Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (562)

Search Parameters:
Keywords = internalizing antibody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 487 KiB  
Review
Recent Trends in the Management of Varicocele
by Tamás Takács, Anett Szabó and Zsolt Kopa
J. Clin. Med. 2025, 14(15), 5445; https://doi.org/10.3390/jcm14155445 - 2 Aug 2025
Viewed by 477
Abstract
Varicocele is a common, potentially correctable condition associated with impaired male fertility. Despite being frequently encountered in clinical andrology, its pathophysiological mechanisms, diagnostic criteria, and therapeutic approaches remain areas of active investigation and debate. The authors conducted a comprehensive literature search, using the [...] Read more.
Varicocele is a common, potentially correctable condition associated with impaired male fertility. Despite being frequently encountered in clinical andrology, its pathophysiological mechanisms, diagnostic criteria, and therapeutic approaches remain areas of active investigation and debate. The authors conducted a comprehensive literature search, using the PubMed database, covering clinical studies, systematic reviews, meta-analyses, and current international guidelines from the past ten years. Emphasis was placed on studies investigating novel diagnostic modalities, therapeutic innovations, and prognostic markers. Emerging evidence supports the multifactorial pathophysiology of varicocele, involving oxidative stress, hypoxia, inflammatory pathways, and potential genetic predisposition. Biomarkers, including microRNAs, antisperm antibodies, and sperm DNA fragmentation, offer diagnostic and prognostic utility, though their routine clinical implementation requires further validation. Advances in imaging, such as shear wave elastography, may improve diagnostic accuracy. While microsurgical subinguinal varicocelectomy remains the gold standard, technological refinements and non-surgical alternatives are being explored. Indications for treatment have expanded to include selected cases of non-obstructive azoospermia, hypogonadism, and optimization for assisted reproduction, though high-level evidence is limited. Full article
Show Figures

Figure 1

22 pages, 3641 KiB  
Article
Affinity Affects the Functional Potency of Anti-GD2 Antibodies by Target-Mediated Drug Disposition
by Sascha Troschke-Meurer, Maxi Zumpe, Peter Moritz Ahrenberg, Torsten Ebeling, Nikolai Siebert, Piotr Grabarczyk and Holger N. Lode
Cancers 2025, 17(15), 2510; https://doi.org/10.3390/cancers17152510 - 30 Jul 2025
Viewed by 274
Abstract
Background/Objectives: High-risk neuroblastoma patients are treated with approved anti-ganglioside GD2 antibodies of moderate (dinutuximab beta; DB) and higher binding affinity (naxitamab; NAXI). We evaluated the functional potency of DB compared to NAXI and investigated the target-mediated drug disposition (TMDD). Methods: Tumor spheroids were [...] Read more.
Background/Objectives: High-risk neuroblastoma patients are treated with approved anti-ganglioside GD2 antibodies of moderate (dinutuximab beta; DB) and higher binding affinity (naxitamab; NAXI). We evaluated the functional potency of DB compared to NAXI and investigated the target-mediated drug disposition (TMDD). Methods: Tumor spheroids were generated from neuroblastoma cells with varying GD2 expression, stably expressing iRFP680 as a viability marker. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) were assessed in a long-term life-cell viability assay using serial dilutions of the GD2 antibodies. Binding activity was determined by flow cytometry. Processes involved in TMDD were analyzed, including antibody binding to dead tumor cells and to soluble GD2 (sGD2), antibody internalization into tumor and immune cells and the impact of sGD2 on DB and NAXI-mediated ADCC. Results: DB and NAXI mediated a concentration-dependent ADCC response against GD2-positive spheroids and no response against GD2-negative spheroids. DB showed a significantly higher ADCC potency than NAXI in all GD2-positive spheroid models. Binding activity of DB and NAXI was not significantly different. However, the decrease of anti-GD2 antibody binding to viable GD2-positive tumor cells following co-incubation with dead GD2-positive tumor cells or sGD2 was significantly higher for NAXI than DB. Additionally, we found an increased internalization of NAXI compared to DB by tumor cells and particularly CD64+ monocytes. Finally, sGD2 impaired NAXI-mediated ADCC to a significantly greater extent than DB-mediated ADCC. Conclusions: DB has a higher ADCC potency over NAXI at clinically relevant concentrations, attributed to stronger TMDD effects of NAXI compared to DB. Full article
(This article belongs to the Special Issue Precision Medicine and Targeted Therapies in Neuroblastoma)
Show Figures

Graphical abstract

13 pages, 1778 KiB  
Article
Preparation and Characterization of Monoclonal Antibodies Against the Porcine Rotavirus VP6 Protein
by Botao Sun, Dingyi Mao, Jing Chen, Xiaoqing Bi, Linke Zou, Jishan Bai, Rongchao Liu, Ping Hao, Qi Wang, Linhan Zhong, Panchi Zhang and Bin Zhou
Vet. Sci. 2025, 12(8), 710; https://doi.org/10.3390/vetsci12080710 - 29 Jul 2025
Viewed by 288
Abstract
Porcine Rotavirus (PoRV), a predominant causative agent of neonatal diarrhea in piglets, shares substantial genetic homology with human rotavirus and represents a considerable threat to both public health and the global swine industry in the absence of specific antiviral interventions. The VP6 protein, [...] Read more.
Porcine Rotavirus (PoRV), a predominant causative agent of neonatal diarrhea in piglets, shares substantial genetic homology with human rotavirus and represents a considerable threat to both public health and the global swine industry in the absence of specific antiviral interventions. The VP6 protein, an internal capsid component, is characterized by exceptional sequence conservation and robust immunogenicity, rendering it an ideal candidate for viral genotyping and vaccine development. In the present study, the recombinant plasmid pET28a(+)-VP6 was engineered to facilitate the high-yield expression and purification of the VP6 antigen. BALB/c mice were immunized to generate monoclonal antibodies (mAbs) through hybridoma technology, and the antigenic specificity of the resulting mAbs was stringently validated. Subsequently, a panel of truncated protein constructs was designed to precisely map linear B-cell epitopes, followed by comparative conservation analysis across diverse PoRV strains. Functional validation demonstrated that all three mAbs exhibited high-affinity binding to VP6, with a peak detection titer of 1:3,000,000 and exclusive specificity toward PoRVA. These antibodies effectively recognized representative genotypes such as G3 and X1, while exhibiting no cross-reactivity with unrelated viral pathogens; however, their reactivity against other PoRV serogroups (e.g., types B and C) remains to be further elucidated. Epitope mapping identified two novel linear B-cell epitopes, 128YIKNWNLQNR137 and 138RQRTGFVFHK147, both displaying strong sequence conservation among circulating PoRV strains. Collectively, these findings provide a rigorous experimental framework for the functional dissection of VP6 and reinforce its potential as a valuable diagnostic and immunoprophylactic target in PoRV control strategies. Full article
Show Figures

Figure 1

14 pages, 2068 KiB  
Article
Cellular Rejection Post-Cardiac Transplantation: A 13-Year Single Unicentric Study
by Gabriela Patrichi, Catalin-Bogdan Satala, Andrei Ionut Patrichi, Toader Septimiu Voidăzan, Alexandru-Nicușor Tomuț, Daniela Mihalache and Anca Ileana Sin
Medicina 2025, 61(8), 1317; https://doi.org/10.3390/medicina61081317 - 22 Jul 2025
Viewed by 211
Abstract
Background and Objectives: Cardiac transplantation is currently the elective treatment choice in end-stage heart failure, and cellular rejection is a predictive factor for morbidity and mortality after surgery. We proposed an evaluation of the clinicopathologic factors involved in the mechanism of rejection. [...] Read more.
Background and Objectives: Cardiac transplantation is currently the elective treatment choice in end-stage heart failure, and cellular rejection is a predictive factor for morbidity and mortality after surgery. We proposed an evaluation of the clinicopathologic factors involved in the mechanism of rejection. Materials and Methods: This study included 146 patients who underwent transplantation at the Institute of Cardiovascular Diseases and Transplantation in Targu Mures between 2010 and 2023, and we evaluated the function and structure of the myocardium after surgery by using endomyocardial biopsy. Results: Overall, 120 men and 26 women underwent transplantation, with an approximately equal proportion under and over 40 years old (48.6% and 51.4%). Evaluating the degree of acute cellular rejection according to the International Society for Heart and Lung Transplantation classification showed that most of the patients presented with acute cellular rejection (ACR) and antibody-mediated rejection (AMR) grade 0, and most cases of ACR and AMR were reported with mild changes (13% or 10.3% patients). Therefore, the most frequent histopathologic diagnoses were similar to lesions unrelated to rejection (45.2% of patients) and ischemia–reperfusion lesions (25.3% patients), respectively. Conclusions: Although 82.2% of the transplanted cases showed no rejection (ISHLT score 0), non-rejection-related lesion-like changes were present in 45.2% of cases, and because more of the non-rejection-related criteria could be detected, it may be necessary to adjust the grading of the rejection criteria. The histopathologic changes that characterize rejection are primarily represented by the mononuclear inflammatory infiltrate; in our study, inflammatory changes were mostly mild (71.9%), with myocyte involvement in all cases. These changes are associated with and contribute to the maintenance of the rejection phenomenon. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

22 pages, 5945 KiB  
Article
Immunogenicity Risk Assessment of Biotherapeutics Using an Ex Vivo B Cell Assay
by Kevin M. Budge, Ross Blankenship, Patricia Brown-Augsburger and Lukasz K. Chlewicki
Antibodies 2025, 14(3), 62; https://doi.org/10.3390/antib14030062 - 22 Jul 2025
Viewed by 368
Abstract
Background/Objectives: Anti-drug antibody (ADA) formation can impact the safety, pharmacokinetics, and/or efficacy of biotherapeutics, including monoclonal antibodies (mAbs). Current strategies for ADA/immunogenicity risk prediction of mAbs include in silico algorithms, T cell proliferation assays, MHC-associated peptide proteomics assays (MAPPs), and dendritic cell internalization [...] Read more.
Background/Objectives: Anti-drug antibody (ADA) formation can impact the safety, pharmacokinetics, and/or efficacy of biotherapeutics, including monoclonal antibodies (mAbs). Current strategies for ADA/immunogenicity risk prediction of mAbs include in silico algorithms, T cell proliferation assays, MHC-associated peptide proteomics assays (MAPPs), and dendritic cell internalization assays. However, B cell-mediated responses are not assessed in these assays. B cells are professional antigen-presenting cells (APCs) and secrete antibodies toward immunogenic mAbs. Therefore, methods to determine B cell responses would be beneficial for immunogenicity risk prediction and may provide a more comprehensive assessment of risk. Methods: We used a PBMC culture method with the addition of IL-4, IL-21, B cell activating factor (BAFF), and an anti-CD40 agonist mAb to support B cell survival and activation. Results: B cells in this assay format become activated, proliferate, and secrete IgG. A panel of 51 antibodies with varying clinical immunogenicity rates were screened in this assay with IgG secretion used as a readout for immunogenicity risk. IgG secretion differed among test articles but did not correlate with the clinical immunogenicity rating. Conclusions: This dataset highlights the challenges of developing a B cell assay for immunogenicity risk prediction and provides a framework for further refinement of a B cell-based assay for immunogenicity risk prediction of mAbs. Full article
Show Figures

Graphical abstract

9 pages, 222 KiB  
Article
Evaluation of Anti-HB Levels in a Multi-Ethnic Cohort of Health Profession Students
by Lorenzo Ippoliti, Andrea Pizzo, Agostino Paolino, Luca Coppeta, Giuseppe Bizzarro, Cristiana Ferrari, Andrea Mazza, Claudia Salvi, Ersilia Buonomo, Fabian Cenko, Andrea Magrini and Antonio Pietroiusti
Vaccines 2025, 13(7), 771; https://doi.org/10.3390/vaccines13070771 - 21 Jul 2025
Viewed by 306
Abstract
Background: Despite the widespread implementation of childhood vaccination programmes, hepatitis B virus (HBV) infection remains an ongoing occupational risk for healthcare students. In multi-ethnic and international university settings, differences in vaccination programmes and immune responses must be considered. This retrospective study aimed to [...] Read more.
Background: Despite the widespread implementation of childhood vaccination programmes, hepatitis B virus (HBV) infection remains an ongoing occupational risk for healthcare students. In multi-ethnic and international university settings, differences in vaccination programmes and immune responses must be considered. This retrospective study aimed to assess the prevalence of protective levels of anti-HBs among medical students at an international university in Rome, exploring associations with demographic and vaccination-related factors. Methods: Data were collected from routine occupational health surveillance conducted in 2023. Anti-HB titres were measured in 507 students, and information on age, sex, country of birth, age at vaccination, and time since the last dose was analysed. Results: Overall, 55.0% of students had antibody levels of at least 10 mIU/mL, indicating serological protection. Higher seroprotection rates were observed among students vaccinated in the first year of life compared to those vaccinated later. A significant decline in antibody titres was also associated with longer intervals since vaccination. Students born outside Europe tended to show lower levels of protection. Conclusions: These results emphasise the importance of screening future healthcare professionals and continuously monitoring antibody titres to help reduce HBV infections. Full article
(This article belongs to the Section Hepatitis Virus Vaccines)
22 pages, 1556 KiB  
Review
Systemic Delivery Strategies for Oncolytic Viruses: Advancing Targeted and Efficient Tumor Therapy
by Yunxin Xia, Dan Li, Kai Yang and Xia Ou
Int. J. Mol. Sci. 2025, 26(14), 6900; https://doi.org/10.3390/ijms26146900 - 18 Jul 2025
Viewed by 342
Abstract
The rapid development of therapies using oncolytic viruses (OVs) has highlighted their unique advantages, such as their selective replication in tumor cells and their activation of a specific systemic antitumor immune response. However, effectively delivering OVs to tumor sites, especially solid tumor sites, [...] Read more.
The rapid development of therapies using oncolytic viruses (OVs) has highlighted their unique advantages, such as their selective replication in tumor cells and their activation of a specific systemic antitumor immune response. However, effectively delivering OVs to tumor sites, especially solid tumor sites, remains a critical challenge. Intratumoral injections face significant barriers in treating some malignant tumors in internal organs, while increasing preclinical data support the use of intravenous injections. Nevertheless, intravenously injected viral particles may be prematurely cleared by circulating antibodies or complements, resulting in a reduced virus dose effectively reaching the tumor site. Therefore, developing methods to shield viruses from the neutralizing environment of the bloodstream while heading toward tumor sites is a must. In this review, we discuss some of the most promising delivery methods for OVs currently under investigation. Full article
Show Figures

Figure 1

24 pages, 3848 KiB  
Article
Synthesis and Biological Evaluation of Herceptin-Conjugated Liposomes Loaded with Lipocalin-2 siRNA for the Treatment of Inflammatory Breast Cancer
by Marienid Flores-Colón, Mariela Rivera-Serrano, Esther A. Peterson-Peguero, Pablo E. Vivas-Rivera, Fatima Valiyeva and Pablo E. Vivas-Mejía
Pharmaceuticals 2025, 18(7), 1053; https://doi.org/10.3390/ph18071053 - 17 Jul 2025
Viewed by 280
Abstract
Background: Inflammatory breast cancer (IBC) is a rare and aggressive subtype of breast cancer that accounts for 1–5% of BC patients and regularly affects women under 40 years of age. Approximately 50% of IBC cases are HER2+ and can be treated with the [...] Read more.
Background: Inflammatory breast cancer (IBC) is a rare and aggressive subtype of breast cancer that accounts for 1–5% of BC patients and regularly affects women under 40 years of age. Approximately 50% of IBC cases are HER2+ and can be treated with the monoclonal antibody-based therapy Herceptin (trastuzumab). However, resistance to Herceptin develops within a year, and effective second-line targeted therapies are currently unavailable for IBC patients. Lipocalin-2 (LCN2) is a promising therapeutic target for IBC due to its role in promoting tumor invasiveness, angiogenesis, and the inflammatory tumor microenvironment characteristic of IBC. Objective: We developed Herceptin-conjugated liposomes loaded with LCN2-targeted small-interference RNA (siRNA) for HER2+ IBCs. Methods: We synthesized DSPE-PEG(2000)-maleimide-Herceptin in a three-step process and formulated the liposomes together with DOPC, PEG(2000)-PE, cholesterol, and siRNA. Results: Dynamic light scattering confirmed the liposome size distribution, which was 66.7 nm for the Herceptin-conjugated liposome versus 43.0 nm in a non-functionalized liposome. Here, we report efficient internalization of this formulation into HER2+ IBC cells, reducing LCN2 levels by 30% and disrupting tumor emboli formation. RNA sequencing revealed 139 genes that were differentially expressed upon LCN2 knockdown, with 25 canonical pathways identified through Ingenuity Pathway Analysis. Conclusions: These findings suggest that LCN2-targeted siRNA within Herceptin-targeted liposomes represents a promising therapeutic strategy for IBC. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

30 pages, 1348 KiB  
Review
Emerging Molecular Mechanisms in Malaria Pathogenesis and Novel Therapeutic Approaches: A Focus on P. falciparum Malaria
by Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Vyshnavy Balendra, Omar Shazley, Tatiana Gardellini, Abdul Jan, Kokab Younis, Chuku Okorie and Ricardo Izurieta
Biomolecules 2025, 15(7), 1038; https://doi.org/10.3390/biom15071038 - 17 Jul 2025
Viewed by 951
Abstract
Malaria is still one of the biggest global health problems, especially in parts of the world, such as sub-Saharan Africa, which remains most heavily affected. Despite significant advancements in testing, treatment, and prevention, malaria continues to seriously impact millions, primarily young children and [...] Read more.
Malaria is still one of the biggest global health problems, especially in parts of the world, such as sub-Saharan Africa, which remains most heavily affected. Despite significant advancements in testing, treatment, and prevention, malaria continues to seriously impact millions, primarily young children and populations in rural and impoverished areas. This paper looks at how the malaria parasite works inside the body, how it avoids the immune system, and how it becomes resistant to current drugs. Thanks to new advances in genetic and biochemical research, scientists are discovering new weak points in the parasite that could lead to better treatments. New vaccines, like RTS, S and R21, along with antibody-based therapies, offer renewed hope; however, extending the duration of the immunity they induce and ensuring effectiveness across diverse parasite strains remain significant challenges. Solving the malaria crisis will require more than science—it also necessitates equitable and timely access to treatments, robust health systems, and international collaboration. Continued research and global cooperation bring the world closer to ending malaria for good. Full article
(This article belongs to the Special Issue New Insights into Molecular Mechanisms and Therapeutics for Malaria)
Show Figures

Figure 1

15 pages, 1291 KiB  
Article
Development and Validation of a Standardized Pseudotyped Virus-Based Neutralization Assay for Assessment of Anti-Nipah Virus Neutralizing Activity in Candidate Nipah Vaccines
by Muntasir Alam, Md Jowel Rana, Asma Salauddin, Emma Bentley, Gathoni Kamuyu, Dipok Kumer Shill, Shafina Jahan, Mohammad Mamun Alam, Md Abu Raihan, Mohammed Ziaur Rahman, Rubhana Raqib, Ali Azizi and Mustafizur Rahman
Vaccines 2025, 13(7), 753; https://doi.org/10.3390/vaccines13070753 - 15 Jul 2025
Viewed by 1728
Abstract
Background: An effective vaccine against Nipah virus (NiV) is crucial due to its high fatality rate and recurrent outbreaks in South and Southeast Asia. Vaccine development is challenged by the lack of validated accessible neutralization assays, as virus culture requires BSL-4 facilities, restricting [...] Read more.
Background: An effective vaccine against Nipah virus (NiV) is crucial due to its high fatality rate and recurrent outbreaks in South and Southeast Asia. Vaccine development is challenged by the lack of validated accessible neutralization assays, as virus culture requires BSL-4 facilities, restricting implementation in resource-limited settings. To address this, we standardized and validated a pseudotyped virus neutralization assay (PNA) for assessing NiV-neutralizing antibodies in BSL-2 laboratories. Methods: The NiV-PNA was validated following international regulatory standards, using a replication-defective recombinant Vesicular stomatitis virus (rVSV) backbone dependent pseudotyped virus. Assessments included sensitivity, specificity, dilutional linearity, relative accuracy, precision, and robustness. The assay was calibrated using the WHO International Standard for anti-NiV antibodies and characterized reference sera to ensure reliable performance. Findings: Preliminary evaluation of the developed NiV-PNA showed 100% sensitivity and specificity across 10 serum samples (5 positive, 5 negative), with a positive correlation to a calibrated reference assay (R2 = 0.8461). Dilutional linearity (R2 = 0.9940) and accuracy (98.18%) were confirmed across the analytical titer range of 11-1728 IU/mL. The assay also exhibited high precision, with intra-assay and intermediate precision geometric coefficients of variation of 6.66% and 15.63%, respectively. Robustness testing demonstrated minimal variation across different pseudotyped virus lots, incubation times, and cell counts. Conclusions: The validated NiV-PNA is a reproducible and scalable assay platform for quantifying NiV neutralizing antibodies, offering a safer alternative to virus culture. Its validation and integration into the CEPI Centralized Laboratory Network will enhance global capacity for vaccine evaluation and outbreak preparedness. Full article
(This article belongs to the Section Vaccines against Infectious Diseases)
Show Figures

Graphical abstract

16 pages, 1765 KiB  
Article
Towards Understanding the Basis of Brucella Antigen–Antibody Specificity
by Amika Sood, David R. Bundle and Robert J. Woods
Molecules 2025, 30(14), 2906; https://doi.org/10.3390/molecules30142906 - 9 Jul 2025
Viewed by 363
Abstract
Brucellosis continues to be a significant global zoonotic infection, with diagnosis largely relying on the detection of antibodies against the Brucella O-polysaccharide (O-PS) A and M antigens. In this study, computational methods, including homology modeling, molecular docking, and molecular dynamics simulations, were applied [...] Read more.
Brucellosis continues to be a significant global zoonotic infection, with diagnosis largely relying on the detection of antibodies against the Brucella O-polysaccharide (O-PS) A and M antigens. In this study, computational methods, including homology modeling, molecular docking, and molecular dynamics simulations, were applied to investigate the interaction of the four murine monoclonal antibodies (mAbs) YsT9.1, YsT9.2, Bm10, and Bm28 with hexasaccharide fragments of the A and M epitopes. Through stringent stability criteria, based on interaction energies and mobility of the antigens, high-affinity binding of A antigen with YsT9.1 antibody and M antigen with Bm10 antibody was predicted. In both the complexes hydrophobic interactions dominate the antigen–antibody binding. These findings align well with experimental epitope mapping, indicating YsT9.1’s preference for internal sequences of the A epitope and Bm10’s preference for internal elements of the M epitope. Interestingly, no stable complexes were identified for YsT9.2 or Bm28 interacting with A or M antigen. This study provides valuable insights into the mechanism of molecular recognition of Brucella O-antigens that can be applied for the development of improved diagnostics, synthetic glycomimetics, and improved vaccine strategies. Full article
Show Figures

Graphical abstract

14 pages, 2006 KiB  
Perspective
Lupus Anticoagulant Testing for Diagnosis of Antiphospholipid Syndrome: A Perspective Informed by Local Practice
by Emmanuel J. Favaloro and Leonardo Pasalic
J. Clin. Med. 2025, 14(14), 4812; https://doi.org/10.3390/jcm14144812 - 8 Jul 2025
Viewed by 820
Abstract
Assessment for the presence or absence of lupus anticoagulant (LA) represents a common investigation in hemostasis laboratories. In particular, LA represents one of the laboratory criteria for the diagnosis of definite antiphospholipid syndrome (APS). The other laboratory criteria are the solid phase assays [...] Read more.
Assessment for the presence or absence of lupus anticoagulant (LA) represents a common investigation in hemostasis laboratories. In particular, LA represents one of the laboratory criteria for the diagnosis of definite antiphospholipid syndrome (APS). The other laboratory criteria are the solid phase assays (anticardiolipin (aCL) and anti-β2Glycoprotein I (aβ2GPI) antibodies of IgG and IgM isotypes). Current International Society on Thrombosis and Haemostasis (ISTH) guidance recommends testing LA by at least two tests based on different principles, with the activated partial thromboplastin time (aPTT) and dilute Russell viper venom time (dRVVT) being preferred. Additional assays may be used in addition, or instead of these assays in particular situations. For example, aPTT and dRVVT assays are very sensitive to the presence of various anticoagulants, and this may lead to false-positive identification of LA. This is particularly problematic in the age of the DOACs (direct oral anticoagulants), which are now the leading anticoagulants in use worldwide. We review recent literature on LA testing as well as our local practice to provide an update on this common test procedure. Our experience should be useful for laboratories struggling with LA interpretation for diagnosis or exclusion of APS. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

12 pages, 519 KiB  
Article
Hepatitis C Virus Opportunistic Screening in South-Eastern Tuscany Residents Admitted to the University Hospital in Siena
by Cristina Stasi, Tommaso Marzotti, Filippo Nassi, Giovanna Giugliano, Sabrina Pacini, Silvia Rentini, Riccardo Accioli, Raffaele Macchiarelli, Luigi Gennari, Pietro Enea Lazzerini and Stefano Brillanti
Livers 2025, 5(3), 30; https://doi.org/10.3390/livers5030030 - 30 Jun 2025
Viewed by 445
Abstract
Background. To meet the WHO’s viral hepatitis elimination goal by 2030, the Minister of Health (Italy) introduced free HCV screening among people born between 1969 and 1989 and those at greater risk (people in the care of the addiction services and detained). [...] Read more.
Background. To meet the WHO’s viral hepatitis elimination goal by 2030, the Minister of Health (Italy) introduced free HCV screening among people born between 1969 and 1989 and those at greater risk (people in the care of the addiction services and detained). Aims. To estimate the following: (i) the prevalence of HCV in hospitalized patients born before 1969 not included in the free HCV screening, (ii) the prevalence of transaminase values outside the range, and (iii) the HBV prevalence in a subgroup of patients. Methods. Anti-HCV antibodies and transaminase values were prospectively evaluated in patients born before 1969 and admitted to the Santa Maria alle Scotte Hospital in Siena. The first screening (October 2021–July 2022) was conducted in the Internal Medicine Division (cohort 0), and the second one (May 2024–October 2024) in Internal Medicine, Gastroenterology, and Geriatric Units (cohorts 1–3), including clinical features and HBV markers in a subgroup of patients. Results. Overall, 774 subjects underwent HCV screening. In the first screening period, 1.4% (8/567) of patients were anti-HCV+, of whom 0.7% were HCV RNA+ (4/567). In the second, 3.9% of patients (8/207) were anti-HCV+ and 0.9% were viremic (2/207). Overall, HCV prevalence was 0.8%. Of 96 patients in the gastroenterology cohort, 8 patients were at risk for occult HBV infection (8.3%). Conclusions. Our study demonstrates a chronic HCV infection prevalence of 0.8% in hospitalised patients born before 1969 and a prevalence of 8.3% of people at risk for occult HBV infection in a subgroup of patients residing in South-Eastern Tuscany, confirming that an opportunistic screening can identify the unrecognized people affected by viral hepatitis. Full article
Show Figures

Figure 1

19 pages, 3982 KiB  
Article
The Autophagy Inhibitor Bafilomycin Inhibits Antibody-Dependent Natural Killer Cell-Mediated Killing of Breast Carcinoma Cells
by Ákos M. Bede, Csongor Váróczy, Zsuzsanna Polgár, Gergő Fazekas, Csaba Hegedűs, Endre Kókai, Katalin Kovács and László Virág
Int. J. Mol. Sci. 2025, 26(13), 6273; https://doi.org/10.3390/ijms26136273 - 28 Jun 2025
Viewed by 495
Abstract
The resistance of breast cancer cells to therapeutic antibodies such as anti-HER2 trastuzumab can be overcome by engaging natural killer (NK) cells for killing antibody-binding tumor cells via antibody-dependent cellular cytotoxicity (ADCC). Here, we investigated how autophagy modulation affects trastuzumab-mediated ADCC in HER2-positive [...] Read more.
The resistance of breast cancer cells to therapeutic antibodies such as anti-HER2 trastuzumab can be overcome by engaging natural killer (NK) cells for killing antibody-binding tumor cells via antibody-dependent cellular cytotoxicity (ADCC). Here, we investigated how autophagy modulation affects trastuzumab-mediated ADCC in HER2-positive JIMT1 breast cancer cells and NK cells. Autophagy inducers (rapamycin and resveratrol) had no significant impact, but the inhibitor bafilomycin nearly abolished ADCC. Protection occurred when either cancer or NK cells were pretreated, indicating dual effects. Bafilomycin reduced phosphatidylserine externalization, the loss of plasma membrane integrity, caspase-3/7 activity, and DNA fragmentation. It downregulated pro-apoptotic BAK1 and BAX without altering BCL-2. Additionally, bafilomycin decreased HER2 surface expression, impairing trastuzumab binding, and modulated immune regulators (STAT1, CD95, and PD-L1) in NK and/or in the cancer cells. Bafilomycin disrupted HER2 trafficking and induced HER2 internalization, leading to its accumulation in cytoplasmic vesicles. These findings show that autophagy inhibition by bafilomycin confers ADCC resistance by altering apoptosis, immune signaling, and HER2 dynamics. The study underscores autophagy’s role in antibody-based cancer therapy efficacy. Full article
Show Figures

Figure 1

30 pages, 2522 KiB  
Review
Recent Advances in Antibody Discovery Using Ultrahigh-Throughput Droplet Microfluidics: Challenges and Future Perspectives
by Dhiman Das, John Scott McGrath, John Hudson Moore, Jason Gardner and Daniël Blom
Biosensors 2025, 15(7), 409; https://doi.org/10.3390/bios15070409 - 25 Jun 2025
Viewed by 727
Abstract
Droplet microfluidics has emerged as a transformative technology that can substantially increase the throughput of antibody “hit” discovery. This review provides a comprehensive overview of the recent advances in this dynamic field, focusing primarily on the technological and methodological innovations that have enhanced [...] Read more.
Droplet microfluidics has emerged as a transformative technology that can substantially increase the throughput of antibody “hit” discovery. This review provides a comprehensive overview of the recent advances in this dynamic field, focusing primarily on the technological and methodological innovations that have enhanced the antibody discovery process. This investigation starts with the fundamental principles of droplet microfluidics, emphasizing its unique capabilities for precisely controlling and manipulating picoliter-volume droplets. This discussion extends to various assay types employed in droplet microfluidics, including binding assays, functional assays, Förster Resonance Energy Transfer (FRET) assays, internalization assays, and neutralization assays, each offering distinct advantages for antibody screening and characterization. A critical examination of methods to improve droplet encapsulation is presented, besides addressing challenges such as reducing the leakage of small molecules from droplets and explaining what a “hit” droplet looks like. Furthermore, we assess design considerations essential for implementing high-throughput fluorescence-activated droplet sorting (FADS) workstations and emphasize the need for automation. This review also delves into the evolving commercial landscape, identifying key market players and emerging industry trends. This review paper aims to catalyze further research and innovation, ultimately advancing the field towards more efficient and robust solutions for antibody identification and development. Full article
(This article belongs to the Special Issue The Emerging Techniques in Biosensors and Bioelectronics)
Show Figures

Figure 1

Back to TopTop