Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,225)

Search Parameters:
Keywords = investment selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2444 KiB  
Article
A Multi-Stage Feature Selection and Explainable Machine Learning Framework for Forecasting Transportation CO2 Emissions
by Mohammad Ali Sahraei, Keren Li and Qingyao Qiao
Energies 2025, 18(15), 4184; https://doi.org/10.3390/en18154184 - 7 Aug 2025
Abstract
The transportation sector is a major consumer of primary energy and is a significant contributor to greenhouse gas emissions. Sustainable transportation requires identifying and quantifying factors influencing transport-related CO2 emissions. This research aims to establish an adaptable, precise, and transparent forecasting structure [...] Read more.
The transportation sector is a major consumer of primary energy and is a significant contributor to greenhouse gas emissions. Sustainable transportation requires identifying and quantifying factors influencing transport-related CO2 emissions. This research aims to establish an adaptable, precise, and transparent forecasting structure for transport CO2 emissions of the United States. For this reason, we proposed a multi-stage method that incorporates explainable Machine Learning (ML) and Feature Selection (FS), guaranteeing interpretability in comparison to conventional black-box models. Due to high multicollinearity among 24 initial variables, hierarchical feature clustering and multi-step FS were applied, resulting in five key predictors: Total Primary Energy Imports (TPEI), Total Fossil Fuels Consumed (FFT), Annual Vehicle Miles Traveled (AVMT), Air Passengers-Domestic and International (APDI), and Unemployment Rate (UR). Four ML methods—Support Vector Regression, eXtreme Gradient Boosting, ElasticNet, and Multilayer Perceptron—were employed, with ElasticNet outperforming the others with RMSE = 45.53, MAE = 30.6, and MAPE = 0.016. SHAP analysis revealed AVMT, FFT, and APDI as the top contributors to CO2 emissions. This framework aids policymakers in making informed decisions and setting precise investments. Full article
Show Figures

Figure 1

23 pages, 5135 KiB  
Article
Strategic Multi-Stage Optimization for Asset Investment in Electricity Distribution Networks Under Load Forecasting Uncertainties
by Clainer Bravin Donadel
Eng 2025, 6(8), 186; https://doi.org/10.3390/eng6080186 - 5 Aug 2025
Viewed by 79
Abstract
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage [...] Read more.
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage methodology to optimize reconductoring investments under load forecasting uncertainties. The approach combines a decomposition strategy with Monte Carlo simulation to capture demand variability. By discretizing a lognormal probability density function and selecting the largest loads in the network, the methodology balances computational feasibility with modeling accuracy. The optimization model employs exhaustive search techniques independently for each network branch, ensuring precise and consistent investment decisions. Tests conducted on the IEEE 123-bus feeder consider both operational and regulatory constraints from the Brazilian context. Results show that uncertainty-aware planning leads to a narrow investment range—between USD 55,108 and USD 66,504—highlighting the necessity of reconductoring regardless of demand scenarios. A comparative analysis of representative cases reveals consistent interventions, changes in conductor selection, and schedule adjustments based on load conditions. The proposed methodology enables flexible, cost-effective, and regulation-compliant investment planning, offering valuable insights for utilities seeking to enhance network reliability and performance while managing demand uncertainties. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

14 pages, 5448 KiB  
Article
A Study of Climate-Sensitive Diseases in Climate-Stressed Areas of Bangladesh
by Ahammadul Kabir, Shahidul Alam, Nusrat Jahan Tarin, Shila Sarkar, Anthony Eshofonie, Mohammad Ferdous Rahman Sarker, Abul Kashem Shafiqur Rahman and Tahmina Shirin
Climate 2025, 13(8), 166; https://doi.org/10.3390/cli13080166 - 5 Aug 2025
Viewed by 70
Abstract
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of [...] Read more.
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of data on climate-sensitive diseases and related hospital visits in these areas. This study explored the prevalence of such diseases using the Delphi method through focus group discussions with 493 healthcare professionals from 153 hospitals in 156 upazilas across 21 districts and ten zones. Participants were selected by district Civil Surgeons. Key climate-sensitive diseases identified included malnutrition, diarrhea, pneumonia, respiratory infections, typhoid, skin diseases, hypertension, cholera, mental health disorders, hepatitis, heat stroke, and dengue. Seasonal surges in hospital visits were noted, influenced by factors like extreme heat, air pollution, floods, water contamination, poor sanitation, salinity, and disease vectors. Some diseases were zone-specific, while others were widespread. Regions with fewer hospital visits often had higher disease burdens, indicating under-reporting or lack of access. The findings highlight the need for area-specific adaptation strategies and updates to the Health National Adaptation Plan. Strengthening resilience through targeted investment and preventive measures is crucial to reducing health risks from climate change. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

23 pages, 4960 KiB  
Article
Land Use Patterns and Small Investment Project Preferences in Participatory Budgeting: Insights from a City in Poland
by Katarzyna Groszek, Marek Furmankiewicz, Magdalena Kalisiak-Mędelska and Magdalena Błasik
Land 2025, 14(8), 1588; https://doi.org/10.3390/land14081588 - 3 Aug 2025
Viewed by 204
Abstract
This article presents a spatial analysis of projects selected by city residents and implemented in five successive editions (2015–2019) of the participatory budgeting in Częstochowa, Poland. The study examines the relationship between the type of hard projects (small investments in public infrastructure and [...] Read more.
This article presents a spatial analysis of projects selected by city residents and implemented in five successive editions (2015–2019) of the participatory budgeting in Częstochowa, Poland. The study examines the relationship between the type of hard projects (small investments in public infrastructure and landscaping) and the pre-existing characteristics of the land use of each district. Kernel density estimation and Spearman correlation analysis were used. The highest spatial density occurred in projects related to the modernization of roads and sidewalks, recreation, and greenery, indicating a relatively high number of proposals within or near residential areas. Key correlations included the following: (1) greenery projects were more common in districts lacking green areas; (2) recreational infrastructure was more frequently chosen in areas with significant water features; (3) street furniture projects were mostly selected in districts with sparse development, scattered buildings, and postindustrial sites; (4) educational infrastructure was often chosen in low-density, but developing districts. The selected projects often reflect local deficits in specific land use or public infrastructure, but also stress the predestination of the recreational use of waterside areas. Full article
(This article belongs to the Special Issue Participatory Land Planning: Theory, Methods, and Case Studies)
Show Figures

Figure 1

22 pages, 1620 KiB  
Article
Economic Resilience in Intensive and Extensive Pig Farming Systems
by Lorena Giglio, Tine Rousing, Dagmara Łodyga, Carolina Reyes-Palomo, Santos Sanz-Fernández, Chiara Serena Soffiantini and Paolo Ferrari
Sustainability 2025, 17(15), 7026; https://doi.org/10.3390/su17157026 - 2 Aug 2025
Viewed by 353
Abstract
European pig farmers are challenged by increasingly stringent EU regulations to protect the environment from pollution, to meet animal welfare standards and to make pig farming more sustainable. Economic sustainability is defined as the ability to achieve higher profits by respecting social and [...] Read more.
European pig farmers are challenged by increasingly stringent EU regulations to protect the environment from pollution, to meet animal welfare standards and to make pig farming more sustainable. Economic sustainability is defined as the ability to achieve higher profits by respecting social and natural resources. This study is focused on the analysis of the economic resilience of intensive and extensive farming systems, based on data collected from 56 farms located in Denmark, Poland, Italy and Spain. Productive and economic performances of these farms are analyzed, and economic resilience is assessed through a survey including a selection of indicators, belonging to different themes: [i] resilience of resources, [ii] entrepreneurship, [iii] propensity to extensification. The qualitative data from the questionnaire allow for an exploration of how production systems relate to the three dimensions of resilience. Different levels of resilience were found and discussed for intensive and extensive farms. The findings suggest that intensive farms benefit from high standards and greater bargaining power within the supply chain. Extensive systems can achieve profitability through value-added strategies and generally display good resilience. Policies that support investment and risk reduction are essential for enhancing farm resilience and robustness, while strengthening farmer networks can improve adaptability. Full article
(This article belongs to the Special Issue Advanced Agricultural Economy: Challenges and Opportunities)
Show Figures

Figure 1

28 pages, 10147 KiB  
Article
Construction of Analogy Indicator System and Machine-Learning-Based Optimization of Analogy Methods for Oilfield Development Projects
by Muzhen Zhang, Zhanxiang Lei, Chengyun Yan, Baoquan Zeng, Fei Huang, Tailai Qu, Bin Wang and Li Fu
Energies 2025, 18(15), 4076; https://doi.org/10.3390/en18154076 - 1 Aug 2025
Viewed by 260
Abstract
Oil and gas development is characterized by high technical complexity, strong interdisciplinarity, long investment cycles, and significant uncertainty. To meet the need for quick evaluation of overseas oilfield projects with limited data and experience, this study develops an analogy indicator system and tests [...] Read more.
Oil and gas development is characterized by high technical complexity, strong interdisciplinarity, long investment cycles, and significant uncertainty. To meet the need for quick evaluation of overseas oilfield projects with limited data and experience, this study develops an analogy indicator system and tests multiple machine-learning algorithms on two analogy tasks to identify the optimal method. Using an initial set of basic indicators and a database of 1436 oilfield samples, a combined subjective–objective weighting strategy that integrates statistical methods with expert judgment is used to select, classify, and assign weights to the indicators. This process results in 26 key indicators for practical analogy analysis. Single-indicator and whole-asset analogy experiments are then performed with five standard machine-learning algorithms—support vector machine (SVM), random forest (RF), backpropagation neural network (BP), k-nearest neighbor (KNN), and decision tree (DT). Results show that SVM achieves classification accuracies of 86% and 95% in medium-high permeability sandstone oilfields, respectively, greatly surpassing other methods. These results demonstrate the effectiveness of the proposed indicator system and methodology, providing efficient and objective technical support for evaluating and making decisions on overseas oilfield development projects. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

8 pages, 810 KiB  
Proceeding Paper
Towards Cost Modelling for Rapid Prototyping and Tooling Technology-Based Investment Casting Process for Development of Low-Cost Dies
by Samina Bibi and Muhammad Sajid
Mater. Proc. 2025, 23(1), 6; https://doi.org/10.3390/materproc2025023006 - 30 Jul 2025
Viewed by 35
Abstract
In precision manufacturing, selecting the most economically viable process is essential for low-volume, high-complexity applications. This study compares the machining process (MP), conventional investment casting (CIC), and rapid prototyping (RP) through a mathematical cost model based on the activity-based costing (ABC) approach. The [...] Read more.
In precision manufacturing, selecting the most economically viable process is essential for low-volume, high-complexity applications. This study compares the machining process (MP), conventional investment casting (CIC), and rapid prototyping (RP) through a mathematical cost model based on the activity-based costing (ABC) approach. The model captures detailed cost drivers across design, logistics, production, and environmental dimensions. Results show that MP incurs the highest production cost (94.45%) but minimal logistics (3.43%). CIC bears the highest total cost and significant production overhead (93.2%), while RIC achieves the lowest total cost, driven by major savings in production (84.6%) and labor. Although RIC has slightly higher logistics than MP, it demonstrates superior economic efficiency for small-batch, high-accuracy production. This study provides a unified quantitative framework for cost comparison and offers valuable guidance for manufacturers aiming to enhance efficiency, sustainability, and profitability across diverse fabrication strategies. Full article
Show Figures

Figure 1

24 pages, 623 KiB  
Article
Evaluation of Competitiveness and Sustainable Development Prospects of French-Speaking African Countries Based on TOPSIS and Adaptive LASSO Algorithms
by Binglin Liu, Liwen Li, Hang Ren, Jianwan Qin and Weijiang Liu
Algorithms 2025, 18(8), 474; https://doi.org/10.3390/a18080474 - 30 Jul 2025
Viewed by 242
Abstract
This study evaluates the competitiveness and sustainable development prospects of French-speaking African countries by constructing a comprehensive framework integrating the TOPSIS method and adaptive LASSO algorithm. Using multivariate data from sources such as the World Bank, 30 indicators covering core, basic, and auxiliary [...] Read more.
This study evaluates the competitiveness and sustainable development prospects of French-speaking African countries by constructing a comprehensive framework integrating the TOPSIS method and adaptive LASSO algorithm. Using multivariate data from sources such as the World Bank, 30 indicators covering core, basic, and auxiliary competitiveness were selected to quantitatively analyze the competitiveness of 26 French-speaking African countries. Results show that their comprehensive competitiveness exhibits spatial patterns of “high in the north and south, low in the east and west” and “high in coastal areas, low in inland areas”. Algeria, Morocco, and six other countries demonstrate high competitiveness, while Central African countries generally show low competitiveness. The adaptive LASSO algorithm identifies three key influencing factors, including the proportion of R&D expenditure to GDP, high-tech exports, and total reserves, as well as five secondary key factors, including the number of patent applications and total number of domestic listed companies, revealing that scientific and technological investment, financial strength, and innovation transformation capabilities are core constraints. Based on these findings, sustainable development strategies are proposed, such as strengthening scientific and technological research and development and innovation transformation, optimizing financial reserves and capital markets, and promoting China–Africa collaborative cooperation, providing decision-making references for competitiveness improvement and regional cooperation of French-speaking African countries under the background of the “Belt and Road Initiative”. Full article
(This article belongs to the Special Issue Hybrid Intelligent Algorithms (2nd Edition))
Show Figures

Figure 1

48 pages, 835 KiB  
Review
Evaluating Maturity Models in Healthcare Information Systems: A Comprehensive Review
by Jorge Gomes and Mário Romão
Healthcare 2025, 13(15), 1847; https://doi.org/10.3390/healthcare13151847 - 29 Jul 2025
Viewed by 393
Abstract
Healthcare Information Systems (HISs) are essential for improving care quality, managing chronic diseases, and supporting clinical decision-making. Despite significant investments, HIS implementations often fail due to the complexity of healthcare environments. Maturity Models (MMs) have emerged as tools to guide organizational improvement by [...] Read more.
Healthcare Information Systems (HISs) are essential for improving care quality, managing chronic diseases, and supporting clinical decision-making. Despite significant investments, HIS implementations often fail due to the complexity of healthcare environments. Maturity Models (MMs) have emerged as tools to guide organizational improvement by assessing readiness, process efficiency, technology adoption, and interoperability. This study presents a comprehensive literature review identifying 45 Maturity Models used across various healthcare domains, including telemedicine, analytics, business intelligence, and electronic medical records. These models, often based on Capability Maturity Model Integration (CMMI), vary in structure, scope, and maturity stages. The findings demonstrate that structured maturity assessments help healthcare organizations plan, implement, and optimize HIS more effectively, leading to enhanced clinical and operational performance. This review contributes to an understanding of how different MMs can support healthcare digital transformation and provides a resource for selecting appropriate models based on specific organizational goals and technological contexts. Full article
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
by Charikleia Karakosta and Isaak Vryzidis
Energies 2025, 18(15), 4014; https://doi.org/10.3390/en18154014 - 28 Jul 2025
Viewed by 219
Abstract
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating [...] Read more.
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges. Full article
Show Figures

Figure 1

25 pages, 3204 KiB  
Article
Assessing Spatial Digital Twins for Oil and Gas Projects: An Informed Argument Approach Using ISO/IEC 25010 Model
by Sijan Bhandari and Dev Raj Paudyal
ISPRS Int. J. Geo-Inf. 2025, 14(8), 294; https://doi.org/10.3390/ijgi14080294 - 28 Jul 2025
Viewed by 262
Abstract
With the emergence of Survey 4.0, the oil and gas (O & G) industry is now considering spatial digital twins during their field design to enhance visualization, efficiency, and safety. O & G companies have already initiated investments in the research and development [...] Read more.
With the emergence of Survey 4.0, the oil and gas (O & G) industry is now considering spatial digital twins during their field design to enhance visualization, efficiency, and safety. O & G companies have already initiated investments in the research and development of spatial digital twins to build digital mining models. Existing studies commonly adopt surveys and case studies as their evaluation approach to validate the feasibility of spatial digital twins and related technologies. However, this approach requires high costs and resources. To address this gap, this study explores the feasibility of the informed argument method within the design science framework. A land survey data model (LSDM)-based digital twin prototype for O & G field design, along with 3D spatial datasets located in Lot 2 on RP108045 at petroleum lease 229 under the Department of Resources, Queensland Government, Australia, was selected as a case for this study. The ISO/IEC 25010 model was adopted as a methodology for this study to evaluate the prototype and Digital Twin Victoria (DTV). It encompasses eight metrics, such as functional suitability, performance efficiency, compatibility, usability, security, reliability, maintainability, and portability. The results generated from this study indicate that the prototype encompasses a standard level of all parameters in the ISO/IEC 25010 model. The key significance of the study is its methodological contribution to evaluating the spatial digital twin models through cost-effective means, particularly under circumstances with strict regulatory requirements and low information accessibility. Full article
Show Figures

Figure 1

15 pages, 753 KiB  
Article
A Novel Cloud Energy Consumption Heuristic Based on a Network Slicing–Ring Fencing Ratio
by Vinay Sriram Iyer, Yasantha Samarawickrama and Giovani Estrada
Network 2025, 5(3), 27; https://doi.org/10.3390/network5030027 - 25 Jul 2025
Viewed by 220
Abstract
The widespread adoption of cloud computing has amplified the demand for electric power. It is strategically important to address the limitations of reliable sources and sustainability of power. Research and investment in data centres and power infrastructure are therefore critically important for our [...] Read more.
The widespread adoption of cloud computing has amplified the demand for electric power. It is strategically important to address the limitations of reliable sources and sustainability of power. Research and investment in data centres and power infrastructure are therefore critically important for our digital economy. A novel heuristic for the minimisation of energy consumption in cloud computing is presented. It draws similarities to the concept of “network slices”, in which an orchestrator enables multiplexing to reduce the network “churn” often associated with significant losses of energy consumption. The novel network slicing–ring fencing ratio is a heuristic calculated through an iterative procedure for the reduction in cloud energy consumption. Simulation results show how the non-convex equation optimises power by reducing energy from 10,680 kJ to 912 kJ, which is a 91.46% efficiency gain. In comparison, the Heuristic AUGMENT Non-Convex algorithm (HA-NC, by Hossain and Ansari) reported a 312.74% increase in energy consumption from 2464 kJ to 10,168 kJ, while the Priority Selection Offloading algorithm (PSO, by Anajemba et al.) also reported a 150% increase in energy consumption, from 10,738 kJ to 26,845 kJ. The proposed network slicing–ring fencing ratio is seen to successfully balance energy consumption and computing performance. We therefore think the novel approach could be of interest to network architects and cloud operators. Full article
Show Figures

Figure 1

29 pages, 1682 KiB  
Article
Polish Farmers′ Perceptions of the Benefits and Risks of Investing in Biogas Plants and the Role of GISs in Site Selection
by Anna Kochanek, Józef Ciuła, Mariusz Cembruch-Nowakowski and Tomasz Zacłona
Energies 2025, 18(15), 3981; https://doi.org/10.3390/en18153981 - 25 Jul 2025
Viewed by 269
Abstract
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological [...] Read more.
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological or regulatory issues. This study aims to examine how Polish farmers perceive the risks and expected benefits associated with investing in biogas plants and which of these perceptions influence their willingness to invest. The research was conducted in the second quarter of 2025 among farmers planning to build micro biogas plants as well as owners of existing biogas facilities. Geographic Information System (GIS) tools were also used in selecting respondents and identifying potential investment sites, helping to pinpoint areas with favorable spatial and environmental conditions. The findings show that both current and prospective biogas plant operators view complex legal requirements, social risk, and financial uncertainty as the main obstacles. However, both groups are primarily motivated by the desire for on-farm energy self-sufficiency and the environmental benefits of improved agricultural waste management. Owners of operational installations—particularly small and medium-sized ones—tend to rate all categories of risk significantly lower than prospective investors, suggesting that practical experience and knowledge-sharing can effectively alleviate perceived risks related to renewable energy investments. Full article
(This article belongs to the Special Issue Green Additive for Biofuel Energy Production)
Show Figures

Figure 1

25 pages, 1192 KiB  
Article
The Transformative Power of Ecotourism: A Comprehensive Review of Its Economic, Social, and Environmental Impacts
by Paulino Ricardo Cossengue, Jose Fraiz Brea and Fernando Oliveira Tavares
Land 2025, 14(8), 1531; https://doi.org/10.3390/land14081531 - 25 Jul 2025
Viewed by 490
Abstract
Based on a literature review, the present article aims to present ecotourism as a transformative factor in the economic, social, cultural, and environmental contexts, revealing key elements for the sustainable development of ecotourism. To ensure that this objective is met, the review combines [...] Read more.
Based on a literature review, the present article aims to present ecotourism as a transformative factor in the economic, social, cultural, and environmental contexts, revealing key elements for the sustainable development of ecotourism. To ensure that this objective is met, the review combines the insights of classical authors and many recent authors who have best addressed the subject. The review carefully selected consensual and contradictory arguments, reflecting on the relevance of each group, particularly in aspects such as the influence of emotional experience on behaviour and satisfaction, strategy and competitive advantage, cooperation and sustainability, and the influence of resilience on ecotourism. The impact of each perspective was presented without ignoring the major constraints that ecotourism faces in its search for a position in the tourism industry. This led the study to accept the fact that the active participation of the community is indispensable in the formula for the success of ecotourism. Some statistical data were consulted and analysed, which enabled the study to determine the quantitative impact of ecotourism on economic, social, and environmental life. In terms of benefits to communities, the review clarifies the fact that ecotourism serves as an instrument that mobilizes not only the additional value of products and services traded in the process, but also the return on investments and job creation. The combination of visiting activities with the involvement of tour guides contributes to maximizing profits in the destinations, thus supporting solid economic, social, and environmental development for the benefit of both ecotourism promoters and local communities. However, the analysis makes it clear that the economic, social, and environmental benefit depends on the degree of involvement of the local population. In terms of usability, for other studies, this review can contribute to the understanding and positioning of ecotourism in the search for a balance between satisfying socioeconomic and environmental interests. Additionally, it can serve as an aid to policy makers in their decisions related to ecotourism. Full article
Show Figures

Figure 1

26 pages, 5395 KiB  
Article
Understanding Urban Growth and Shrinkage: A Study of the Modern Manufacturing City of Dongguan, China
by Tingting Chen, Zhoutong Wu and Wei Lang
Land 2025, 14(8), 1507; https://doi.org/10.3390/land14081507 - 22 Jul 2025
Viewed by 511
Abstract
Since the early 21st century, urban shrinkage has become a significant global phenomenon. Dongguan, in Guangdong Province, China, is known as a “world factory”. It experienced notable urban shrinkage following the 2008 financial crisis. However, the city demonstrated remarkable recovery and ongoing development [...] Read more.
Since the early 21st century, urban shrinkage has become a significant global phenomenon. Dongguan, in Guangdong Province, China, is known as a “world factory”. It experienced notable urban shrinkage following the 2008 financial crisis. However, the city demonstrated remarkable recovery and ongoing development in subsequent years. On that basis, this study focuses on the following three points: (1) identifying the spatiotemporal factors contributing to the growth and shrinkage of manufacturing cities, taking Dongguan as an example; (2) explaining the influencing factors of the growth and shrinkage of Dongguan City during three critical periods, 2008–2014 (post-crisis), 2015–2019 (as machinery replaced human work), and 2020–2023 (the COVID-19 pandemic and recovery); and (3) selecting representative towns and streets for on-site observation and investigation, analyzing the measures they have taken to cope with growth and shrinkage during different periods. The key findings include the following: (1) The spatial dynamics of growth and shrinkage in Dongguan show significant temporal patterns, with traditional manufacturing areas shrinking from 2008 to 2014, central urban areas recovering from 2015 to 2019, and renewed shrinkage from 2020 to 2023. However, some regions maintained stability through strategic innovations. (2) Various factors, particularly industrial upgrading and technological innovation, drove the urban dynamics, enhancing economic resilience. (3) The case study of Houjie Town revealed successful adaptive mechanisms supported by policy while facing challenges like labor mismatches and inadequate R&D investment. This research offers insights for improving urban resilience and promoting sustainable development in Dongguan. Full article
Show Figures

Figure 1

Back to TopTop