °C, and a film thickness of 120 nm exhibited the lowest residual stress of −0.195 GPa. Full article
Show Figures

Figure 1

12 pages, 2738 KiB  
Article
Influence of Substrate Bias Voltage on Structure and Properties of (AlCrMoNiTi)N Films
by Xue Gao, Bin Li, Yiman Zhao, Xunwang Shi, Yujie Chen, Bin Liao and Erzhou Ren
Nanomaterials 2024, 14(24), 2002; https://doi.org/10.3390/nano14242002 - 13 Dec 2024
Viewed by 811
Abstract
(AlCrMoNiTi)N high-entropy alloy nitride (HEAN) films were synthesized at various bias voltages using the co-filter cathodic vacuum arc (co-FCVA) deposition technique. This study systematically investigates the effect of bias voltage on the microstructure and performance of HEAN films. The results indicate that an [...] Read more.
(AlCrMoNiTi)N high-entropy alloy nitride (HEAN) films were synthesized at various bias voltages using the co-filter cathodic vacuum arc (co-FCVA) deposition technique. This study systematically investigates the effect of bias voltage on the microstructure and performance of HEAN films. The results indicate that an increase in bias voltage enhances the energy of ions while concomitantly reducing the deposition rate. All synthesized (AlCrMoNiTi)N HEAN films demonstrated the composite structure composed of FCC phase and metallic Ni. The hardness of the (AlCrMoNiTi)N HEAN film synthesized at a bias voltage of −100 V attained a maximum value of 38.7 GPa. This high hardness is primarily attributed to the synergistic effects stemming from the formation of strong metal-nitrogen (Me-N) bonding formed between the target elements and the N element, the densification of the film structure, and the ion beam-assisted bombardment strengthening of the co-FCVA deposition technique. In addition, the corrosion current density of the film prepared at this bias voltage was measured at 4.9 × 10−7 A·cm−2, significantly lower than that of 304 stainless steel, indicating excellent corrosion resistance. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

14 pages, 3964 KiB  
Article
A High-Sensitivity Fiber Optic Soil Moisture Sensor Based on D-Shaped Fiber and Tin Oxide Thin Film Coatings
by Chuen-Lin Tien, Hsi-Fu Shih, Jia-Kai Tien and Ching-Chiun Wang
Sensors 2024, 24(23), 7474; https://doi.org/10.3390/s24237474 - 23 Nov 2024
Cited by 2 | Viewed by 1592
Abstract
We present a high-sensitivity fiber optic soil moisture sensor based on side-polished multimode fibers and lossy mode resonance (LMR). The multimode fibers (MMFs), after side-polishing to form a D-shaped structure, are coated with a single-layer SnO2 thin film by electron beam evaporation [...] Read more.
We present a high-sensitivity fiber optic soil moisture sensor based on side-polished multimode fibers and lossy mode resonance (LMR). The multimode fibers (MMFs), after side-polishing to form a D-shaped structure, are coated with a single-layer SnO2 thin film by electron beam evaporation with ion-assisted deposition technology. The LMR effect can be obtained when the refractive index of the thin film is positive and greater than its extinction coefficient and the real part of the external medium permittivity. The D-shaped fiber optic soil moisture sensor was placed in soil, allowing moisture to penetrate into the thin film microstructure, and it observed the resonance wavelength shift in LMR spectra to measure the relative humidity change in soil. Meanwhile, an Arduino electronic soil moisture sensing module was used as the experimental control group, with soil relative humidity ranging from 10%RH to 90%RH. We found that the D-shaped fiber with a residual thickness of 93 μm and SnO2 thin film thickness of 450 nm had a maximum sensitivity of 2.29 nm/%RH, with relative humidity varying from 10%RH to 90%RH. The D-shaped fiber also demonstrates a fast response time and good reproducibility. Full article
(This article belongs to the Special Issue Imaging and Sensing in Optics and Photonics)
Show Figures

Figure 1

14 pages, 6874 KiB  
Article
Fabrication of Large-Area High-Resolution Templates by Focused Ion Beam Combined with Colloidal Nanoparticle Dimer Deposition for SERS Substrates
by Liga Ignatane, Reinis Ignatans, Juris Prikulis, Annamarija Trausa, Ciro Federico Tipaldi, Edgars Vanags, Martins Zubkins, Krisjanis Smits and Anatolijs Sarakovskis
Nanomaterials 2024, 14(22), 1784; https://doi.org/10.3390/nano14221784 - 6 Nov 2024
Cited by 2 | Viewed by 1313
Abstract
This article presents an examination of well-controlled patterns created using a Ga+-based focused ion beam (FIB) on glass, while silicon substrates were used to evaluate the FIB performance by its achievable feature size versus time constraints. The pattern creation on glass [...] Read more.
This article presents an examination of well-controlled patterns created using a Ga+-based focused ion beam (FIB) on glass, while silicon substrates were used to evaluate the FIB performance by its achievable feature size versus time constraints. The pattern creation on glass was developed with the aim of studying potential surface-enhanced Raman spectroscopy (SERS) applications. Furthermore, the FIB was used to create dimer systems of periodically and randomly positioned dumbbell-shaped pits on the glass (each dimer occupies an area of 203 × 87 nm2). By following the bitmap pattern files, the FIB ensured there was 3000 dimer fabrication over a 20 × 20 μm2 large area, with a pit size and position variation below 10 nm. The article highlights that FIB can be used for precise large-area nano-fabrication. The gold nanoparticle dimers were formed on the prepatterned surface via capillary force-assisted deposition. The fabricated nanostructures were tested in SERS measurements. The enhancement factor for Rhodamine B molecule reached ~105, demonstrating the potential application of the method to create nanostructures in the sensor domain. Full article
Show Figures

Figure 1

15 pages, 4495 KiB  
Article
Fabrication of Cu-Doped Diamond-like Carbon Film for Improving Sealing Performance of Hydraulic Cylinder of Shearers
by Yanrong Yang, Xiang Yu, Zhiyan Zhao and Lei Zhang
C 2024, 10(4), 93; https://doi.org/10.3390/c10040093 - 30 Oct 2024
Cited by 1 | Viewed by 1409
Abstract
During shearer operation, the piston rod is susceptible to wear from the invasion of pollutants, thus ruining the sealing ring in the hydraulic cylinder. This work attempts to conduct a systematic investigation of Cu-doped diamond-like carbon (Cu-DLC) film to improve the seal performance. [...] Read more.
During shearer operation, the piston rod is susceptible to wear from the invasion of pollutants, thus ruining the sealing ring in the hydraulic cylinder. This work attempts to conduct a systematic investigation of Cu-doped diamond-like carbon (Cu-DLC) film to improve the seal performance. The failure process of the cylinder was analyzed, and relevant parameters were determined. Several Cu-DLC films were deposited on the substrate of the piston rod in a multi-ion beam-assisted system, and their structures and combined tribological performances were investigated. The hardness of the film ranges from 27.6 GPa to 14.8 GPa, and the internal stress ranges from 3500 MPa to 1750 MPa. The steady-state frictional coefficient of the film ranges from 0.04 to 0.15; the wear rate decreases first and then increases, and it reaches its lowest (5.0 × 10−9 mm3/N·m) at 9.2 at.% content. a:C-Cu9.2% film presents optimal combined tribological performances in this experiment. The modification mechanism of Cu-DLC film for the seal performance may come from the synergistic effects of (i) the contact force and friction-heat-induced film graphitization, (ii) Cu doping improves the toughness of the film and acts as a solid lubricant, and (iii) the transfer layer plays a role in self-lubrication. Full article
(This article belongs to the Special Issue Micro/Nanofabrication of Carbon-Based Devices and Their Applications)
Show Figures

Graphical abstract

10 pages, 3599 KiB  
Article
Temperature-Dependent Residual Stresses and Thermal Expansion Coefficient of VO2 Thin Films
by Chuen-Lin Tien, Chun-Yu Chiang, Ching-Chiun Wang and Shih-Chin Lin
Inventions 2024, 9(3), 61; https://doi.org/10.3390/inventions9030061 - 18 May 2024
Cited by 2 | Viewed by 3367
Abstract
This study aims to investigate the thermomechanical properties of vanadium dioxide (VO2) thin films. A VO2 thin film was simultaneously deposited on B270 and H-K9L glass substrates by electron-beam evaporation with ion-assisted deposition. Based on optical interferometric methods, the thermal–mechanical [...] Read more.
This study aims to investigate the thermomechanical properties of vanadium dioxide (VO2) thin films. A VO2 thin film was simultaneously deposited on B270 and H-K9L glass substrates by electron-beam evaporation with ion-assisted deposition. Based on optical interferometric methods, the thermal–mechanical behavior of and thermal stresses in VO2 films can be determined. An improved Twyman–Green interferometer was used to measure the temperature-dependent residual stress variations of VO2 thin films at different temperatures. This study found that the substrate has a great impact on thermal stress, which is mainly caused by the mismatch in the coefficient of thermal expansion (CTE) of the film and the substrate. By using the dual-substrate method, thermal stresses in VO2 thin films from room temperature to 120 °C can be evaluated. The thermal expansion coefficient is 3.21 × 10−5 °C−1, and the biaxial modulus is 517 GPa. Full article
(This article belongs to the Special Issue Thermodynamic and Technical Analysis for Sustainability (Volume 3))
Show Figures

Figure 1

14 pages, 6972 KiB  
Article
Optical, Electrical, Structural, and Thermo-Mechanical Properties of Undoped and Tungsten-Doped Vanadium Dioxide Thin Films
by Chuen-Lin Tien, Chun-Yu Chiang, Ching-Chiun Wang and Shih-Chin Lin
Materials 2024, 17(10), 2382; https://doi.org/10.3390/ma17102382 - 16 May 2024
Cited by 3 | Viewed by 1871
Abstract
The undoped and tungsten (W)-doped vanadium dioxide (VO2) thin films were prepared by electron beam evaporation associated with ion-beam-assisted deposition (IAD). The influence of different W-doped contents (3–5%) on the electrical, optical, structural, and thermo-mechanical properties of VO2 thin films [...] Read more.
The undoped and tungsten (W)-doped vanadium dioxide (VO2) thin films were prepared by electron beam evaporation associated with ion-beam-assisted deposition (IAD). The influence of different W-doped contents (3–5%) on the electrical, optical, structural, and thermo-mechanical properties of VO2 thin films was investigated experimentally. Spectral transmittance results showed that with the increase in W-doped contents, the transmittance in the visible light range (400–750 nm) decreases from 60.2% to 53.9%, and the transmittance in the infrared wavelength range (2.5 μm to 5.5 μm) drops from 55.8% to 15.4%. As the W-doped content increases, the residual stress in the VO2 thin film decreases from −0.276 GPa to −0.238 GPa, but the surface roughness increases. For temperature-dependent spectroscopic measurements, heating the VO2 thin films from 30 °C to 100 °C showed the most significant change in transmittance for the 5% W-doped VO2 thin film. When the heating temperature exceeds 55 °C, the optical transmittance drops significantly, and the visible light transmittance drops by about 11%. Finally, X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to evaluate the microstructure characteristics of VO2 thin films. Full article
(This article belongs to the Special Issue Electrical and Optical Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

12 pages, 6035 KiB  
Article
Preparation of MgO Self-Epitaxial Films for YBCO High-Temperature Coated Conductors
by Fei Yu, Yan Xue, Chaowei Zhong, Jiayi Song, Qiong Nie, Xin Hou and Baolei Wang
Micromachines 2023, 14(10), 1914; https://doi.org/10.3390/mi14101914 - 8 Oct 2023
Cited by 4 | Viewed by 2277
Abstract
Ion beam-assisted deposition (IBAD) has been proposed as a promising texturing technology that uses the film epitaxy method to obtain biaxial texture on a non-textured metal or compound substrate. Magnesium oxide (MgO) is the most well explored texturing material. In order to obtain [...] Read more.
Ion beam-assisted deposition (IBAD) has been proposed as a promising texturing technology that uses the film epitaxy method to obtain biaxial texture on a non-textured metal or compound substrate. Magnesium oxide (MgO) is the most well explored texturing material. In order to obtain the optimal biaxial texture, the actual thickness of the IBAD-MgO film must be controlled within 12nm. Due to the bombardment of ion beams, IBAD-MgO has large lattice deformation, poor texture, and many defects in the films. In this work, the solution deposition planarization (SDP) method was used to deposit oxide amorphous Y2O3 films on the surface of Hastelloy C276 tapes instead of the electrochemical polishing, sputtering-Al2O3 and sputtering-Y2O3 in the commercialized buffer layer. An additional homogeneous epitaxy MgO (epi-MgO) layer, which was used to improve the biaxial texture in the IBAD-MgO layer, was deposited on the IBAD-MgO layer by electron-beam evaporation. The effects of growth temperature, film thickness, deposition rate, and oxygen pressure on the texture and morphology of the epi-MgO film were systematically studied. The best full width at half maximum (FWHM) values were 2.2° for the out-of-plane texture and 4.8° for the in-plane texture for epi-MgO films, respectively. Subsequently, the LaMnO3 cap layer and YBa2Cu3O7-x (YBCO) functional layer were deposited on the epi-MgO layer to test the quality of the MgO layer. Finally, the critical current density of the YBCO films was 6 MA/cm2 (77 K, 500 nm, self-field), indicating that this research provides a high-quality MgO substrate for the YBCO layer. Full article
(This article belongs to the Special Issue Advanced Thin-Films: Design, Fabrication and Applications)
Show Figures

Figure 1

14 pages, 2874 KiB  
Article
Optimization of Electron-Beam Evaporation Process Parameters for ZrN Thin Films by Plasma Treatment and Taguchi Method
by Chuen-Lin Tien, Chun-Yu Chiang and Shih-Chin Lin
Plasma 2023, 6(3), 478-491; https://doi.org/10.3390/plasma6030033 - 4 Aug 2023
Cited by 2 | Viewed by 3333
Abstract
This study presents the optimal process parameters of zirconium nitride (ZrN) thin films prepared by ion-assisted deposition (IAD) technology combined with electron-beam evaporation based on plasma surface treatment and the Taguchi method. We use Minitab statistical software (Version 20.2.0) and L9 orthogonal array [...] Read more.
This study presents the optimal process parameters of zirconium nitride (ZrN) thin films prepared by ion-assisted deposition (IAD) technology combined with electron-beam evaporation based on plasma surface treatment and the Taguchi method. We use Minitab statistical software (Version 20.2.0) and L9 orthogonal array parameter design combined with the response surface method (RSM). The quadratic polynomial regression equation was optimized by the RSM. Based on the control factor screening test of the Taguchi method, we determined the most critical factor combination for the process and derived the optimized process parameters of the ZrN thin films. In the coating experiments, we successfully achieved the optimal combination of good refractive index, adequate residual stress, and lower surface roughness on B270 glass substrates. These results indicate that the optimized preparation process can simultaneously achieve several desirable properties, improving the performance and application of ZrN thin films. Furthermore, our research method not only reduces the number of experiments and costs but also improves the efficiency of research and development. By screening key factors and optimizing process parameters, we can find the best process parameter more rapidly, reduce the demand for expenses given materials and equipment costs, and contribute to improving the electron-beam evaporation process. According to the experimental results, it can be observed that under certain conditions, the properties of ZrN thin films reached optimal values. These results are highly useful for optimizing the process parameters of ZrN thin films and provide a basis for further improvement of the thin film properties. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

14 pages, 3669 KiB  
Article
Optical Interference Filters Combined with Thin Film Residual Stress Compensation for Image Contrast Enhancement
by Chuen-Lin Tien, Shu-Hui Su, Ching-Ying Cheng, Yuan-Ming Chang and Dong-Han Mo
Coatings 2023, 13(5), 857; https://doi.org/10.3390/coatings13050857 - 30 Apr 2023
Cited by 5 | Viewed by 2428
Abstract
We propose two single-wavelength notch filters and one dual-wavelength (480 and 620 nm) notch filter to enhance image contrast. The stack structure of the notch filters was designed as (Ta2O5/SiO2)4Ta2O5 in Essential [...] Read more.
We propose two single-wavelength notch filters and one dual-wavelength (480 and 620 nm) notch filter to enhance image contrast. The stack structure of the notch filters was designed as (Ta2O5/SiO2)4Ta2O5 in Essential Macleod thin film simulation software. Dual-electron-beam evaporation with ion beam-assisted deposition was used to prepare optical interference filters with different center wavelengths. A multilayer notch filter with a center wavelength of 620 nm was deposited on the front surface of the glass, and then a notch filter with a center wavelength of 480 nm was coated on the rear surface of the same glass. The proposed dual-wavelength (480 and 620 nm) notch filter is a combination of two single-wavelength notch filters coated on a double-sided glass substrate to compensate for residual stress. The transmittance, residual stress, and surface roughness of the proposed notch filter were evaluated using different measuring instruments. The experimental results show that the residual stress of the dual-wavelength notch filter could be reduced to 10.8 MPa by using a double-sided coating technique. The root-mean-square (RMS) surface roughness of the notch filters was measured by using a Linnik microscopic interferometer. The RMS surface roughness was 1.80 for the 620 nm notch filter and 2.09 for the 480 nm notch filter. The image contrast obtained with the three different notch filters was measured using an optical microscope and a CMOS camera. The contrast value could be increased from 0.328 (without a filter) to 0.696 (dual-wavelength notch filter). Full article
Show Figures

Figure 1

Back to TopTop