Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,441)

Search Parameters:
Keywords = internet technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 6916 KiB  
Review
The Role of IoT in Enhancing Sports Analytics: A Bibliometric Perspective
by Yuvanshankar Azhagumurugan, Jawahar Sundaram, Zenith Dewamuni, Pritika, Yakub Sebastian and Bharanidharan Shanmugam
IoT 2025, 6(3), 43; https://doi.org/10.3390/iot6030043 (registering DOI) - 31 Jul 2025
Abstract
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. [...] Read more.
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. Our analysis included 780 Scopus articles and 150 WoS articles published during 2012–2025, and duplicates were removed. We analyzed and visualized the bibliometric data using R version 3.6.1, VOSviewer version 1.6.20, and the bibliometrix library. The study provides insights from a bibliometric analysis, showcasing the allocation of topics, scientific contributions, patterns of co-authorship, prominent authors and their productivity over time, notable terms, key sources, publications with citations, analysis of citations, source-specific citation analysis, yearly publication patterns, and the distribution of research papers. The results indicate that China and India have the leading scientific production in the development of IoT and Sports research, with prominent authors like Anton Umek, Anton Kos, and Emiliano Schena making significant contributions. Wearable technology and wearable sensors are the most trending topics in IoT and Sports, followed by medical sciences and artificial intelligence paradigms. The analysis also emphasizes the importance of open-access journals like ‘Journal of Physics: Conference Series’ and ‘IEEE Access’ for their contributions to IoT and Sports research. Future research directions focus on enhancing effective, lightweight, and efficient wearable devices while implementing technologies like edge computing and lightweight AI in wearable technologies. Full article
Show Figures

Figure 1

23 pages, 1830 KiB  
Article
Fuzzy Multi-Objective Optimization Model for Resilient Supply Chain Financing Based on Blockchain and IoT
by Hamed Nozari, Shereen Nassar and Agnieszka Szmelter-Jarosz
Digital 2025, 5(3), 32; https://doi.org/10.3390/digital5030032 (registering DOI) - 31 Jul 2025
Abstract
Managing finances in a supply chain today is not as straightforward as it once was. The world is constantly shifting—markets fluctuate, risks emerge unexpectedly—and companies are continually trying to stay one step ahead. In all this, financial resilience has become more than just [...] Read more.
Managing finances in a supply chain today is not as straightforward as it once was. The world is constantly shifting—markets fluctuate, risks emerge unexpectedly—and companies are continually trying to stay one step ahead. In all this, financial resilience has become more than just a strategy. It is a survival skill. In our research, we examined how newer technologies (such as blockchain and the Internet of Things) can make a difference. The idea was not to reinvent the wheel but to see if these tools could actually make financing more transparent, reduce some of the friction, and maybe even help companies breathe a little easier when it comes to liquidity. We employed two optimization methods (Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO)) to achieve a balanced outcome. The goal was lower financing costs, better liquidity, and stronger resilience. Blockchain did not just record transactions—it seemed to build trust. Meanwhile, the Internet of Things (IoT) provided companies with a clearer picture of what is happening in real-time, making financial outcomes a bit less of a guessing game. However, it gives financial managers a better chance at planning and not getting caught off guard when the economy takes a turn. Full article
(This article belongs to the Topic Sustainable Supply Chain Practices in A Digital Age)
Show Figures

Figure 1

26 pages, 3844 KiB  
Article
A No-Code Educational Platform for Introducing Internet of Things and Its Application to Agricultural Education
by George Lagogiannis and Avraam Chatzopoulos
IoT 2025, 6(3), 42; https://doi.org/10.3390/iot6030042 (registering DOI) - 31 Jul 2025
Abstract
This study introduces a no-code educational platform created to introduce Internet of Things (IoT) to university students who lack programming experience. The platform allows users to set IoT sensor nodes, and create a wireless sensor network through a simple graphical interface. Sensors’ data [...] Read more.
This study introduces a no-code educational platform created to introduce Internet of Things (IoT) to university students who lack programming experience. The platform allows users to set IoT sensor nodes, and create a wireless sensor network through a simple graphical interface. Sensors’ data can be sent to cloud services but they can also be stored locally, which makes our platform particularly realistic in fieldwork settings where internet access may be limited. The platform was tested in a pilot activity within a university course that previously covered IoT only in theory and was evaluated using the Technology Acceptance Model (TAM). Results showed strong student engagement and high ratings for ease of use, usefulness, and future use intent. These findings suggest that a no-code approach can effectively bridge the gap between IoT technologies and learners in non-engineering fields. Full article
Show Figures

Figure 1

30 pages, 3898 KiB  
Article
Application of Information and Communication Technologies for Public Services Management in Smart Villages
by Ingrida Kazlauskienė and Vilma Atkočiūnienė
Businesses 2025, 5(3), 31; https://doi.org/10.3390/businesses5030031 (registering DOI) - 31 Jul 2025
Abstract
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how [...] Read more.
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how these technologies address specific rural challenges, and evaluates their benefits, implementation barriers, and future prospects for sustainable rural development. A qualitative content analysis method was applied using purposive sampling to analyze 79 peer-reviewed articles from EBSCO and Elsevier databases (2000–2024). A deductive approach employed predefined categories to systematically classify ICT applications across rural public service domains, with data coded according to technology scope, problems addressed, and implementation challenges. The analysis identified 15 ICT application domains (agriculture, healthcare, education, governance, energy, transport, etc.) and 42 key technology categories (Internet of Things, artificial intelligence, blockchain, cloud computing, digital platforms, mobile applications, etc.). These technologies address four fundamental rural challenges: limited service accessibility, inefficient resource management, demographic pressures, and social exclusion. This study provides the first comprehensive systematic categorization of ICT applications in smart villages, establishing a theoretical framework connecting technology deployment with sustainable development dimensions. Findings demonstrate that successful ICT implementation requires integrated urban–rural cooperation, community-centered approaches, and balanced attention to economic, social, and environmental sustainability. The research identifies persistent challenges, including inadequate infrastructure, limited digital competencies, and high implementation costs, providing actionable insights for policymakers and practitioners developing ICT-enabled rural development strategies. Full article
Show Figures

Figure 1

40 pages, 3463 KiB  
Review
Machine Learning-Powered Smart Healthcare Systems in the Era of Big Data: Applications, Diagnostic Insights, Challenges, and Ethical Implications
by Sita Rani, Raman Kumar, B. S. Panda, Rajender Kumar, Nafaa Farhan Muften, Mayada Ahmed Abass and Jasmina Lozanović
Diagnostics 2025, 15(15), 1914; https://doi.org/10.3390/diagnostics15151914 - 30 Jul 2025
Abstract
Healthcare data rapidly increases, and patients seek customized, effective healthcare services. Big data and machine learning (ML) enabled smart healthcare systems hold revolutionary potential. Unlike previous reviews that separately address AI or big data, this work synthesizes their convergence through real-world case studies, [...] Read more.
Healthcare data rapidly increases, and patients seek customized, effective healthcare services. Big data and machine learning (ML) enabled smart healthcare systems hold revolutionary potential. Unlike previous reviews that separately address AI or big data, this work synthesizes their convergence through real-world case studies, cross-domain ML applications, and a critical discussion on ethical integration in smart diagnostics. The review focuses on the role of big data analysis and ML towards better diagnosis, improved efficiency of operations, and individualized care for patients. It explores the principal challenges of data heterogeneity, privacy, computational complexity, and advanced methods such as federated learning (FL) and edge computing. Applications in real-world settings, such as disease prediction, medical imaging, drug discovery, and remote monitoring, illustrate how ML methods, such as deep learning (DL) and natural language processing (NLP), enhance clinical decision-making. A comparison of ML models highlights their value in dealing with large and heterogeneous healthcare datasets. In addition, the use of nascent technologies such as wearables and Internet of Medical Things (IoMT) is examined for their role in supporting real-time data-driven delivery of healthcare. The paper emphasizes the pragmatic application of intelligent systems by highlighting case studies that reflect up to 95% diagnostic accuracy and cost savings. The review ends with future directions that seek to develop scalable, ethical, and interpretable AI-powered healthcare systems. It bridges the gap between ML algorithms and smart diagnostics, offering critical perspectives for clinicians, data scientists, and policymakers. Full article
(This article belongs to the Special Issue Machine-Learning-Based Disease Diagnosis and Prediction)
Show Figures

Figure 1

33 pages, 3600 KiB  
Article
Electronic Voting Worldwide: The State of the Art
by Paolo Fantozzi, Marco Iecher, Luigi Laura, Maurizio Naldi and Valerio Rughetti
Information 2025, 16(8), 650; https://doi.org/10.3390/info16080650 - 30 Jul 2025
Abstract
Electronic voting allows people to participate more easily in their country’s electoral events. Nevertheless, its adoption is still far from widespread. In this paper, we provide a detailed survey of the state of adoption worldwide and investigate which socio-economic factors may influence such [...] Read more.
Electronic voting allows people to participate more easily in their country’s electoral events. Nevertheless, its adoption is still far from widespread. In this paper, we provide a detailed survey of the state of adoption worldwide and investigate which socio-economic factors may influence such an adoption. Its usage is wider in North and South America, while remaining considerably lower in Europe and Asia and practically absent in Africa. We distinguish between e-voting, which maintains the traditional polling station structure while adding technological components, and i-voting, which enables remote participation from any location using personal devices. Five factors (country’s surface and population, Gross Domestic Product, Internet Usage, and Democracy Index) are investigated to predict adoption, and an accuracy of over 79% is achieved through a machine learning random forest model. Larger, wealthier, and more democratic countries are typically associated with a larger adoption of internet voting. Full article
(This article belongs to the Special Issue Feature Papers in Information in 2024–2025)
Show Figures

Graphical abstract

22 pages, 22134 KiB  
Article
Adaptive Pluvial Flood Disaster Management in Taiwan: Infrastructure and IoT Technologies
by Sheng-Hsueh Yang, Sheau-Ling Hsieh, Xi-Jun Wang, Deng-Lin Chang, Shao-Tang Wei, Der-Ren Song, Jyh-Hour Pan and Keh-Chia Yeh
Water 2025, 17(15), 2269; https://doi.org/10.3390/w17152269 - 30 Jul 2025
Abstract
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial [...] Read more.
In Taiwan, hydro-meteorological data are fragmented across multiple agencies, limiting the effectiveness of coordinated flood response. To address this challenge and the increasing uncertainty associated with extreme rainfall, a real-time disaster prevention platform has been developed. This system integrates multi-source data and geospatial information through a cluster-based architecture to enhance pluvial flood management. Built on a Service-Oriented Architecture (SOA) and incorporating Internet of Things (IoT) technologies, AI-based convolutional neural networks (CNNs), and 3D drone mapping, the platform enables automated alerts by linking sensor thresholds with real-time environmental data, facilitating synchronized operational responses. Deployed in New Taipei City over the past three years, the system has demonstrably reduced flood risk during severe rainfall events. Region-specific action thresholds and adaptive strategies are continually refined through feedback mechanisms, while integrated spatial and hydrological trend analyses extend the lead time available for emergency response. Full article
Show Figures

Figure 1

17 pages, 1207 KiB  
Article
Assessing Critical Risk Factors to Sustainable Housing in Urban Areas: Based on the NK-SNA Model
by Guangyu Sun and Hui Zeng
Sustainability 2025, 17(15), 6918; https://doi.org/10.3390/su17156918 - 30 Jul 2025
Abstract
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of [...] Read more.
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of life and property damage. This study aims to identify the key factors influencing housing sustainability and provide a basis for the prevention and control of housing-related safety risks. This study has developed a housing sustainability evaluation indicator system comprising three primary indicators and 16 secondary indicators. This system is based on an analysis of the causes of over 500 typical housing accidents that occurred in China over the past 10 years, employing research methods such as literature reviews and expert consultations, and drawing on the analytical frameworks of risk management theory and system safety theory. Subsequently, the NK-SNA model, which significantly outperforms traditional models in terms of adaptive learning and optimization, as well as the explicit modeling of complex nonlinear relationships, was used to identify the key risk factors affecting housing sustainability. The empirical results indicate that the risk coupling value is correlated with the number of risk coupling factors; the greater the number of risk coupling factors, the larger the coupling value. Human misconduct is prone to forming two-factor risk coupling with housing, and the physical risk factors are prone to coupling with other factors. The environmental factors easily trigger ‘physical–environmental’ two-factor risk coupling. The key factors influencing housing sustainability are poor supervision, building facilities, the main structure, the housing height, foundation settlement, and natural disasters. On this basis, recommendations are made to make full use of modern information technologies such as the Internet of Things, big data, and artificial intelligence to strengthen the supervision of housing safety and avoid multi-factor coupling, and to improve upon early warnings of natural disasters and the design of emergency response programs to control the coupling between physical and environmental factors. Full article
Show Figures

Figure 1

22 pages, 61181 KiB  
Article
Stepwise Building Damage Estimation Through Time-Scaled Multi-Sensor Integration: A Case Study of the 2024 Noto Peninsula Earthquake
by Satomi Kimijima, Chun Ping, Shono Fujita, Makoto Hanashima, Shingo Toride and Hitoshi Taguchi
Remote Sens. 2025, 17(15), 2638; https://doi.org/10.3390/rs17152638 - 30 Jul 2025
Abstract
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, [...] Read more.
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, most existing methods rely on isolated time snapshots, and few studies have systematically explored the continuous, time-scaled integration and update of building damage estimates from multiple data sources. This study proposes a stepwise framework that continuously updates time-scaled, single-damage estimation outputs using the best available multi-sensor data for estimating earthquake-induced building damage. We demonstrated the framework using the 2024 Noto Peninsula Earthquake as a case study and incorporated official damage reports from the Ishikawa Prefectural Government, real-time earthquake building damage estimation (REBDE) data, and satellite-based damage estimation data (ALOS-2-building damage estimation (BDE)). By integrating the REBDE and ALOS-2-BDE datasets, we created a composite damage estimation product (integrated-BDE). These datasets were statistically validated against official damage records. Our framework showed significant improvements in accuracy, as demonstrated by the mean absolute percentage error, when the datasets were integrated and updated over time: 177.2% for REBDE, 58.1% for ALOS-2-BDE, and 25.0% for integrated-BDE. Finally, for stepwise damage estimation, we proposed a methodological framework that incorporates social media content to further confirm the accuracy of damage assessments. Potential supplementary datasets, including data from Internet of Things-enabled home appliances, real-time traffic data, very-high-resolution optical imagery, and structural health monitoring systems, can also be integrated to improve accuracy. The proposed framework is expected to improve the timeliness and accuracy of building damage assessments, foster shared understanding of disaster impacts across stakeholders, and support more effective emergency response planning, resource allocation, and decision-making in the early stages of disaster management in the future, particularly when comprehensive official damage reports are unavailable. Full article
Show Figures

Figure 1

24 pages, 845 KiB  
Article
Towards Tamper-Proof Trust Evaluation of Internet of Things Nodes Leveraging IOTA Ledger
by Assiya Akli and Khalid Chougdali 
Sensors 2025, 25(15), 4697; https://doi.org/10.3390/s25154697 - 30 Jul 2025
Abstract
Trust evaluation has become a major challenge in the quickly developing Internet of Things (IoT) environment because of the vulnerabilities and security hazards associated with networked devices. To overcome these obstacles, this study offers a novel approach for evaluating trust that uses IOTA [...] Read more.
Trust evaluation has become a major challenge in the quickly developing Internet of Things (IoT) environment because of the vulnerabilities and security hazards associated with networked devices. To overcome these obstacles, this study offers a novel approach for evaluating trust that uses IOTA Tangle technology. By decentralizing the trust evaluation process, our approach reduces the risks related to centralized solutions, including privacy violations and single points of failure. To offer a thorough and reliable trust evaluation, this study combines direct and indirect trust measures. Moreover, we incorporate IOTA-based trust metrics to evaluate a node’s trust based on its activity in creating and validating IOTA transactions. The proposed framework ensures data integrity and secrecy by implementing immutable, secure storage for trust scores on IOTA. This ensures that no node transmits a wrong trust score for itself. The results show that the proposed scheme is efficient compared to recent literature, achieving up to +3.5% higher malicious node detection accuracy, up to 93% improvement in throughput, 40% reduction in energy consumption, and up to 24% lower end-to-end delay across various network sizes and adversarial conditions. Our contributions improve the scalability, security, and dependability of trust assessment processes in Internet of Things networks, providing a strong solution to the prevailing issues in current centralized trust models. Full article
Show Figures

Figure 1

12 pages, 2500 KiB  
Article
Deep Learning-Based Optical Camera Communication with a 2D MIMO-OOK Scheme for IoT Networks
by Huy Nguyen and Yeng Min Jang
Electronics 2025, 14(15), 3011; https://doi.org/10.3390/electronics14153011 - 29 Jul 2025
Viewed by 169
Abstract
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as [...] Read more.
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as a result of worries about possible health problems connected to high-frequency radiofrequency transmission. Using the visible light spectrum is one promising approach; three cutting-edge technologies are emerging in this regard: Optical Camera Communication (OCC), Light Fidelity (Li-Fi), and Visible Light Communication (VLC). In this paper, we propose a Multiple-Input Multiple-Output (MIMO) modulation technology for Internet of Things (IoT) applications, utilizing an LED array and time-domain on-off keying (OOK). The proposed system is compatible with both rolling shutter and global shutter cameras, including commercially available models such as CCTV, webcams, and smart cameras, commonly deployed in buildings and industrial environments. Despite the compact size of the LED array, we demonstrate that, by optimizing parameters such as exposure time, camera focal length, and channel coding, our system can achieve up to 20 communication links over a 20 m distance with low bit error rate. Full article
(This article belongs to the Special Issue Advances in Optical Communications and Optical Networks)
Show Figures

Figure 1

22 pages, 3476 KiB  
Article
Digital Inequality and Smart Inclusion: A Socio-Spatial Perspective from the Region of Xanthi, Greece
by Kyriaki Kourtidou, Yannis Frangopoulos, Asimenia Salepaki and Dimitris Kourkouridis
Smart Cities 2025, 8(4), 123; https://doi.org/10.3390/smartcities8040123 - 28 Jul 2025
Viewed by 219
Abstract
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with [...] Read more.
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with qualitative insights from semi-structured interviews, aiming to uncover how spatial, demographic, and cultural variables shape digital engagement. Geographic Information System (GIS) tools are employed to map disparities in internet access and ICT infrastructure, revealing significant gaps linked to geography, education, and economic status. The findings demonstrate that digital inequality is particularly acute in rural, minority, and economically marginalized communities, where limited infrastructure intersects with low digital literacy and socio-economic disadvantage. Interview data further illuminate how residents navigate exclusion, emphasizing generational divides, perceptions of technology, and place-based constraints. By bridging spatial analysis with lived experience, this study advances the conceptualization of digitally inclusive smart regions. It offers policy-relevant insights into how territorial inequality undermines the goals of smart development and proposes context-sensitive interventions to promote equitable digital participation. The case of Xanthi underscores the importance of integrating spatial justice into smart city and regional planning agendas. Full article
Show Figures

Figure 1

27 pages, 1601 KiB  
Article
A Lightweight Authentication Method for Industrial Internet of Things Based on Blockchain and Chebyshev Chaotic Maps
by Zhonghao Zhai, Junyi Liu, Xinying Liu, Yanqin Mao, Xinjun Zhang, Jialin Ma and Chunhua Jin
Future Internet 2025, 17(8), 338; https://doi.org/10.3390/fi17080338 - 28 Jul 2025
Viewed by 87
Abstract
The Industrial Internet of Things (IIoT), a key enabler of Industry 4.0, integrates advanced communication technologies with the industrial economy to enable intelligent manufacturing and interconnected systems. Secure and reliable identity authentication in the IIoT becomes essential as connectivity expands across devices, systems, [...] Read more.
The Industrial Internet of Things (IIoT), a key enabler of Industry 4.0, integrates advanced communication technologies with the industrial economy to enable intelligent manufacturing and interconnected systems. Secure and reliable identity authentication in the IIoT becomes essential as connectivity expands across devices, systems, and domains. Blockchain technology presents a promising solution due to its decentralized, tamper-resistant, and traceable characteristics, facilitating secure and transparent identity verification. However, current blockchain-based cross-domain authentication schemes often lack a lightweight design, rendering them unsuitable for latency-sensitive and resource-constrained industrial environments. This paper proposes a lightweight cross-domain authentication scheme that combines blockchain with Chebyshev chaotic mapping. Unlike existing schemes relying heavily on Elliptic Curve Cryptography or bilinear pairing, our design circumvents such computationally intensive primitives entirely through the algebraic structure of Chebyshev polynomials. A formal security analysis using the Real-Or-Random (ROR) model demonstrates the scheme’s robustness. Furthermore, performance evaluations conducted with Hyperledger Fabric and the MIRACL cryptographic library validate the method’s effectiveness and superiority over existing approaches in terms of both security and operational efficiency. Full article
Show Figures

Figure 1

28 pages, 2918 KiB  
Article
Machine Learning-Powered KPI Framework for Real-Time, Sustainable Ship Performance Management
by Christos Spandonidis, Vasileios Iliopoulos and Iason Athanasopoulos
J. Mar. Sci. Eng. 2025, 13(8), 1440; https://doi.org/10.3390/jmse13081440 - 28 Jul 2025
Viewed by 169
Abstract
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics [...] Read more.
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics is at an emerging state. This paper proposes a machine learning-driven framework for real-time ship performance management. The framework starts with data collected from onboard sensors and culminates in a decision support system that is easily interpretable, even by non-experts. It also provides a method to forecast vessel performance by extrapolating Key Performance Indicator (KPI) values. Furthermore, it offers a flexible methodology for defining KPIs for every crucial component or aspect of vessel performance, illustrated through a use case focusing on fuel oil consumption. Leveraging Artificial Neural Networks (ANNs), hybrid multivariate data fusion, and high-frequency sensor streams, the system facilitates continuous diagnostics, early fault detection, and data-driven decision-making. Unlike conventional static performance models, the framework employs dynamic KPIs that evolve with the vessel’s operational state, enabling advanced trend analysis, predictive maintenance scheduling, and compliance assurance. Experimental comparison against classical KPI models highlights superior predictive fidelity, robustness, and temporal consistency. Furthermore, the paper delineates AI and ML applications across core maritime operations and introduces a scalable, modular system architecture applicable to both commercial and naval platforms. This approach bridges advanced simulation ecosystems with in situ operational data, laying a robust foundation for digital transformation and sustainability in maritime domains. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 956 KiB  
Article
Boosting Sustainable Urban Development: How Smart Cities Improve Emergency Management—Evidence from 275 Chinese Cities
by Ming Guo and Yang Zhou
Sustainability 2025, 17(15), 6851; https://doi.org/10.3390/su17156851 - 28 Jul 2025
Viewed by 252
Abstract
Rapid urbanization and escalating disaster risks necessitate resilient urban governance systems. Smart city initiatives that leverage digital technologies—such as the internet of things (IoT), big data analytics, and artificial intelligence (AI)—demonstrate transformative potential in enhancing emergency management capabilities. However, empirical evidence regarding their [...] Read more.
Rapid urbanization and escalating disaster risks necessitate resilient urban governance systems. Smart city initiatives that leverage digital technologies—such as the internet of things (IoT), big data analytics, and artificial intelligence (AI)—demonstrate transformative potential in enhancing emergency management capabilities. However, empirical evidence regarding their causal impact and underlying mechanisms remains limited, particularly in developing economies. Drawing on panel data from 275 Chinese prefecture-level cities over the period 2006–2021 and using China’s smart city pilot policy as a quasi-natural experiment, this study applies a multi-period difference-in-differences (DID) approach to rigorously assess the effects of smart city construction on emergency management capabilities. Results reveal that smart city construction produced a statistically significant improvement in emergency management capabilities, which remained robust after conducting multiple sensitivity checks and controlling for potential confounding policies. The benefits exhibit notable heterogeneity: emergency management capability improvements are most pronounced in central China and in cities at the extremes of population size—megacities (>10 million residents) and small cities (<1 million residents)—while effects remain marginal in medium-sized and eastern cities. Crucially, mechanism analysis reveals that digital technology application fully mediates 86.7% of the total effect, whereas factor allocation efficiency exerts only a direct, non-mediating influence. These findings suggest that smart cities primarily enhance emergency management capabilities through digital enablers, with effectiveness contingent upon regional infrastructure development and urban scale. Policy priorities should therefore emphasize investments in digital infrastructure, interagency data integration, and targeted capacity-building strategies tailored to central and western regions as well as smaller cities. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

Back to TopTop