Solution Deposition Planarization as an Alternative to Electro-Mechanical Polishing for HTS Coated-Conducters
Abstract
:1. Introduction
2. General Considerations
3. Review of the Literature
3.1. Planarization with Y2O3
3.2. Planarization with Y2O3 + MxOy
3.3. Planarization with Gd-Zr-O
Molarity of Soln. [M] | Tsintering [°C] | Heating Ramps [°C/min] | Rrms [nm] | IBAD-MgO Texture |
---|---|---|---|---|
0.8 | 725 | 5 | 0.74 | Strong |
0.8 | 625 | 5 | 0.58 | n.d. |
0.8 | 425 | 5 | 0.33 | n.d. |
0.2 | 425 | >100 | 0.41 | Weak |
0.2 | 325 | >100 | 0.31 | Weak |
0.2 | 275 | >100 | 0.29 | Weak |
3.4. Planarization with Al2O3
3.5. Planarization with 5% Zr-CeO2
4. Conclusions and Prospects
Ref | Oxide | Substrate | Precursor | Deposition | Layers (Tot Thickness) | Roughness R (Scale) ) | Final Structure | Efficiency | Length | Jc/Ic (77K, sf) |
---|---|---|---|---|---|---|---|---|---|---|
[5] | Y2O3 | Hastelloy (Unpolished) | Metal–Organic + additives | Continuous Dip coating | 30 (~1 μm) | <1 nm (5 μm × 5 μm) (97.6%) | Hastelloy/Y2O3CSD/MgOIBAD/YBCOPLD,RCS | 3% | 5 m | Jc = 2.85–4 MA/cm2 |
[45] | Y2O3 | YZSABAD/SS (unpolished) | Metal–organic + additives (TEA) + UV Varnish | R2R inkjet | 1 (90–100 nm) | 5.4 nm (5 μm × 5 μm) (66%) | SS/Y2O3CSD/YSZABAD/CeO2PLD/YBCOPLD | 66% | Ic = 36 A | |
[3] | Y2O3 | Hastelloy (unpolished) | Metal–organic + additives | Continuous Dip coating | 16 | 0.788 nm (5 μm × 5 μm) (95%) | Hastelloy/Y2O3CSD/MgOIBAD/MgOEPI/LMO/YBCOMOD | 11% | 10 m | Ic = 80–180 A |
SUS 304 (unpolished) | 12 | 0.903 nm (5 μm × 5 μm) (95.7%) | SUS304/Y2O3CSD/MgOIBAD/MgOEPI/LMO/YBCOMOD | 8% | Ic = 100–150 A | |||||
[28,33] | Y2O3 | Hastelloy (unpolished) | MOD | Continuous Dip coating | 15 (840 nm) | 1.2 nm (5 μm × 5 μm) (97%) | Hastelloy/Y2O3CSD/MgOIBAD/MgOEPI/LMO | 6.5% | 50 m | Jc = 1.8 MA/cm2 |
[1] | Y2O3 | Hastelloy (unpolished) | MOD + additives | R2R dip coating | 30 (0.5–1.2 μm) | 1.2 nm (5 μm × 5 μm) (95.9%) | Hastelloy/Y2O3CSD | 3% | n.d | n.d |
[37] | Y2O3 | Hastelloy (e-polished) | MOD + additives | Spin coating | 6 | 0.65 nm (5 μm × 5 μm) 92% | Hastelloy/Y2O3CSD | 15% | Lab. scale | nd |
[34] | Y2O3 | Hastelloy (unpolished) | MOD + additives | R2R dip coating | 16 (10 nm) | 1.2 nm (5 μm × 5 μm) 94% | Hastelloy/Y2O3CSD/MgOIBAD/MgOEPI | 6% | n.d | n.d |
[38] | Y2O3 | Hastelloy (mechanically polished) | Y2O3 dispersion (1° step) MOD + additives (2° step) | Spin coating | 2 (1° + 2° step) | 0.3 nm (5 μm × 5 μm) 95% | Hatelloy/Y2O3CSD/MgOIBAD | 24% | Lab. scale | n.d |
[49] | Y2O3 | Hastelloy | Y2O3 dispersion | Dip coating | 4 | 1.28 nm (5 μm × 5 μm) 90% | Hastelloy/Y2O3CSD | 22.5% | 1 m | nd |
[35] | Y2O3 | Hastelloy (unpolished) | Mixed Alkoxides + chelating agents | Dip coating | 20 (1300 nm) | 5 (10 μm × 10 μm) 90% | Hastelloy/Y2O3CSD/MgOIBAD/LMO/GdBCO | 4.5% | n.d. | Ic = 420 A/cm |
SUS 304 (unpolished) | 15 (150 nm) | 0.36 (10 μm × 10 μm) 98.2% | SUS304/Y2O3CSD/MgOIBAD/LMO/GdBCO | 6.5% | n.d. | Ic = 300 A/cm | ||||
[36] | Y2O3 | Hastelloy (unpolished) | MOD + additives | Continuous dip coating | 15 (1 μm) | 0.7 nm (5 μm × 5 μm) 96.5% | Hastelloy/Y2O3CSD/MgOIBAD/ YBCO(1)/Ag/Y2O3CSD/MgOIBAD/YBCO(2)/Ag | 6.4% | 5 m | Ic = 725 A/cm (YBCO1 + 2) |
[4] | Y2O3 | Hastelloy (unpolished) | MOD | Continuous dip coating | 24 (730 nm) | 1.5 nm (5 μm × 5 μm) 96.4% | Hastelloy/Y2O3CSD/MgOIBAD/MgOEPI/LMO/YBCO | 4% | n.d. | Jc = 2.5 MA/cm2 |
[44] | Y2O3-ZrO2 | Hastelloy | MOD + additives | Dip coating | 20 (440 nm) | 3.8 (10 μm × 10 μm) 80% | Hastelloy/YZrOCSD/MgOIBAD/LMO/GdBCO | 4% | n.d | Ic = 400 A/cm |
[11] | Y2O3+ Al2O3 (YAlO) | Hastelloy (unpolished) | MOD + additives | Continuous dip coating | nd | 0.2 (5 μm × 5 μm) 99.6% | Hastelloy/YAlOCSD/MgOIBAD/LMO | n.d. | n.d | n.d. |
[39] | Y2O3+ Al2O3 + MOx | Hastelloy (polished) | Mixed precursors + additives | Continuous Dip coating | 4 (n.d.) | 0.6 (5 μm × 5 μm) 76% | Hastelloy/YAlOCSD/MgOIBAD/MgOEPI/LMO/YBCO | 19% | 20 m | Ic = 160 A |
[32] | Y2O3+ Al2O3 (YAlO) | Hastelloy | Mixed precursors | Continuous Dip coating | 24 (730 nm) | 1.6–1.8 nm (5 μm × 5 μm) 96.8% | Hastelloy/YAlOCSD/MgOIBAD/MgOEPI/LMO/YBCO | 4% | n.d. | Jc = 3.2 MA/cm2 |
[52] | Y2O3+ Al2O3 | Hastelloy unpolished | N.d | N.d | 15 (1.2 um) | 1.5 (5 μm × 5 μm) 95.2% | Hastelloy/YAlOCSD/MgOIBAD/MgOEPI/YBCO | 6% | n.d. | Ic = 600 A/cm |
[40] | Al2O3 | Hastelloy (polished) | MOD | Spin Coating | 8 (~50 nm) | 2.5 (2 μm × 2 μm) 74% | Hastelloy/Al2O3CSD/Y2O3/MgOIBAD/MgOEPI/LMO/YBCO | 9% | 10 cm | Jc = 3.04 MA/cm2 |
[41] | Gd-Zr-O | Hastelloy (E-polished) | MOD | Dip coating | 9 | 4.2 (50 μm × 50 μm) 48% | Hastelloy/Gd-Zr-O/MgOIBAD/CeO2/YBCO | 5% | n.d. | n.d. |
Hastelloy (Mirror-rolled) | 9 (~300) nm | 5 (50 μm × 50 μm) 83% | 9% | nd | Jc = 4.17 MA/cm2 | |||||
[6] | Gd-Zr-O | Hastelloy (e-polished) | MOD | Dip coating | 1 (130 nm) | 0.74 (1 μm × 1 μm) 26% | Hastelloy/Gd-Zr-OCSD/MgOIBAD/LMO/CeO2PLD/YBCOPLD | 26% | 20 cm | Jc = 1–2 MA/cm2 |
[42] | Y2O3 Gd-Zr-O | Al2O3-coated Hastelloy | MOD | Dip coating | 1 (30–50 nm) | 0.5 (1 μm × 1 μm) | Hastelloy/Gd-Zr-O/MgOIBAD/CeO2/YBCO | n.d. | 20 cm | Jc = 1.65 MA/cm2 |
[43] | Gd-Zr-O | Hastelloy e-polished | MOD | Dip coating | 4–5 | 2.5 - 40% | Hastelloy/Gd-Zr-OCSD/MgOIBAD/LMO/CeO2PLD/YBCOCSD | 9% | n.d. | Jc = 2.5 MA/cm2 |
[46] | CZO | YSZABADSS | MOD | Spin coating | 1 (30 nm) | 3 (5 μm × 5 μm) | SS/YSZABAD/CZOCSD/YBCOCSD | Jc = 1.8 MA/cm2 |
Ref | Group | Complete Buffer Structure | IBAD Substrate Rrms | Jc ReBCO |
---|---|---|---|---|
[53] | SuperPower | LMO/MgOEPI/MgOIBAD/Y2O3SPUTTERING/Al2O3SPUTTERING | 1.5–2 nm | 3.06 MA/cm2 |
[52,54] | Los Alamos National Lab. | LMO/MgOEPI/MgOIBAD/Y2O3SPUTTERING/Al2O3SPUTTERING | 4–5 nm | 4.25 MA/cm2 |
LMO/MgOIBAD/Y2O3SPUTTERING/Al2O3SPUTTERING | 6–8 nm | 4.1 MA/cm2 | ||
LMO/MgOEPI/MgOIBAD/YAlOSPUTTERING | 4.5–5.5 nm | 2.9 MA/cm2 | ||
[55] | Fujikura | CeO2/LMO/MgOIBAD/Y2O3SPUTTERING/Al2O3SPUTTERING | 2.5 nm | 1.36 MA/cm2 |
[56] | SuNAM | LMO/MgOEPI/MgOIBAD/Y2O3SPUTTERING/Al2O3SPUTTERING | 1.6 nm | 4.8 MA/cm2 |
[57] | Shangai Univesity SJTU | CeO2/MgOEPI/MgOIBAD/Y2O3SPUTTERING/Al2O3SPUTTERING | 1.5–2 nm | 4 MA/cm2 |
[58] | Superconductivity Research Laboratory, ISTEC | CeO2/MgOEPI/MgOIBAD/Y2O3SPUTTERING/Al2O3SPUTTERING | 2 nm | 2.6 MA/cm2 |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, B.M.; Ko, R.K.; Kim, D.H.; Ha, D.W.; Park, S.S. Planarization of flexible tape substrate by solution coating process. Prog. Supercond. Cryog. 2011, 13, 18–21. [Google Scholar] [CrossRef]
- Sheehan, C.; Jung, Y.; Holesinger, T.; Feldmann, D.M.; Edney, C.; Ihlefeld, J.F.; Clem, P.G.; Matias, V. Solution deposition planarization of long-length flexible substrates. Appl. Phys. Lett. 2011, 98, 071907. [Google Scholar] [CrossRef]
- Du, W.; Bai, Y.; Wang, J.; Fang, F. Effective surface modification by chemical solution deposition for flexible metal substrates. Mater. Res. Express 2017, 4, 035033. [Google Scholar] [CrossRef]
- Nie, Q.; Jiang, J.; Qu, H.; Cheng, Y.; Wang, S.; Wang, J.; Wang, J.; Yang, B.; Qing, Z.; Xue, Y. Biaxially textured MgO buffer layer on flexible metal template for coated conductor. J. Mater. Sci. Mater. Electron. 2022, 33, 16678–16687. [Google Scholar] [CrossRef]
- Sheehan, C.; Jung, Y.; Holesinger, T.; Matias, V. Solution deposition planarization for ion beam texturing of long-length flexible substrates. In Proceedings of the MRS Fall Technical Conference, Boston, MA, USA, 2 December 2010. [Google Scholar]
- Chu, J.; Zhao, Y.; Jiang, G.; Wu, W.; Zhang, Z.; Hong, Z.; Jin, Z. Surface engineering of the flexible metallic substrate by SDP-Gd-Zr-O layer for IBAD-MgO templates. J. Am. Ceram. Soc. 2019, 102, 2415–2425. [Google Scholar] [CrossRef]
- Xu, Z.; Yuan, P.; Ma, Y.; Cai, C. High-performance FeSe0. 5Te0. 5 thin films fabricated on less-well-textured flexible coated conductor templates. Supercond. Sci. Technol. 2017, 30, 035003. [Google Scholar] [CrossRef]
- Huang, J.; Chen, L.; Jian, J.; Khatkhatay, F.; Jacob, C.; Wang, H. A simplified superconducting coated conductor design with Fe-based superconductors on glass and flexible metallic substrates. J. Alloys Compd. 2015, 647, 380–385. [Google Scholar] [CrossRef]
- Thomas, A.A.; Shipulin, I.A.; Holleis, S.; Eisterer, M.; Nielsch, K.; Hühne, R. Comparative study of Fe(Se, Te) thin films on flexible coated conductor templates and single-crystal substrates. Supercond. Sci. Technol. 2021, 34, 115013. [Google Scholar] [CrossRef]
- Ko, R.; Kang, B.; Kim, D.; Ha, D.; Park, C.; Yoon, S.; Kim, Y. Effect of Solution Concentration on the Surface Properties of Y2O3 Solution-Coated Film on Flexible Metal Substrate. Met. Mater. Int. 2013, 19, 1343–1345. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, Y.H.; Zhang, F.; Zhao, R.P.; Wang, H.; Xiong, J.; Tao, B.W. Growth of simplified buffer template on flexible metallic substrates for YBa2Cu3O7-δ coated conductors. J. Alloys Compd. 2016, 673, 47–53. [Google Scholar] [CrossRef]
- Obradors, X.; Puig, T.; Ricart, S.; Palau, A.; Coll, M.; Gutiérrez, J.; Farjas, J.; Bartolomé, E. Progress in superconducting REBa2Cu3O7 (RE = rare earth) coated conductors derived from fluorinated solutions. Supercond. Sci. Technol. 2024, 37, 053001. [Google Scholar] [CrossRef]
- MacManus-Driscoll, J.L.; Wimbush, S.C. Processing and application of high-temperature superconducting coated conductors. Nat. Rev. Mater. 2021, 6, 587–604. [Google Scholar] [CrossRef]
- Ma, Y.; Xiao, L. Second generation YBCO coated conductors: A review. Chin. Sci. Bull. 2004, 49, 2435–2439. [Google Scholar] [CrossRef]
- Albiss, B.A.; Obaidat, I.M. Applications of YBCO-coated conductors: A focus on the chemical solution deposition method. J. Mater. Chem. 2010, 20, 1836–1845. [Google Scholar] [CrossRef]
- Obradors, X.; Puig, T. Coated conductors for power applications: Materials challenges. Supercond. Sci. Technol. 2014, 27, 44003. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.-F.; Khoryushin, A.; He, D.; Andersen, N.H.; Hansen, J.B.; Grivel, J.-C. Development of all chemical solution derived Ce0.9La0.1O2−y/Gd2Zr2O7 buffer layer stack for coated conductors: Influence of the post-annealing process on surface crystallinity. Supercond. Sci. Technol. 2011, 25, 015008. [Google Scholar] [CrossRef]
- Obradors, X.; Puig, T.; Pomar, A.; Sandiumenge, F.; Pinol, S.; Mestres, N.; Castano, O.; Coll, M.; Cavallaro, A.; Palau, A.; et al. Chemical solution deposition: A path towards low cost coated conductors. Supercond. Sci. Technol. 2004, 17, 1055. [Google Scholar] [CrossRef]
- Augieri, A.; Mancini, M.R.; Vannozzi, A.; Angrisani, A.A.; Fabbri, F.; Rizzo, F.; Mancini, A.; Rufoloni, A.; Galluzzi, V.; Celentano, G.; et al. MOD oxide buffer layers on metallic substrates for YBCO coated conductors, in: Materials Research Society Symposium Proceedings. Mater. Res. Soc. 2013, 1579, mrss13-1579. [Google Scholar] [CrossRef]
- Obradors, X.; Puig, T.; Pomar, A.; Sandiumenge, F.; Mestres, N.; Coll, M.; Cavallaro, A.; Roma, N.; Gazquez, J.; Gonzalez, J.C.; et al. Progress towards all-chemical superconducting YBa2Cu3O7−x coated conductors. Supercond. Sci. Technol. 2006, 19, S13. [Google Scholar] [CrossRef]
- Pop, C.; Villarejo, B.; Pino, F.; Mundet, B.; Ricart, S.; de Palau, M.; Puig, T.; Obradors, X. Growth of all-chemical high critical current YBa2Cu3O7−δ thick films and coated conductors. Supercond. Sci. Technol. 2019, 32, 015004. [Google Scholar] [CrossRef]
- Bian, W.; Chen, Y.; Tang, X.; Zhang, W.; Zhao, G.; Wang, Z. Sol–gel deposition of high-performance Re0.2Ce0.8O2/La2Zr2O7 composite buffer layers on Ni–W tapes for YBCO coated conductors. J. Solgel Sci. Technol. 2016, 77, 94–99. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Wu, X.; Xiao, G.; Xu, D. Development of Long REBCO Coated Conductors by PLD-REBCO/Sputter-CeO2/IBAD-MgO at SJTU and SSTC. IEEE Trans. Appl. Supercond. 2014, 25, 1–4. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.; Paranthaman, M.; Sathyamurthy, S.; Aytug, T.; Kang, S.; Lee, D.F.; Goyal, A.; Payzant, E.A.; Salama, K. MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors. Supercond. Sci. Technol. 2003, 16, 1305–1309. [Google Scholar] [CrossRef]
- Campagna, E.; Piperno, L.; Pinto, V.; Augieri, A.; Rufoloni, A.; Mancini, A.; Armenio, A.A.; Masi, A.; Rizzo, F.; Salvato, M.; et al. All-chemical YBCO-based architecture using a simplified multilayer buffer deposition. IEEE Trans. Appl. Supercond. 2022, 32, 1. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, Y.; Suo, H.L.; Wang, P.; Li, M.Y.; Huo, Q.Y. Electropolishing technique of Hastelloy C-276 alloy. Rare Met. 2017, 36, 635–639. [Google Scholar] [CrossRef]
- Hao, S.P.; Wang, Y.; Suo, H.L.; Jia, Q.; Liu, M.; Ma, L. Continuous electropolishing technique for long-length Hastelloy C-276 tape. Rare Met. 2018, 37, 795–802. [Google Scholar] [CrossRef]
- Xiong, J.; Xue, Y.; Xia, Y.-D.; Zhang, F.; Zhang, Y.-X.; Li, L.-H.; Zhao, X.-H.; Tao, B.-W. Fabrication of long-length ion beam-assisted deposited MgO templates for YBCO-coated conductors. Rare Met. 2013, 32, 574–578. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, Y.H.; Zhao, R.P.; Zhang, F.; Lu, Y.M.; Cai, C.B.; Xiong, J.; Tao, B.W. Biaxial Texture Evolution in MgO Films Fabricated Using Ion Beam-Assisted Deposition. J. Electron. Mater. 2016, 45, 3546–3553. [Google Scholar] [CrossRef]
- Matias, V.; Hänisch, J.; Rowley, E.J.; Güth, K. Very fast biaxial texture evolution using high rate ion-beam-assisted deposition of MgO. J. Mater. Res. 2009, 24, 125–129. [Google Scholar] [CrossRef]
- Yu, F.; Xue, Y.; Zhong, C.; Song, J.; Nie, Q.; Hou, X.; Wang, B. Preparation of MgO Self-Epitaxial Films for YBCO High-Temperature Coated Conductors. Micromachines 2023, 14, 1914. [Google Scholar] [CrossRef]
- Xue, Y.; Hou, X.; Zeng, Q.; Yu, F.; Liao, C.; Li, J.; Wang, B.; Qin, Z.; Li, Y. Preparation and characterization of solution deposition planarized Y2O3–Al2O3 compound seed layer for coated conductors. J. Mater. Sci. 2024, 35, 1230. [Google Scholar] [CrossRef]
- Zhang, F.; Xiong, J.; Zhao, R.; Xue, Y.; Wang, H.; Wang, Q.; He, Y.; Zhang, P.; Tao, B. Temperature-Modulated Growth of MOCVD-Derived YBa2Cu3O7−x Films on IBAD-MgO Templates. J. Supercond. Nov. Magn. 2015, 28, 2697–2702. [Google Scholar] [CrossRef]
- Matias, V.; Hänisch, J.; Rowley, E.J.; Sheehan, C.; Clem, P.G.; Kumasaka, N.; Kodaka, I. Preparation of substrates for IBAD-MgO coated conductors. Mater. Res. Soc. Symp. Proc. 2007, 1001, 1001-M04. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, Y.R.; Kim, B.J.; Lee, J.H.; Moon, S.H.; Lee, H. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex. Phys. C Supercond. Its Appl. 2015, 508, 42–48. [Google Scholar] [CrossRef]
- Jung, Y.; Sheehan, C.J.; Coulter, J.Y.; Matias, V.; Youm, D. Pushing coated conductor critical currents beyond 1 kA per cm width: Stacks of YBCO layers. IEEE Trans. Appl. Supercond. 2011, 21, 2953–2956. [Google Scholar] [CrossRef]
- Wen, J.-C.; Wang, Y.; Hao, S.-P.; Feng, B.-B.; Shaheen, K.; Suo, H.-L. Fabrication and characterization of coated Hastelloy C-276 Alloy by SDP technology. Mater. Res. Express 2020, 7, 16432. [Google Scholar] [CrossRef]
- Zhou, H.; Chai, F.; Fang, J.; Shi, L.; Cai, C.; Yuan, S.; Yuan, S.; Cn, Y. Highly efficient colloid–solution deposition planarization of Hastelloy substrate for IBAD-MgO film. Res. Chem. Intermed. 2016, 42, 4751–4758. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, Y.; Xiong, X.; Kim, S.; Matias, V.; Sheehan, C.; Zhang, Y.; Selvamanickam, V. Scale up of coated conductor substrate process by reel-to-reel planarization of amorphous oxide layers. IEEE Trans. Appl. Supercond. 2011, 21, 3055–3058. [Google Scholar] [CrossRef]
- Paranthaman, M.P.; Aytug, T.; Stan, L.; Jia, Q.; Cantoni, C.; Wee, S.H. Chemical solution derived planarization layers for highly aligned IBAD-MgO templates. Supercond. Sci. Technol. 2014, 27, 022002. [Google Scholar] [CrossRef]
- Chu, J.; Zhao, Y.; Liu, L.; Wu, W.; Zhang, Z.; Hong, Z. Topography evolution of rough-surface metallic substrates by solution deposition planarization method. Appl. Surf. Sci. 2018, 427, 237–242. Available online: https://www.sciencedirect.com/science/article/pii/S0169433217325199 (accessed on 7 October 2024). [CrossRef]
- Chu, J.; Jiao, S.; Zhao, Y.; Wu, W.; Jin, Z.; Zhen, S.; Jiang, G.; Chen, Y.; Zhang, Z.; Hong, Z. Influence of seed layer materials on the texture of IBAD-MgO layer. IEEE Trans. Appl. Supercond. 2018, 28, 7500905. [Google Scholar] [CrossRef]
- Nakaoka, K.; Takahashi, Y.; Usui, Y.; Ibi, A.; Machi, T.; Izumi, T. Development of surface planarization process using MOD-Gd-Zr-O layer. J. Phys. Conf. Ser. 2018, 1054, 12034. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, Y.R.; Lee, J.H.; Moon, S.H.; Lee, H. Zirconium Doped Yttria as a Buffer Layer for GdBCO Superconductors Deposited by Chemical Solution Deposition. Sci. Adv. Mater. 2015, 7, 1258–1264. [Google Scholar] [CrossRef]
- Vilardell, M.; Fornell, J.; Sort, J.; Vlad, R.; Fernández, J.C.; Puig, J.; Usoskin, A.; Palau, A.; Puig, T.; Obradors, X.; et al. Inkjet-Printed Chemical Solution Y2O3 Layers for Planarization of Technical Substrates. Coatings 2017, 7, 227. [Google Scholar] [CrossRef]
- Vlad, V.R.; Zalamova, K.; Pomar, A. Growth of Chemical Solution Deposited TFAYBCO/MOD(Ce, Zr)O2/ABADYSZ/SS Coated Conductors. IEEE Trans. Appl. Supercond. 2009, 19, 3212–3215. [Google Scholar] [CrossRef]
- Pinto, V.; Armenio, A.A.; Piperno, L.; Mancini, A.; Rizzo, F.; Vannozzi, A.; Rufoloni, A.; Augieri, A.; Galluzzi, V.; Frolova, A.; et al. Aging of precursor solutions used for YBCO films chemical solution deposition: Study of mechanisms and effects on film properties. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Schneller, T.; Waser, R.; Kosec, M.; Payne, D. Chemical Solution Deposition of Functional Oxide Thin Films; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wang, S.F.; Wang, Y.; Liang, X.Y.; Liu, Z.Z.; Suo, W.H.; Suo, H.L. Edge cracking behavior of Y2O3 coatings by the solution deposition planarization method. Ceram. Int. 2022, 48, 35568–35577. [Google Scholar] [CrossRef]
- Bretos, I.; Jiménez, R.; Ricote, J.; Calzada, M.L. Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes. Chem. Soc. Rev. 2018, 47, 291–308. [Google Scholar] [CrossRef]
- Paranthaman, M.P.; Sathyamurthy, S.; Aytug, T.; Arendt, P.N.; Stan, L.; Foltyn, S.R. Chemical solution deposition method of fabricating highly aligned MgO templates. U.S. Patent US8088503B2, 28 May 2009. [Google Scholar]
- Matias, V.; Rowley, E.J.; Coulter, Y.; Maiorov, B.; Holesinger, T.; Yung, C.; Glyantsev, V.; Moeckly, B. YBCO films grown by reactive co-evaporation on simplified IBAD-MgO coated conductortemplates. Supercond. Sci. Technol. 2009, 23, 014018. [Google Scholar] [CrossRef]
- Selvamanickam, V.; Chen, Y.; Xiong, X.; Xie, Y.; Zhang, X.; Rar, A.; Martchevskii, M.; Schmidt, R.; Lenseth, K.; Herrin, J. Progress in second-generation HTS wire development and manufacturing. Phys. C Supercond. 2008, 468, 1504–1509. [Google Scholar] [CrossRef]
- Matias, V.; Hanisch, J.; Reagor, D.; Rowley, E.J.; Sheehan, C. Reactive co-evaporation of YBCO as a low-cost process for fabricating coated conductors. IEEE Trans. Appl. Supercond. 2009, 19, 3172–3175. [Google Scholar] [CrossRef]
- Kutami, H.; Hayashida, T.; Hanyu, S.; Tashita, C.; Igarashi, M.; Fuji, H.; Hanada, Y.; Kakimoto, K.; Iijima, Y.; Saitoh, T. Progress in research and development on long length coated conductors in Fujikura. Phys. C Supercond. 2009, 469, 1290–1293. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, H.; Lee, J.W.; Choi, S.M.; Yoo, S.I.; Moon, S.H. RCE-DR, a novel process for coated conductor fabrication with high performance. Supercond. Sci. Technol. 2014, 27, 044018. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Wu, X. Fabrication of long REBCO coated conductors by PLD process in China. Phys. C Supercond. Its Appl. 2015, 518, 51–53. [Google Scholar] [CrossRef]
- Ibi, A.; Fukushima, H.; Yamada, Y.; Miyata, S.; Kuriki, R.; Takahashi, K.; Shiohara, Y. Development of long GdBCO coated conductor using the IBAD/MPMT-PLDmethod. Supercond. Sci. Technol. 2006, 19, 1229. [Google Scholar] [CrossRef]
- | MOD | Sol–Gel | CSDP |
---|---|---|---|
Precursors | Metal carboxilates | Metal alkoxides | Oxide nanoparticles dispersions |
Processes during thermal treatments | Pyrolisys of organic components and formation of the oxide | Pyrolisys of organic components and formation of the oxide | Evaporation of solvent |
Advantages | Well known chemistry of the solution | No distillation required Solutions more stable than MOD | High planarization efficiency in a single step |
Disadvantages | Solution instability Low planarization efficiency | Low planarization efficiency | Further planarization via MOD is required to reach Rrms < 1nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piperno, L.; Celentano, G. Solution Deposition Planarization as an Alternative to Electro-Mechanical Polishing for HTS Coated-Conducters. Coatings 2025, 15, 45. https://doi.org/10.3390/coatings15010045
Piperno L, Celentano G. Solution Deposition Planarization as an Alternative to Electro-Mechanical Polishing for HTS Coated-Conducters. Coatings. 2025; 15(1):45. https://doi.org/10.3390/coatings15010045
Chicago/Turabian StylePiperno, Laura, and Giuseppe Celentano. 2025. "Solution Deposition Planarization as an Alternative to Electro-Mechanical Polishing for HTS Coated-Conducters" Coatings 15, no. 1: 45. https://doi.org/10.3390/coatings15010045
APA StylePiperno, L., & Celentano, G. (2025). Solution Deposition Planarization as an Alternative to Electro-Mechanical Polishing for HTS Coated-Conducters. Coatings, 15(1), 45. https://doi.org/10.3390/coatings15010045