Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = international GNSS Monitoring and Assessment System (iGMAS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4409 KiB  
Article
Differences in Time Comparison and Positioning of BDS-3 PPP-B2b Signal Broadcast Through GEO
by Hongjiao Ma, Jinming Yang, Xiaolong Guan, Jianfeng Wu and Huabing Wu
Remote Sens. 2025, 17(14), 2351; https://doi.org/10.3390/rs17142351 - 9 Jul 2025
Viewed by 256
Abstract
The BeiDou-3 Navigation Satellite System (BDS-3) precise point positioning (PPP) service through the B2b signal (PPP-B2b) leverages precise correction data disseminated by satellites to eliminate or mitigate key error sources, including satellite orbit errors, clock biases, and ionospheric delays, thereby enabling high-precision timing [...] Read more.
The BeiDou-3 Navigation Satellite System (BDS-3) precise point positioning (PPP) service through the B2b signal (PPP-B2b) leverages precise correction data disseminated by satellites to eliminate or mitigate key error sources, including satellite orbit errors, clock biases, and ionospheric delays, thereby enabling high-precision timing and positioning. This paper investigates the disparities in time comparison and positioning capabilities associated with the PPP-B2b signals transmitted by the BDS-3 Geostationary Earth Orbit (GEO) satellites (C59 and C61). Three stations in the Asia–Pacific region were selected to establish two time comparison links. The study evaluated the time transfer accuracy of PPP-B2b signals by analyzing orbit and clock corrections from BDS-3 GEO satellites C59 and C61. Using multi-GNSS final products (GBM post-ephemeris) as a reference, the performance of PPP-B2b-based time comparison was assessed. The results indicate that while both satellites achieve comparable time transfer accuracy, C59 demonstrates superior stability and availability compared to C61. Additionally, five stations from the International GNSS Service (IGS) and the International GNSS Monitoring and Assessment System (iGMAS) were selected to assess the positioning accuracy of PPP-B2b corrections transmitted by BDS-3 GEO satellites C59 and C61. Using IGS/iGMAS weekly solution positioning results as a reference, the analysis demonstrates that PPP-B2b enables centimeter-level static positioning and decimeter-level simulated kinematic positioning. Furthermore, C59 achieves higher positioning accuracy than C61. Full article
Show Figures

Figure 1

19 pages, 6515 KiB  
Article
Characteristics of Inter-System Bias between BDS-2 and BDS-3 and Its Impact on BDS Orbit and Clock Solutions
by Xiaolong Xu and Zhan Cai
Remote Sens. 2023, 15(24), 5659; https://doi.org/10.3390/rs15245659 - 7 Dec 2023
Cited by 1 | Viewed by 1420
Abstract
The inter-system-like bias between the regional (BDS-2) and global (BDS-3) constellation of the BeiDou Navigation Satellite System (BDS) has been identified on common B1I pseudo-range observations. In this study, its characteristics are investigated with tracking data from the International GNSS Service (IGS) and [...] Read more.
The inter-system-like bias between the regional (BDS-2) and global (BDS-3) constellation of the BeiDou Navigation Satellite System (BDS) has been identified on common B1I pseudo-range observations. In this study, its characteristics are investigated with tracking data from the International GNSS Service (IGS) and International GNSS Monitoring and Assessment System (iGMAS) network. Firstly, the satellite-specific inter-system-like bias is calculated and the dependency on satellite is observed. Clearly noticeable discrepancies on BDS-2 and BDS-3 can be identified. Hence, the constellation-specific inter-system-like bias is estimated. Biases for all receivers are quite stable, with standard derivation (STDev) less than 0.2 m in average. The bias shows clear dependence on the receiver, while the firmware and antenna have limited but not negligible impacts, particularly for Trimble NetR9 and Alloy receivers. The Trimble NetR9 with TRM59800.00 antenna shows noticeable discrepancy up to about 1.5 m with different antenna, and the bias of the Trimble Alloy 5.37 jumps about 2.4 m with respect to later firmware. In addition, clear annual variations are observed for stations ABPO and MIZU with Septentrio POLARX5 5.3.2 and ASTERX4 4.4.2 receivers, respectively. Furthermore, the impacts of the biases on the BDS orbit and clock solutions are analyzed. Once BDS-2 and BDS-3 are treated as two independent systems, the root mean square (RMS) of code and carrier phase residuals can be reduced by around 9.3 cm and 0.23 mm, respectively, while the three-dimensional orbit consistency is improved by 6.8%, mainly in the tracking direction. Satellite laser ranging (SLR) shows marginal impacts on IGSO and MEO satellites. However, the SLR residual of C01 shifts −13.2 cm, resulting in a smaller RMS value. In addition, the RMS of linear clock fitting is reduced from 0.050 ns to 0.038 ns for BDS-3 MEO satellites in average. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

17 pages, 6333 KiB  
Article
Advancing Precise Orbit Determination and Precise Point Positioning of BDS-3 Satellites from B1IB3I to B1CB2a: Comparison and Analysis
by Chen Wang, Tengjie Luo, Shitong Chen and Pan Li
Remote Sens. 2023, 15(20), 4926; https://doi.org/10.3390/rs15204926 - 12 Oct 2023
Cited by 1 | Viewed by 1802
Abstract
The third generation of the Chinese BeiDou Navigation Satellite System (BDS-3) broadcasts new signals, i.e., B1C, B2a, and B2b, along with the legacy signals of BDS-2 B1I and B3I. The novel signals are demonstrated to show adequate upgraded performance, due to the restrictions [...] Read more.
The third generation of the Chinese BeiDou Navigation Satellite System (BDS-3) broadcasts new signals, i.e., B1C, B2a, and B2b, along with the legacy signals of BDS-2 B1I and B3I. The novel signals are demonstrated to show adequate upgraded performance, due to the restrictions on the ground tracking network for the BDS-3 satellites in new frequency bands, and in order to maintain the consistency of the hybrid BDS-2 and BDS-3 orbit/clock products using the common B1IB3I data, the use of B1CB2a observations is not sufficient for both precise orbit determination (POD) and precise point positioning (PPP) applications. In this study, one-year data of 2022 from the International GNSS Service (IGS) and the International GNSS Monitoring and Assessment System (iGMAS) are used in the precise orbit and clock determination for BDS-3 satellites based on the two sets of observations (i.e., B1IB3I and B1CB2a), and the orbit and clock accuracy along with the PPP ambiguity resolution (AR) performance are investigated. In general, the validations demonstrate that clear improvement can be achieved for the B1CB2a-based solution for both POD and PPP. In comparison to the B1IB3I, using BDS-3 B1CB2a observations can help to improve orbit consistency by around 25% as indicated by orbit boundary discontinuities (OBDs), and this use can further reduce the bias and enhance the orbit accuracy as revealed by satellite laser ranging (SLR) residuals. Similar improvement was also identified in the satellite clock performance. The B1CB2a-based solution obtains decreased Allan deviation (ADEV) values in comparison with the B1IB3I-based solution by 6~12%. Regarding the PPP-AR performance, the advantage of B1CB2a observations is evidently reflected through the estimates of wide-lane/narrow-lane fractional cycle bias (FCB), convergence time, and positioning accuracy, in which a significant reduction over 10 min is found in the PPP convergence time. Full article
(This article belongs to the Special Issue Beidou/GNSS Precise Positioning and Atmospheric Modeling II)
Show Figures

Figure 1

23 pages, 8643 KiB  
Article
Improved BDS-2/3 Satellite Ultra-Fast Clock Bias Prediction Based with the SSA-ELM Model
by Shaoshuai Ya, Xingwang Zhao, Chao Liu, Jian Chen and Chunyang Liu
Sensors 2023, 23(5), 2453; https://doi.org/10.3390/s23052453 - 22 Feb 2023
Viewed by 1602
Abstract
Ultra-fast satellite clock bias (SCB) products play an important role in real-time precise point positioning. Considering the low accuracy of ultra-fast SCB, which is unable to meet the requirements of precise point position, in this paper, we propose a sparrow search algorithm to [...] Read more.
Ultra-fast satellite clock bias (SCB) products play an important role in real-time precise point positioning. Considering the low accuracy of ultra-fast SCB, which is unable to meet the requirements of precise point position, in this paper, we propose a sparrow search algorithm to optimize the extreme learning machine (SSA-ELM) algorithm in order to improve the performance of SCB prediction in the Beidou satellite navigation system (BDS). By using the sparrow search algorithm’s strong global search and fast convergence ability, we further improve the prediction accuracy of SCB of the extreme learning machine. This study uses ultra-fast SCB data from the international GNSS monitoring assessment system (iGMAS) to perform experiments. First, the second difference method is used to evaluate the accuracy and stability of the used data, demonstrating that the accuracy between observed data (ISUO) and predicted data (ISUP) of the ultra-fast clock (ISU) products is optimal. Moreover, the accuracy and stability of the new rubidium (Rb-II) clock and hydrogen (PHM) clock onboard BDS-3 are superior to those of BDS-2, and the choice of different reference clocks affects the accuracy of SCB. Then, SSA-ELM, quadratic polynomial (QP), and a grey model (GM) are used for SCB prediction, and the results are compared with ISUP data. The results show that when predicting 3 and 6 h based on 12 h of SCB data, the SSA-ELM model improves the prediction model by ~60.42%, 5.46%, and 57.59% and 72.27%, 44.65%, and 62.96% as compared with the ISUP, QP, and GM models, respectively. When predicting 6 h based on 12 h of SCB data, the SSA-ELM model improves the prediction model by ~53.16% and 52.09% and by 40.66% and 46.38% compared to the QP and GM models, respectively. Finally, multiday data are used for 6 h SCB prediction. The results show that the SSA-ELM model improves the prediction model by more than 25% compared to the ISUP, QP, and GM models. In addition, the prediction accuracy of the BDS-3 satellite is better than that of the BDS-2 satellite. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 9418 KiB  
Article
Comprehensive Assessment of BDS-2 and BDS-3 Precise Orbits Based on B1I/B3I and B1C/B2a Frequencies from iGMAS
by Zhetao Zhang, Ping Zeng, Yuanlan Wen, Lina He and Xiufeng He
Remote Sens. 2023, 15(3), 582; https://doi.org/10.3390/rs15030582 - 18 Jan 2023
Cited by 4 | Viewed by 2311
Abstract
The BeiDou Global Navigation Satellite System (BDS), including the second generation (BDS-2) and the third generation (BDS-3), has been widely used in areas of positioning, navigation, and timing (PNT). One of the essential prerequisites for accurate PNT service is the precise satellite orbits [...] Read more.
The BeiDou Global Navigation Satellite System (BDS), including the second generation (BDS-2) and the third generation (BDS-3), has been widely used in areas of positioning, navigation, and timing (PNT). One of the essential prerequisites for accurate PNT service is the precise satellite orbits of multi-frequency and multi-constellation BDS-2 and BDS-3 satellites. As usual, the precise orbit products can be obtained from analysis centers (ACs) of the international GNSS Service (IGS). The precise orbits can also be downloaded from the international GNSS Monitoring and Assessment System (iGMAS). Compared with the IGS ACs, the iGMAS can provide featured services such as satellite orbits based on the new B1C/B2a BDS signals. Considering the indispensability of the new signals, the performance of all BDS precise orbits from iGMAS needs to be known. However, there is no comprehensive assessment of BDS-2 and BDS-3 precise orbits based on B1I/B3II and B1C/B2a frequencies from iGMAS, especially for the period after the BDS entered the stable operation stage. In this paper, BDS-2/BDS-3 final (ISC), rapid (ISR), and ultra-rapid (ISU) products based on B1I/B3I and B1C/B2a frequencies from iGMAS are all assessed comprehensively. Specifically, at first, the precise orbits from iGMAS are compared with the ones from the IGS ACs. Based on this, the satellite laser ranging inspects the precise orbits from iGMAS. Finally, the orbit errors are discussed systematically by considering the beta and elongation angles. Using one year of data, the orbit accuracy of geostationary orbit, inclined geosynchronous orbit, and medium earth orbit (MEO) satellites can almost reach meter to decimeter level, decimeter to sub-decimeter level, and centimeter level, respectively, where the ISC products are the best. The ISC, ISR, and ISU products based on B1I/B3I frequencies are generally better than the ones based on B1C/B2a frequencies. Additionally, according to the SLR data, the results show that the accuracy of precise orbits of BDS-3 is better than that of BDS-2. The mean values of orbit biases of BDS-3 MEO satellites are approximately 2.88 cm. In addition, the orbit errors are related to the beta angle and elongation angle to some extent, and the manufacturers may also have an influence on the orbit errors. Full article
Show Figures

Graphical abstract

17 pages, 7756 KiB  
Article
Multi-GNSS Combined Orbit and Clock Solutions at iGMAS
by Wei Zhou, Hongliang Cai, Guo Chen, Wenhai Jiao, Qianqian He and Yuguo Yang
Sensors 2022, 22(2), 457; https://doi.org/10.3390/s22020457 - 8 Jan 2022
Cited by 19 | Viewed by 3764
Abstract
Global navigation services from the quad-constellation of GPS, GLONASS, BDS, and Galileo are now available. The international GNSS monitoring and assessment system (iGMAS) aims to evaluate the navigation performance of the current quad systems under a unified framework. In order to assess impact [...] Read more.
Global navigation services from the quad-constellation of GPS, GLONASS, BDS, and Galileo are now available. The international GNSS monitoring and assessment system (iGMAS) aims to evaluate the navigation performance of the current quad systems under a unified framework. In order to assess impact of orbit and clock errors on the positioning accuracy, the user range error (URE) is always taken as a metric by comparison with the precise products. Compared with the solutions from a single analysis center, the combined solutions derived from multiple analysis centers are characterized with robustness and reliability and preferred to be used as references to assess the performance of broadcast ephemerides. In this paper, the combination method of iGMAS orbit and clock products is described, and the performance of the combined solutions is evaluated by various means. There are different internal precisions of the combined orbit and clock for different constellations, which indicates that consistent weights should be assigned for individual constellations and analysis centers included in the combination. For BDS-3, Galileo, and GLONASS combined orbits of iGMAS, the root-mean-square error (RMSE) of 5 cm is achieved by satellite laser ranging (SLR) observations. Meanwhile, the SLR residuals are characterized with a linear pattern with respect to the position of the sun, which indicates that the solar radiation pressure (SRP) model adopted in precise orbit determination needs further improvement. The consistency between combined orbit and clock of quad-constellation is validated by precise point positioning (PPP), and the accuracies of simulated kinematic tests are 1.4, 1.2, and 2.9 cm for east, north, and up components, respectively. Full article
(This article belongs to the Collection Multi-GNSS Precise Positioning and Applications)
Show Figures

Figure 1

19 pages, 9434 KiB  
Article
Analysis of the BDGIM Performance in BDS Single Point Positioning
by Guangxing Wang, Zhihao Yin, Zhigang Hu, Gang Chen, Wei Li and Yadong Bo
Remote Sens. 2021, 13(19), 3888; https://doi.org/10.3390/rs13193888 - 28 Sep 2021
Cited by 13 | Viewed by 3020
Abstract
The broadcast ionospheric model is mainly used to correct the ionospheric delay error for single-frequency users. Since the BeiDou global ionospheric delay correction model (BDGIM) is a novel broadcast ionospheric model for BDS-3, its performance was analyzed through single point positioning (SPP) in [...] Read more.
The broadcast ionospheric model is mainly used to correct the ionospheric delay error for single-frequency users. Since the BeiDou global ionospheric delay correction model (BDGIM) is a novel broadcast ionospheric model for BDS-3, its performance was analyzed through single point positioning (SPP) in this study. Twenty-two stations simultaneously receiving B1C, B2a, B1I and B3I signals were selected from the International GNSS Service (IGS) and the International GNSS Monitoring and Assessment System (iGMAS) tracking networks for the SPP experiments. The differential code bias (DCB) parameters were used to correct the hardware delays in the signals of B1C and B2a. The results showed that the BDGIM performs the best in high-latitude areas, and can effectively improve the positioning accuracy compared with the Klobuchar model. The average 3D positioning accuracy of the four civil signals can reach 3.58 m in high-latitude areas. The positioning accuracies with the BDGIM in the northern hemisphere are better than those in the southern hemisphere, and the global average 3D positioning accuracy of the four civil signals is 4.60 m. The performance of the BDGIM also shows some seasonal differences. The BDGIM performs better than the Klobuchar model on the days of spring equinox and winter solstice, while the opposite is true on the days of summer solstice and autumn equinox. On the day of winter solstice, the average 3D accuracies with the BDGIM on the signals of B1C, B2a, B1I and B3I are 4.13 m, 5.32 m, 4.40 m and 4.49 m, respectively. Although the SPP accuracies are to some extent affected by the geomagnetic storm, the BDGIM generally performs better and are more resistant to the geomagnetic storm than the Klobuchar model. Full article
Show Figures

Graphical abstract

19 pages, 7376 KiB  
Article
Initial Assessment of BDS PPP-B2b Service: Precision of Orbit and Clock Corrections, and PPP Performance
by Zhixi Nie, Xiaofei Xu, Zhenjie Wang and Jun Du
Remote Sens. 2021, 13(11), 2050; https://doi.org/10.3390/rs13112050 - 22 May 2021
Cited by 55 | Viewed by 4430
Abstract
On 31 July 2020, the Beidou global navigation satellite system (BDS-3) was officially announced as being commissioned. In addition to offering global positioning, navigation, and timing (PNT) services, BDS-3 also provides precise point positioning (PPP) augmentation services. The satellite orbit correction, clock correction [...] Read more.
On 31 July 2020, the Beidou global navigation satellite system (BDS-3) was officially announced as being commissioned. In addition to offering global positioning, navigation, and timing (PNT) services, BDS-3 also provides precise point positioning (PPP) augmentation services. The satellite orbit correction, clock correction and code bias correction of BDS-3 and other global navigation satellite systems (GNSS) are broadcast by the BDS-3 geostationary earth orbit (GEO) satellites through the PPP-B2b signal. The PPP-B2b service is available for users in China and the surrounding area. In this study, an initial assessment of the PPP-B2b service is presented, with collected 3-day PPP-B2b messages. Based on broadcast ephemeris and PPP-B2b messages, the precise satellite orbits and clock offsets can be recovered. This precision is evaluated with the precise ephemeris from the GeoForschungsZentrum Potsdam (GFZ) analysis center as references. The results indicate that the accuracy of BDS-3 satellite orbits in the direction of radial, along-track, and cross-track is 0.138, 0.131, and 0.145 m, respectively, and for GPS a corresponding accuracy of 0.104, 0.160, and 0.134 m, respectively, could be obtained. The precision of clock offsets can reach a level of several centimeters for both GPS and BDS-3. Both the performance of static PPP and kinematic PPP are evaluated using the observations from four international GNSS monitoring assessment service (iGMAS) stations. Regarding static PPP, the average convergence time is 17.7 min to achieve a horizontal positioning accuracy of better than 0.3 m, and a vertical positioning accuracy of better than 0.6 m. The average positioning accuracy in the direction of east, north, and up-directions are 2.4, 1.6, and 2.3 cm. As to kinematic PPP, the average RMS values of positioning errors in the direction of east, north, and up are 8.1 cm, 3.6 cm, and 8.0 cm after full convergence. Full article
(This article belongs to the Special Issue Beidou/GNSS Precise Positioning and Atmospheric Modeling)
Show Figures

Figure 1

18 pages, 2839 KiB  
Article
Accuracy Analysis of GNSS Hourly Ultra-Rapid Orbit and Clock Products from SHAO AC of iGMAS
by Qinming Chen, Shuli Song and Weili Zhou
Remote Sens. 2021, 13(5), 1022; https://doi.org/10.3390/rs13051022 - 8 Mar 2021
Cited by 22 | Viewed by 3348
Abstract
With the development of the global navigation satellite system(GNSS), the hourly ultra-rapid products of GNSS are attracting more attention due to their low latency and high accuracy. A new strategy and method was applied by the Shanghai Astronomical Observatory (SHAO) Analysis Center (AC) [...] Read more.
With the development of the global navigation satellite system(GNSS), the hourly ultra-rapid products of GNSS are attracting more attention due to their low latency and high accuracy. A new strategy and method was applied by the Shanghai Astronomical Observatory (SHAO) Analysis Center (AC) of the international GNSS Monitoring and Assessment Service (iGMAS) for generating 6-hourly and 1-hourly GNSS products, which mainly include the American Global Positioning System (GPS), the Russian Global’naya Navigatsionnaya Sputnikova Sistema (GLONASS), the European Union’s Galileo, and the Chinese BeiDou navigation satellite system (BDS). The 6-hourly and 1-hourly GNSS orbit and clock ultra-rapid products included a 24-h observation session which is determined by 24-h observation data from global tracking stations, and a 24-h prediction session which is predicted from the observation session. The accuracy of the 1-hourly orbit product improved about 1%, 31%, 13%, 11%, 23%, and 9% for the observation session and 18%, 43%, 45%, 34%, 53%, and 15% for the prediction session of GPS, GLONASS, Galileo, BDS Medium Earth Orbit (MEO), Inclined Geosynchronous Orbit (IGSO), and GEO orbit, when compared with reference products with high accuracy from the International GNSS service (IGS).The precision of the 1-hourly clock products can also be seen better than the 6-hourly clock products. The accuracy and precision of the 6-hourly and 1-hourly orbit and clock verify the availability and reliability of the hourly ultra-rapid products, which can be used for real-time or near-real-time applications, and show encouraging prospects. Full article
Show Figures

Figure 1

23 pages, 4310 KiB  
Article
Estimation and Analysis of BDS2 and BDS3 Differential Code Biases and Global Ionospheric Maps Using BDS Observations
by Min Li and Yunbin Yuan
Remote Sens. 2021, 13(3), 370; https://doi.org/10.3390/rs13030370 - 21 Jan 2021
Cited by 11 | Viewed by 2702
Abstract
Following the continuous and stable regional service of BDS2, the BDS3 officially announced its global service in July 2020. To fully take advantage of the new multi-frequency BDS3 signals in ionosphere sensing and positioning, it is essential to understand the characteristics of the [...] Read more.
Following the continuous and stable regional service of BDS2, the BDS3 officially announced its global service in July 2020. To fully take advantage of the new multi-frequency BDS3 signals in ionosphere sensing and positioning, it is essential to understand the characteristics of the differential code bias (DCB) of new BDS3 signals and BDS performance in global ionospheric maps (GIMs) estimation. This article presents an evaluation of the characteristics of 13 types of BDS DCBs and the accuracy of BDS-based GIM based on the data provided by the International GNSS Service (IGS) and International GNSS Monitoring and Assessment System (iGMAS) for the first time. The GIMs and DCBs are estimated by the APM (Innovation Academy for Precision Measurement Science and Technology) method in a time efficient manner, which can be divided into two main steps. The first step is to produce GIMs based on BDS observations at the B1I, B2I and B3I signals, and the second step is to estimate DCBs among the other frequency bands by removing the ionospheric delay using the precomputed GIMs. Good agreement is found between the APM-based satellite DCB estimates and those from the Chinese Academy of Sciences (CAS) and the German Aerospace Center (DLR) at levels of 0.26 ns and 0.18 ns, respectively. The results, spanning one month, show that the stability of BDS DCB estimates among different frequency bands are related to the contributed observations, and the receiver DCB estimates represent larger STD values than the satellite DCB estimates. The differences in receiver DCB estimates between BDS2 and BDS3 are found to be related to the types of receivers and antennas and firmware version, and the bias of the JAVAD receivers reaches 1.03 ns. The results also indicate that the difference in the single-frequency standpoint positioning (SPP) accuracy using GPS-based and BDS-based GIMs for ionospheric delay corrections is less than 0.03 m in both the horizontal and vertical directions. Full article
Show Figures

Figure 1

23 pages, 16317 KiB  
Article
The Effect of BDS-3 Time Group Delay and Differential Code Bias Corrections on Positioning
by Peipei Dai, Jianping Xing, Yulong Ge, Xuhai Yang, Weijin Qin, Yanchen Dong and Zhe Zhang
Appl. Sci. 2021, 11(1), 104; https://doi.org/10.3390/app11010104 - 24 Dec 2020
Cited by 8 | Viewed by 2737
Abstract
The timing group delay parameter (TGD) or differential code bias parameter (DCB) is an important factor that affects the performance of GNSS basic services; therefore, TGD and DCB must be taken seriously. Moreover, the TGD parameter is modulated in the navigation message, taking [...] Read more.
The timing group delay parameter (TGD) or differential code bias parameter (DCB) is an important factor that affects the performance of GNSS basic services; therefore, TGD and DCB must be taken seriously. Moreover, the TGD parameter is modulated in the navigation message, taking into account the impact of TGD on the performance of the basic service. International GNSS Monitoring and Assessment System (iGMAS) provides the broadcast ephemeris with TGD parameter and the Chinese Academy of Science (CAS) provides DCB products. In this paper, the current available BDS-3 TGD and DCB parameters are firstly described in detail, and the relationship of TGD and DCB for BDS-3 is figured out. Then, correction models of BDS-3 TGD and DCB in standard point positioning (SPP) or precise point positioning (PPP) are given, which can be applied in various situations. For the effects of TGD and DCB in the SPP and PPP solution processes, all the signals from BDS-3 were researched, and the validity of TGD and DCB has been further verified. The experimental results show that the accuracy of B1I, B1C and B2a single-frequency SPP with TGD or DCB correction was improved by approximately 12–60%. TGD will not be considered for B3I single-frequency, because the broadcast satellite clock offset is based on the B3I as the reference signal. The positioning accuracy of B1I/B3I and B1C/B2a dual-frequency SPP showed that the improvement range for horizontal components is 60.2% to 74.4%, and the vertical components improved by about 50% after the modification of TGD and DCB. In addition, most of the uncorrected code biases are mostly absorbed into the receiver clock bias and other parameters for PPP, resulting in longer convergence time. The convergence time can be max increased by up to 50% when the DCB parameters are corrected. Consequently, the positioning accuracy can reach the centimeter level after convergence, but it is critical for PPP convergence time and receiver clock bias that the TGD and DCB correction be considered seriously. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

15 pages, 5236 KiB  
Article
Improved Ultra-Rapid UT1-UTC Determination and Its Preliminary Impact on GNSS Satellite Ultra-Rapid Orbit Determination
by Fei Ye, Yunbin Yuan and Zhiguo Deng
Remote Sens. 2020, 12(21), 3584; https://doi.org/10.3390/rs12213584 - 31 Oct 2020
Cited by 10 | Viewed by 2786
Abstract
Errors in ultra-rapid UT1-UTC primarily affect the overall rotation of spatial datum expressed by GNSS (Global Navigation Satellite System) satellite ultra-rapid orbit. In terms of existing errors of traditional strategy, e.g., piecewise linear functions, for ultra-rapid UT1-UTC determination, and the requirement to improve [...] Read more.
Errors in ultra-rapid UT1-UTC primarily affect the overall rotation of spatial datum expressed by GNSS (Global Navigation Satellite System) satellite ultra-rapid orbit. In terms of existing errors of traditional strategy, e.g., piecewise linear functions, for ultra-rapid UT1-UTC determination, and the requirement to improve the accuracy and consistency of ultra-rapid UT1-UTC, the potential to improve the performance of ultra-rapid UT1-UTC determination based on an LS (Least Square) + AR (Autoregressive) combination model is explored. In this contribution, based on the LS+AR combination model and by making joint post-processing/rapid UT1-UTC observation data, we propose a new strategy for ultra-rapid UT1-UTC determination. The performance of the new strategy is subsequently evaluated using data provided by IGS (International GNSS Services), iGMAS (international GNSS Monitoring and Assessment System), and IERS (International Earth Rotation and Reference Systems Service). Compared to the traditional strategy, the numerical results over more than 1 month show that the new strategy improved ultra-rapid UT1-UTC determination by 29–43%. The new strategy can provide a reference for GNSS data processing to improve the performance of ultra-rapid products. Full article
Show Figures

Graphical abstract

13 pages, 3165 KiB  
Article
Analysis of Quasi-Zenith Satellite System Signal Acquisition and Multiplexing Characteristics in China Area
by Hongjun Ye, Xiaojun Jing, Liang Liu, Maolei Wang, Shuo Hao, Xingkang Lang and Baoguo Yu
Sensors 2020, 20(6), 1547; https://doi.org/10.3390/s20061547 - 11 Mar 2020
Cited by 4 | Viewed by 4293
Abstract
On the basis of realizing regional navigation, the Quasi-Zenith Satellite System (QZSS) has advanced navigation function, which leads to the broadcasting of more signals in a single frequency of QZSS signals. Current signal transmission technology cannot solve this problem, so it is necessary [...] Read more.
On the basis of realizing regional navigation, the Quasi-Zenith Satellite System (QZSS) has advanced navigation function, which leads to the broadcasting of more signals in a single frequency of QZSS signals. Current signal transmission technology cannot solve this problem, so it is necessary to design a signal multiplexing method. The current QZSS satellite interface document does not disclose the multiplexing modulation method of the signal transmission, which has a certain impact on the acquisition of high-precision observation data and further data processing. The iGMAS (International GNSS Monitoring & Assessment System) Monitoring and Evaluation Center of the 54th Research Institute of China Electronics Technology Group Corporation has used the low-distortion data acquisition and processing platform and refined signal software receiving processing algorithm of the iGMAS to complete the signal acquisition and analysis of QZSS satellites. Analysis of the multiplexing and modulation method and signal characteristics for the QZSS has been carried out, which can provide a reference for the design and data processing of high-precision receivers. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

16 pages, 2562 KiB  
Article
Estimation of the Antenna Phase Center Correction Model for the BeiDou-3 MEO Satellites
by Xingyuan Yan, Guanwen Huang, Qin Zhang, Le Wang, Zhiwei Qin and Shichao Xie
Remote Sens. 2019, 11(23), 2850; https://doi.org/10.3390/rs11232850 - 30 Nov 2019
Cited by 20 | Viewed by 4354
Abstract
Satellite antenna phase center offsets (PCOs) and phase variations (PVs) for BeiDou-3 satellites are estimated based on the tracking data of the Multi-GNSS Experiment (MGEX) and the international GNSS Monitoring and Assessment System (iGMAS) network. However, when estimating the (PCOs) of BeiDou-3 medium [...] Read more.
Satellite antenna phase center offsets (PCOs) and phase variations (PVs) for BeiDou-3 satellites are estimated based on the tracking data of the Multi-GNSS Experiment (MGEX) and the international GNSS Monitoring and Assessment System (iGMAS) network. However, when estimating the (PCOs) of BeiDou-3 medium Earth orbit (MEO) satellites by pure Extending the CODE Orbit Model (ECOM1), the x-offset estimations of the PCOs have a systematic variation of about 0.4 m with the elevation of the Sun above the orbital plane (β-angle). Thus, a priori box-wing solar radiation pressure (SRP) model of BeiDou-3 MEO was assisted with ECOM1. Then, the satellite type-specific PCOs and common PVs were obtained. The estimations of PCOs and PVs were compared with the MGEX PCOs from the precise orbit and clock offset. When the MGEX PCOs were used, the root mean square (RMS) of 24 h overlap was 6.76, 4.36, 1.46 cm, in along-track, cross-track, and radial directions, respectively; the RMS and standard deviations (STD) of the 24 h clock offset overlap were 0.28 and 0.15 ns; the fitting RMS of the 72 h clock offset of the quadratic polynomial was 0.243 ns. After comparing this with the estimated PCOs and PVs, the RMS of the 24 h orbit overlap was decreased by 6.5 mm (10.54%), 1.8 mm (4.4%), and 1.1 mm (8.03%) in the along-track, cross-track, and radial directions, respectively; the RMS and STD of the 24 h clock offset overlap were decreased by 0.024 ns (8.6%) and 0.020 ns (13.1%), respectively; the fitting RMS of the 72 h clock offset of the quadratic polynomial was reduced by about 0.016 ns (6.5%). Full article
(This article belongs to the Special Issue Global Navigation Satellite Systems for Earth Observing System)
Show Figures

Graphical abstract

23 pages, 5902 KiB  
Article
Assessment of Integrated Water Vapor Estimates from the iGMAS and the Brazilian Network GNSS Ground-Based Receivers in Rio de Janeiro
by Galdino V. Mota, Shuli Song and Katarzyna Stępniak
Remote Sens. 2019, 11(22), 2652; https://doi.org/10.3390/rs11222652 - 13 Nov 2019
Cited by 4 | Viewed by 3562
Abstract
There is pressing demand for knowledge improvement of the integrated water vapor (IWV) distribution in regions affected by heat islands that are associated with extreme rainfall events such as in the metropolitan area of Rio de Janeiro (MARJ). This work assessed the suitability [...] Read more.
There is pressing demand for knowledge improvement of the integrated water vapor (IWV) distribution in regions affected by heat islands that are associated with extreme rainfall events such as in the metropolitan area of Rio de Janeiro (MARJ). This work assessed the suitability and evaluation of the spatiotemporal distribution of Global Navigation Satellite Systems (GNSS) IWV from the cooperation of the International GNSS Monitoring and Assessment System (iGMAS) and the National Observatory (Observatório Nacional, ON) of Brazil, from the Brazilian Network for Continuous Monitoring (RBMC), and IWV products from Moderate Resolution Imaging Spectroradiometer (MODIS) and radiosonde, jointly with surface meteorological data, in two sectors of the state of Rio de Janeiro from February 2015–August 2018. High variability of the near surface air temperature (T) and relative humidity (RH) were observed among eight meteorological sites. The mean T differences between sites, up to 4.4 °C, led to mean differences as high as 3.1 K for weighted mean temperature (Tm) and hence 0.83 mm for IWV differences. Local grid points of MODIS IWV estimates had relatively good agreement with the GNSS-derived IWV, with mean differences from –2.4–1.1 mm for the daytime passages of the satellites TERRA and AQUA and underestimation from –9 mm to –3 mm during nighttime overpasses. A contrasting behavior was found in the radiosonde IWV estimates compared with the estimates from GNSS. There were dry biases of 1.4 mm (3.7% lower than expected) by radiosonde IWV during the daytime, considering that all other estimates were unbiased and the differences between IWVGNSS and IWVRADS were consistent. Based on the IWV comparisons between radiosonde and GNSS at nighttime, the atmosphere over the radiosonde site is about 1.2 mm and 2.3 mm wetter than that over the RBMC RIOD and iGMAS RDJN stations, respectively. The atmosphere over the site RIOD was 1.2 mm wetter than over that of RDJN for all three-hour means. These results showed that there were important variabilities in the meteorological conditions and in the distribution of water vapor in the MERJ. The data from the iGMAS RDJN station were feasible, together with those from the RBMC, MODIS, and radiosonde data, to investigate IWV in the region with occurrence of heat islands and peculiar physiographic and meteorological characteristics. This work recommends the magnification of the GNSS network in the state of Rio de Janeiro with the use of data from complete meteorological station collocated near every GNSS receiver, aiming to improve local IWV estimates and serving as additional support for operational numerical assimilation, weather forecast, and nowcast of extreme rainfall and flooding events. Full article
(This article belongs to the Special Issue Global Navigation Satellite Systems for Earth Observing System)
Show Figures

Graphical abstract

Back to TopTop