Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = internal gravity waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5313 KiB  
Article
The Influence of Gravity Gradient on the Inertialess Stratified Flow and Vortex Structure over an Obstacle in a Narrow Channel
by Karanvir Singh Grewal, Roger E. Khayat and Kelly A. Ogden
Fluids 2025, 10(8), 195; https://doi.org/10.3390/fluids10080195 - 29 Jul 2025
Viewed by 154
Abstract
The current study examines the influence of a varying gravity field and its interaction with density stratification. This represents a novel area in baroclinic flow analysis. The classical vortex and internal wave structures in stratified flows are shown to be significantly modified when [...] Read more.
The current study examines the influence of a varying gravity field and its interaction with density stratification. This represents a novel area in baroclinic flow analysis. The classical vortex and internal wave structures in stratified flows are shown to be significantly modified when gravity varies with height. Vortices may shift, stretch, or weaken depending on the direction and strength of gravity variation, and internal waves develop asymmetries or damping that are not present under constant gravity. We examine the influence of gravity variation on the flow of both homogeneous and density-stratified fluids in a channel with topography consisting of a Gaussian obstacle lying at the bottom of the channel. The flow is without inertia, induced by the translation of the top plate. Both the density and gravity are assumed to vary linearly with height, with the minimum density at the moving top plate. The narrow-gap approach is used to generate the flow field in terms of the pressure gradient along the top plate, which, in turn, is obtained in terms of the bottom topography and the three parameters of the problem, namely, the Froude number and the density and gravity gradients. The resulting stream function is a fifth-order polynomial in the vertical coordinate. In the absence of stratification, the flow is smooth, affected rather slightly by the variable topography, with an essentially linear drop in the pressure induced by the contraction. For a weak stratified fluid, the streamlines become distorted in the form of standing gravity waves. For a stronger stratification, separation occurs, and a pair of vortices generally appears on the two sides of the obstacle, the size of which depends strongly on the flow parameters. The influence of gravity stratification is closely coupled to that of density. We examine conditions where the coupling impacts the pressure and the velocity fields, particularly the onset of gravity waves and vortex flow. Only a mild density gradient is needed for flow separation to occur. The influence of the amplitude and width of the obstacle is also investigated. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Temporal Evolution of Small-Amplitude Internal Gravity Waves Generated by Latent Heating in an Anelastic Fluid Flow
by Amir A. M. Sayed, Amna M. Grgar and Lucy J. Campbell
AppliedMath 2025, 5(3), 80; https://doi.org/10.3390/appliedmath5030080 - 30 Jun 2025
Viewed by 176
Abstract
A two-dimensional time-dependent model is presented for upward-propagating internal gravity waves generated by an imposed thermal forcing in a layer of fluid with uniform background velocity and stable stratification under the anelastic approximation. The configuration studied is representative of a situation with deep [...] Read more.
A two-dimensional time-dependent model is presented for upward-propagating internal gravity waves generated by an imposed thermal forcing in a layer of fluid with uniform background velocity and stable stratification under the anelastic approximation. The configuration studied is representative of a situation with deep or shallow latent heating in the lower atmosphere where the amplitude of the waves is small enough to allow linearization of the model equations. Approximate asymptotic time-dependent solutions, valid for late time, are obtained for the linearized equations in the form of an infinite series of terms involving Bessel functions. The asymptotic solution approaches a steady-amplitude state in the limit of infinite time. A weakly nonlinear analysis gives a description of the temporal evolution of the zonal mean flow velocity and temperature resulting from nonlinear interaction with the waves. The linear solutions show that there is a vertical variation of the wave amplitude which depends on the relative depth of the heating to the scale height of the atmosphere. This means that, from a weakly nonlinear perspective, there is a non-zero divergence of vertical momentum flux, and hence, a non-zero drag force, even in the absence of vertical shear in the background flow. Full article
(This article belongs to the Special Issue Exploring the Role of Differential Equations in Climate Modeling)
Show Figures

Figure 1

16 pages, 3012 KiB  
Review
Application of Large-Scale Rotating Platforms in the Study of Complex Oceanic Dynamic Processes
by Xiaojie Lu, Guoqing Han, Yifan Lin, Qian Cao, Zhiwei You, Jingyuan Xue, Xinyuan Zhang and Changming Dong
J. Mar. Sci. Eng. 2025, 13(6), 1187; https://doi.org/10.3390/jmse13061187 - 18 Jun 2025
Viewed by 991
Abstract
As the core components of geophysical dynamic system, oceans and atmospheres are dominated by the Coriolis force, which governs complex dynamic phenomena such as internal waves, gravity currents, vortices, and others involving multi-scale spatiotemporal coupling. Due to the limitations of in situ observations, [...] Read more.
As the core components of geophysical dynamic system, oceans and atmospheres are dominated by the Coriolis force, which governs complex dynamic phenomena such as internal waves, gravity currents, vortices, and others involving multi-scale spatiotemporal coupling. Due to the limitations of in situ observations, large-scale rotating tanks have emerged as critical experimental platforms for simulating Earth’s rotational effects. This review summarizes recent advancements in rotating tank applications for studying oceanic flow phenomena, including mesoscale eddies, internal waves, Ekman flows, Rossby waves, gravity currents, and bottom boundary layer dynamics. Advanced measurement techniques, such as particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF), have enabled quantitative analyses of internal wave breaking-induced mixing and refined investigations of vortex merging dynamics. The findings demonstrate that large-scale rotating tanks provide a controllable experimental framework for unraveling the physical essence of geophysical fluid motions. Such laboratory experimental endeavors in a rotating tank can be applied to more extensive scientific topics, in which the rotation and stratification play important roles, offering crucial support for climate model parameterization and coupled ocean–land–atmosphere mechanisms. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

13 pages, 5072 KiB  
Article
Regional Total Electron Content Disturbance During a Meteorological Storm
by Olga P. Borchevkina, Aleksandr V. Timchenko, Fedor S. Bessarab, Yuliya A. Kurdyaeva, Ivan V. Karpov, Galina A. Yakimova, Maxim G. Golubkov, Ilya G. Stepanov, Sudipta Sasmal and Alexei V. Dmitriev
Atmosphere 2025, 16(6), 690; https://doi.org/10.3390/atmos16060690 - 6 Jun 2025
Viewed by 321
Abstract
This study presents a comprehensive analysis of the impact of Storm Laura, which was observed over Europe and the Baltic Sea on 12 March 2020, on the thermosphere–ionosphere system. The investigation of ionospheric disturbances caused by the meteorological storm was carried out using [...] Read more.
This study presents a comprehensive analysis of the impact of Storm Laura, which was observed over Europe and the Baltic Sea on 12 March 2020, on the thermosphere–ionosphere system. The investigation of ionospheric disturbances caused by the meteorological storm was carried out using a combined modeling approach, incorporating the regional AtmoSym and the global GSM TIP models. This allowed for the consideration of acoustic and internal gravity waves (AWs and IGWs) generated by tropospheric convective sources and the investigation of wave-induced effects in both the neutral atmosphere and ionosphere. The simulation results show that, three hours after the activation of the additional heat source, an area of increased temperature exceeding 100 K above the background level formed over the meteorological storm region. This temperature change had a significant impact on the meridional component of the thermospheric wind and total electron content (TEC) variations. For example, meridional wind changes reached 80 m/s compared a the meteorologically quiet day, while TEC variations reached 1 TECu. Good agreement was obtained with experimental TEC maps from CODE (Center for Orbit Determination in Europe), MOSGIM (Moscow Global Ionospheric Map), and WD IZMIRAN (West Department of Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation Russian Academy of Sciences), which revealed a negative TEC value effect over the meteorological storm region. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

18 pages, 295 KiB  
Article
On the Frequency of Internal Gravity Waves in the Atmosphere: Comparing Theory with Observations
by Robert G. Zakinyan, Alaa H. Kamil, Vladislav A. Svetlichny and Arthur R. Zakinyan
Atmosphere 2025, 16(1), 73; https://doi.org/10.3390/atmos16010073 - 10 Jan 2025
Cited by 1 | Viewed by 739
Abstract
This paper is devoted to the dynamics of the propagation of non-planetary scale internal gravity waves (IGWs) in the stratified atmosphere. We consider the system of equations describing internal gravity waves in three approximations: (1) the incompressible fluid approximation, (2) the anelastic gas [...] Read more.
This paper is devoted to the dynamics of the propagation of non-planetary scale internal gravity waves (IGWs) in the stratified atmosphere. We consider the system of equations describing internal gravity waves in three approximations: (1) the incompressible fluid approximation, (2) the anelastic gas (compressible fluid) approximation, and (3) a new approximation called the non-Boussinesq gas approximation. For each approximation, a different dispersion relation is given, from which it follows that the oscillation frequency of internal gravity waves depends on the direction of propagation, the horizontal and vertical components of the wave vector, the vertical gradient of the background temperature, and the background wind shear. In each of the three cases, the maximum frequency of internal gravity waves is different. Moreover, in the anelastic gas approximation, the maximum frequency is equal to the Brunt–Väisälä buoyancy frequency, and in the incompressible fluid approximation, it is larger than the Brunt–Väisälä frequency by a factor of 72.6. In the model proposed in this paper, the value of the maximum frequency of internal gravity waves occupies an intermediate position between the above limits. The question arises: which of the above fluid representations adequately describe the dynamics of internal gravity waves? This paper compares the above theories with observational data and experiments. Full article
(This article belongs to the Section Planetary Atmospheres)
34 pages, 1373 KiB  
Article
Modified Heisenberg Commutation Relations and the Infinite-Square Well Potential: Some Simple Consequences
by Mauricio Contreras González, Roberto Ortiz Herrera and José Mauricio Gonzalez
Symmetry 2024, 16(10), 1268; https://doi.org/10.3390/sym16101268 - 26 Sep 2024
Cited by 1 | Viewed by 1297
Abstract
We explore some consequences of modifying the usual Heisenberg commutation relations of two simple systems: first, the one-dimensional quantum system given by the infinite square-well potential, and second, the case of a gas of N non-interacting particles in a box of volume V [...] Read more.
We explore some consequences of modifying the usual Heisenberg commutation relations of two simple systems: first, the one-dimensional quantum system given by the infinite square-well potential, and second, the case of a gas of N non-interacting particles in a box of volume V, which permit obtaining analytical solutions. We analyse two possible cases of modified Heisenberg commutation relations: one with a linear and non-linear dependence on the position and another with a linear and quadratic dependence on the momentum. We determine the eigenfunctions, probability densities, and energy eigenvalues for the one-dimensional square well for both deformation cases. For linear and non-linear x deformation dependence, the wave functions and energy levels change substantially when the weight factor associated with the modification term increases. Here, the energy levels are rescaled homogeneously. Instead, for linear and quadratic momentum p deformation dependence, the changes in the energy spectrum depend on the energy level. However, the probability densities are the same as those without any modification. For the non-interacting gas, the position deformation implies that the ideal gas state equation is modified, acquiring the form of a virial expansion in the volume, whereas the internal energy is unchanged. Instead, the ideal gas state equation remains unchanged at the lowest order in β for the momentum modification case. However, the temperature modifies the internal energy at the lowest order in β. Thus, this study indicates that gravity could generate forces on particles by modifying the Heisenberg commutation relations. Therefore, gravitation could be the cause of the other three forces of nature. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

20 pages, 25142 KiB  
Article
Double-Swing Spring Origami Triboelectric Nanogenerators for Self-Powered Ocean Monitoring
by Xinru Du, Hao Zhang, Hao Cao, Zewei Hao, Takuji Nakashima, Yoshikazu Tanaka, Pengcheng Jiao and Hidemi Mutsuda
Energies 2024, 17(12), 2981; https://doi.org/10.3390/en17122981 - 17 Jun 2024
Cited by 2 | Viewed by 1736
Abstract
Coastal areas often experience high population density and intense human activity owing to the considerable value of the ocean. Therefore, devices for monitoring marine disasters are crucial for ensuring the safety of human life. Herein, we develop hemispherical spring origami (SO) triboelectric nanogenerators [...] Read more.
Coastal areas often experience high population density and intense human activity owing to the considerable value of the ocean. Therefore, devices for monitoring marine disasters are crucial for ensuring the safety of human life. Herein, we develop hemispherical spring origami (SO) triboelectric nanogenerators (TENGs) (HSO-TENGs) for self-powered ocean wave monitoring. Optimization is performed using two approaches. First, swing machine experiments are conducted to investigate the monitoring performance of the HSO-TENGs regarding wave height and period with satisfactory accuracy. To increase power generation and monitoring accuracy, the internal inertia and centroid of gravity of the HSO-TENGs are optimized with respect to the structural parameters (i.e., magnet weight, hammer height, and external swing arm length). Second, numerical simulations are performed using the smoothed-particle hydrodynamics (SPH) method to determine the most suitable fixed condition for the HSO-TENGs for sensing wave changes. Subsequently, wave tank experiments are conducted on the HSO-TENGs to determine their ability to sense wave height, period, frequency, and direction. Tests related to supplying other sensors are also conducted. Eventually, the ability of the HSO-TENGs to monitor wave direction and spreading parameters is investigated in a numerical SPH circular wave tank. The results prove that the optimized HSO-TENGs can achieve powering and sensing through the same device. Full article
(This article belongs to the Special Issue Dynamic Analysis and Optimization of Wave Energy Devices)
Show Figures

Figure 1

14 pages, 14550 KiB  
Technical Note
Fluctuations in Refracted Star Signals Caused by the Stratospheric Internal Gravity Waves
by Shaochong Wu, Hongyuan Wang, Xunjiang Zheng and Zhiqiang Yan
Remote Sens. 2024, 16(9), 1519; https://doi.org/10.3390/rs16091519 - 25 Apr 2024
Viewed by 1091
Abstract
The application of starlight refraction navigation to spacecraft and space weapons is a significant development. However, the irregular stratospheric atmosphere can cause fluctuations in relative light intensity and refraction angles of refracted stars, which need to be analyzed to provide guidance for system [...] Read more.
The application of starlight refraction navigation to spacecraft and space weapons is a significant development. However, the irregular stratospheric atmosphere can cause fluctuations in relative light intensity and refraction angles of refracted stars, which need to be analyzed to provide guidance for system design and simulation verification. The internal gravity wave (IGW) is an important component of the irregular atmosphere. Based on the Rytov approximation, closed-form approximations were obtained, which can more intuitively reveal the relationship between the IGW parameters and the star signals’ statistical characteristics. From the GOMOS observations, the influence of the stratosphere from 25 km to 35 km on the fluctuations in relative intensity and refraction angles was analyzed in this study. As the height increased, the fluctuations in starlight signals gradually weakened. Compared with the numerical solution, the error of the closed-form approximations for relative intensity fluctuations was no more than 10%, and the error for refraction angle fluctuations was 1.0%. Compared with the measured data, the error of the closed-form approximations for relative intensity was 6.3%. The proposed approximations better reflect the relationship between IGW parameters and star signal fluctuations compared to the existing approximation. The research in this article can provide a reference for application assessment based on starlight refraction navigation. Full article
Show Figures

Figure 1

19 pages, 396 KiB  
Review
The Study of Internal Gravity Waves in the Earth’s Atmosphere by Radio Occultations: A Review
by Michael Gorbunov and Valery Kan
Remote Sens. 2024, 16(2), 221; https://doi.org/10.3390/rs16020221 - 5 Jan 2024
Cited by 2 | Viewed by 1797
Abstract
Internal gravity waves (IGWs) in the middle atmosphere are the main source of mesoscale fluctuations of wind and temperature. The parameterization of IGWs and study of their climatology is necessary for the development of global atmospheric circulation models. In this review, we focus [...] Read more.
Internal gravity waves (IGWs) in the middle atmosphere are the main source of mesoscale fluctuations of wind and temperature. The parameterization of IGWs and study of their climatology is necessary for the development of global atmospheric circulation models. In this review, we focus on the application of Radio Occultation (RO) observations for the retrieval of IGW parameters. (1) The simplest approach employs the retrieved temperature profiles. It is based on the fact that IGWs are highly anisotropic structures and can be accurately retrieved by RO. The basic assumption is that all the temperature fluctuations are caused by IGWs. The smoothed background temperature profile defines the the Brunt–Väisälä frequency, which, together with the temperature fluctuations, defines the IGW specific potential energy. Many studies have derived the distribution and climatology of potential energy, which is one of the most important characteristics of IGWs. (2) More detailed analysis of the temperature profiles is based on the derivation of the temperature fluctuation spectra. For saturated IGWs, the spectra must obey the power law with an exponent of 3. Such spectra are obtained by using Wave Optical (WO) processing. (3) More advanced analysis employs space–frequency analysis. It is based on phase-sensitive techniques like cross S- or wavelet transforms in order to identify propagating IGWs. (4) Another direction is the IGW parameter estimate from separate temperature profiles applying the stability condition in terms of the Richardson number. In this framework, a necessary condition is formulated that defines whether or not the temperature fluctuations can be related to IGW events. The temperature profile retrieval involves integral transforms and filtering that constitute the observation filter. (5) A simpler filter is implemented by the analysis of the RO amplitude fluctuation spectra, based on the diffraction theory in the framework of the phase screen and weak fluctuation approximations. The two spectral parameters, the external scale and the structural characteristic, define the specific potential energy. This approach allows the derivation of the spacial and seasonal distributions of IGW activity. We conclude that the success of IGW study by RO is stimulated by a large number of RO observations and advanced techniques based on Fourier and space–time analysis, physical equations describing IGWs, and diffraction theory. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Graphical abstract

36 pages, 2677 KiB  
Article
Dimensionless Groups by Entropic Similarity: II—Wave Phenomena and Information-Theoretic Flow Regimes
by Robert K. Niven
Entropy 2023, 25(11), 1538; https://doi.org/10.3390/e25111538 - 11 Nov 2023
Cited by 1 | Viewed by 1668
Abstract
The aim of this study is to explore the insights of the information-theoretic definition of similarity for a multitude of flow systems with wave propagation. This provides dimensionless groups of the form Πinfo=U/c, where U is a [...] Read more.
The aim of this study is to explore the insights of the information-theoretic definition of similarity for a multitude of flow systems with wave propagation. This provides dimensionless groups of the form Πinfo=U/c, where U is a characteristic flow velocity and c is a signal velocity or wave celerity, to distinguish different information-theoretic flow regimes. Traditionally, dimensionless groups in science and engineering are defined by geometric similarity, based on ratios of length scales; kinematic similarity, based on ratios of velocities or accelerations; and dynamic similarity, based on ratios of forces. In Part I, an additional category of entropic similarity was proposed based on ratios of (i) entropy production terms; (ii) entropy flow rates or fluxes; or (iii) information flow rates or fluxes. In this Part II, the information-theoretic definition is applied to a number of flow systems with wave phenomena, including acoustic waves, blast waves, pressure waves, surface or internal gravity waves, capillary waves, inertial waves and electromagnetic waves. These are used to define the appropriate Mach, Euler, Froude, Rossby or other dimensionless number(s)—including new groups for internal gravity, inertial and electromagnetic waves—to classify their flow regimes. For flows with wave dispersion, the coexistence of different celerities for individual waves and wave groups—each with a distinct information-theoretic group—is shown to imply the existence of more than two information-theoretic flow regimes, including for some acoustic wave systems (subsonic/mesosonic/supersonic flow) and most systems with gravity, capillary or inertial waves (subcritical/mesocritical/supercritical flow). For electromagnetic wave systems, the additional vacuum celerity implies the existence of four regimes (subluminal/mesoluminal/transluminal/superluminal flow). In addition, entropic analyses are shown to provide a more complete understanding of frictional behavior and sharp transitions in compressible and open channel flows, as well as the transport of entropy by electromagnetic radiation. The analyses significantly extend the applications of entropic similarity for the analysis of flow systems with wave propagation. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Graphical abstract

14 pages, 4987 KiB  
Article
GNSS/AQUA Fusion Study of Atmospheric Response Characteristics and Interaction Mechanisms during the 2022 Tonga Volcanic Eruption
by Lulu Ming, Fuyang Ke, Xiangxiang Hu, Wanganyin Cui and Pan Zhao
Atmosphere 2023, 14(11), 1619; https://doi.org/10.3390/atmos14111619 - 28 Oct 2023
Cited by 1 | Viewed by 1575
Abstract
A large-scale underwater volcanic eruption occurred at the volcano of Hunga Tonga-Hunga Ha’apai (HTHH) on 15 January 2022. At present, there is no consensus on the ionospheric response characteristics and interaction mechanism during volcanic eruptions. Based on the Global Navigation Satellite System (GNSS), [...] Read more.
A large-scale underwater volcanic eruption occurred at the volcano of Hunga Tonga-Hunga Ha’apai (HTHH) on 15 January 2022. At present, there is no consensus on the ionospheric response characteristics and interaction mechanism during volcanic eruptions. Based on the Global Navigation Satellite System (GNSS), AQUA satellite’s Atmospheric Infrared Sounder (AIRS), the experiment studies the response characteristics of the ionosphere and gravity waves during the eruption of the volcano and their interaction mechanisms and the International Real-Time Geomagnetic Observation Network (INTERMAGNET). First, a geomagnetic anomaly was detected before the eruption, which caused variations in the ionospheric VTEC (Vertical Total Electron Content) by about 15 TECU. Based on the IGS (International GNSS Service) observations, the VTEC distribution between 60° north and south latitudes was retrieved. The results show that before and after the eruption of Tonga Volcano, significant ionospheric anomalies were observed to the south, northwest and southwest of the volcano, with a maximum anomaly of 15 TECU. The study indicates that the geomagnetic anomaly disturbance is one of the precursors of volcanic eruption and has a certain degree of impact on the ionosphere. A correlation between geomagnetic anomalies and ionospheric anomalies was found to exist. The vast impact from the volcanic eruption excites gravity waves over the surface, which then propagate longitudinally, further perturbing the ionosphere. It is also detected that the ionospheric anomaly perturbation has a high coincidence effect with the gravity wave anomaly. Therefore, the gravity waves generated by atmospheric variations are used to explain the ionospheric perturbation phenomenon caused by volcanic eruptions. Full article
(This article belongs to the Special Issue Coupling between Plasmasphere and Upper Atmosphere)
Show Figures

Figure 1

39 pages, 4113 KiB  
Review
A Tropical Cyclone or Typhoon as an Element of the Earth–Atmosphere–Ionosphere–Magnetosphere System: Theory, Simulations, and Observations
by Leonid F. Chernogor
Remote Sens. 2023, 15(20), 4919; https://doi.org/10.3390/rs15204919 - 11 Oct 2023
Cited by 13 | Viewed by 4377
Abstract
The premise has been validated that a tropical cyclone (TC, typhoon, hurricane), one of the most powerful large-scale formations systematically arising in the atmosphere, is an element of the ocean–atmosphere–ionosphere–magnetosphere system. The TC plays a crucial role with regard to a global-scale mass [...] Read more.
The premise has been validated that a tropical cyclone (TC, typhoon, hurricane), one of the most powerful large-scale formations systematically arising in the atmosphere, is an element of the ocean–atmosphere–ionosphere–magnetosphere system. The TC plays a crucial role with regard to a global-scale mass and energy exchange in this system. The study of this system encompasses a broad spectrum of physical phenomena occurring and processes operating within the system components, as well as the mechanisms of their interactions. The problem under discussion pertains to interdisciplinary science. Its scope ranges from different Earth sciences to geospace sciences, which comprise the physics of the ocean, meteorology, the physics of the Earth’s atmospheric and space environment, etc. Observations of the ionospheric response to the impact of a number of unique typhoons made using multifrequency multiple path oblique incidence ionospheric sounding have confirmed the definitive role that the internal gravity waves and infrasound play in producing atmospheric–ionospheric disturbances. It has been demonstrated that these disturbances are capable of significantly affecting the characteristics of high-frequency radio waves. Full article
Show Figures

Figure 1

12 pages, 4113 KiB  
Communication
Driving Source of Change for Ionosphere before Large Earthquake -Vertical Ground Motion-
by Chia-Hung Chen, Koichiro Oyama, Hau-Kun Jhuang and Uma Das
Remote Sens. 2023, 15(18), 4556; https://doi.org/10.3390/rs15184556 - 16 Sep 2023
Cited by 2 | Viewed by 1665
Abstract
This paper discusses the relationship between the vertical ground motion and ionospheric disturbances before the Kumamoto earthquake on 16 April 2016, in Kyushu, Japan, using the vertical ground motion measured by slant gauges widely distributed in Kyushu, and the NmF2 observed by ionosondes [...] Read more.
This paper discusses the relationship between the vertical ground motion and ionospheric disturbances before the Kumamoto earthquake on 16 April 2016, in Kyushu, Japan, using the vertical ground motion measured by slant gauges widely distributed in Kyushu, and the NmF2 observed by ionosondes in Japan and another region. We provide evidence that vertical ground motion excites internal gravity waves (IGWs) that disturb changes in the ionospheric plasma density. From the spectral analysis results of the vertical ground motion data, the summation of various period (frequency) components analyzed from the original data of the slant gauge shows a possible correlation with the change of NmF2 before the earthquake. On the other hand, the influence of the geomagnetic disturbance on vertical ground motion seems to exist. However, we cannot confirm that vertical ground motion is influenced by the geomagnetic disturbance (Kp index) and that the earthquake is triggered by the geomagnetic disturbance. There are two conditions for the vertical ground motion to disturb variations in the ionospheric plasma density: (1) The effective vertical ground motion period should be shorter than 5 h. In addition, (2) vertical ground motion should continue to exist so that wave energy can be continuously injected into the atmosphere. A possible mechanism with which to modify the ionosphere is discussed. The results of this study can provide a basis for the future ionospheric precursors of earthquakes by using the vertical ground motion. Full article
Show Figures

Graphical abstract

19 pages, 1226 KiB  
Article
Modal Projection for Quasi-Homogeneous Anisotropic Turbulence
by Ying Zhu and Claude Cambon
Atmosphere 2023, 14(8), 1215; https://doi.org/10.3390/atmos14081215 - 28 Jul 2023
Viewed by 1449
Abstract
This article, or essay, addresses the anisotropic structure and the dynamics of quasi-homogeneous, incompressible turbulence. Modal projection and expansions in terms of spherical harmonics in three-dimensional Fourier space are in line with a seminal study by Jack Herring, around the so-called Craya–Herring frame [...] Read more.
This article, or essay, addresses the anisotropic structure and the dynamics of quasi-homogeneous, incompressible turbulence. Modal projection and expansions in terms of spherical harmonics in three-dimensional Fourier space are in line with a seminal study by Jack Herring, around the so-called Craya–Herring frame of reference, with a large review of the related approaches to date. The research part is focused on structure and dynamics of rotating sheared turbulence, including a description of both directional and polarization anisotropy with a minimal number of modes. Effort is made to generalize expansions in terms of scalar spherical harmonics (SSHs) to vector spherical harmonics (VSHs). Looking at stochastic fields, for possibly intermittent vector fields, some directions are explored to reconcile modal projection, firstly used for smooth vector fields, and multifractal approaches for internal intermittency but far beyond scalar correlations, such as structure functions. In order to illustrate turbulence from Earth to planets, stars, and galaxies, applications to geophysics and astrophysics are touched upon, with generalization to coupled vector fields (for kinetic, magnetic, and potential energies), possibly dominated by waves (Coriolis, gravity, and Alfvén). Full article
Show Figures

Figure 1

16 pages, 32680 KiB  
Article
Anticipated Capabilities of the ODYSEA Wind and Current Mission Concept to Estimate Wind Work at the Air–Sea Interface
by Hector Torres, Alexander Wineteer, Patrice Klein, Tong Lee, Jinbo Wang, Ernesto Rodriguez, Dimitris Menemenlis and Hong Zhang
Remote Sens. 2023, 15(13), 3337; https://doi.org/10.3390/rs15133337 - 29 Jun 2023
Cited by 20 | Viewed by 3325
Abstract
The kinetic energy transfer between the atmosphere and oceans, called wind work, affects ocean dynamics, including near-inertial oscillations and internal gravity waves, mesoscale eddies, and large-scale zonal jets. For the most part, the recent numerical estimates of global wind work amplitude are almost [...] Read more.
The kinetic energy transfer between the atmosphere and oceans, called wind work, affects ocean dynamics, including near-inertial oscillations and internal gravity waves, mesoscale eddies, and large-scale zonal jets. For the most part, the recent numerical estimates of global wind work amplitude are almost five times larger than those reported 10 years ago. This large increase is explained by the impact of the broad range of spatial and temporal scales covered by winds and currents, the smallest of which has only recently been uncovered by increasingly high-resolution modeling efforts. However, existing satellite observations do not fully sample this broad range of scales. The present study assesses the capabilities of ODYSEA, a conceptual satellite mission to estimate the amplitude of wind work in the global ocean. To this end, we use an ODYSEA measurement simulator fed by the outputs of a km scale coupled ocean–atmosphere model to estimate wind work globally. The results indicate that compared with numerical truth estimates, the ODYSEA instrument performs well globally, except for latitudes north of 40N during summer due to unresolved storm evolution. This performance is explained by the wide-swath properties of ODYSEA (a 1700 km wide swath with 5 km posting for winds and surface currents), its twice-a-day (daily) coverage at mid-latitudes (low latitudes), and the insensitivity of the wind work to uncorrelated errors in the estimated wind and current. Full article
Show Figures

Figure 1

Back to TopTop