Regional Total Electron Content Disturbance During a Meteorological Storm
Abstract
1. Introduction
2. Modeling Methodology and Processing of Experimental Data
2.1. Modeling of TEC Variations in the GSM TIP During a Meteorological Storm
2.2. TEC Measured Using GNSS Data
3. Results and Discussion
3.1. Description of Storm Laura and the Helio-Geophysical Conditions During Its Passage
3.2. Results of GSM TIP Modeling
3.3. TEC Maps and Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AWs | Acoustic waves |
DCB | Differential code bias |
GNSS | Global navigation satellite system |
GSM TIP | Global self-consistent model of the thermosphere, ionosphere, and protonosphere |
IGS | International GNSS service |
IGWs | Internal gravity waves |
SIMuRG | System for ionosphere monitoring and research from GNSS |
TEC | Total electron content |
TIDs | Traveling ionospheric disturbances |
References
- Laštovička, J. Progress in investigating long-term trends in the mesosphere, thermosphere, and ionosphere. Atmos. Chem. Phys. 2023, 23, 5783–5800. [Google Scholar] [CrossRef]
- Forbes, J.M.; Palo, S.E.; Zhang, X. Variability of the ionosphere. J. Atmos. Sol. Terr. Phys. 2000, 62, 685–693. [Google Scholar] [CrossRef]
- Koucká Knížová, P.; Laštovička, J.; Kouba, D.; Mošna, Z.; Podolská, K.; Potužníková, K.; Šindelářová, T.; Chum, J.; Rusz, J. Ionosphere Influenced from Lower-Lying Atmospheric Regions. Front. Astron. Space Sci. 2021, 8, 651445. [Google Scholar] [CrossRef]
- Chernogor, L.F. A Tropical cyclone or typhoon as an element of the Earth–atmosphere–ionosphere–magnetosphere system: Theory, Simulations, and Observations. Remote Sens. 2023, 15, 4919. [Google Scholar] [CrossRef]
- Yiğit, E.; Medvedev, A.S. Internal wave coupling processes in Earth’s atmosphere. Adv. Space Res. 2015, 55, 983–1003. [Google Scholar] [CrossRef]
- Xiao, Z.; Xiao, S.; Hao, Y.; Zhang, D. Morphological features of ionospheric response to typhoon. J. Geophys. Res. Space Phys. 2007, 112, A04304. [Google Scholar] [CrossRef]
- Snively, J.B. Nonlinear gravity wave forcing as a source of acoustic waves in the mesosphere, thermosphere, and ionosphere. Geophys. Res. Lett. 2017, 44, 12020–12027. [Google Scholar] [CrossRef]
- Sindelarova, T.; Buresova, D.; Chum, J.; Hruska, F. Doppler observations of infrasonic waves of meteorological origin at ionospheric heights. Adv. Space Res. 2009, 43, 1644–1651. [Google Scholar] [CrossRef]
- Hickey, M.P.; Walterscheid, R.L.; Schubert, G. Gravity wave heating and cooling of the thermosphere: Roles of the sensible heat flux and viscous flux of kinetic energy. J. Geophys. Res. 2011, 116, A12326. [Google Scholar] [CrossRef]
- Koucká Knížová, P.; Potužníková, K.; Podolská, K.; Hannawald, P.; Mošna, Z.; Kouba, D.; Chum, J.; Wüst, S.; Bittner, M.; Kerum, J. Multi-instrumental observation of mesoscale tropospheric systems in July 2021 with a potential impact on ionospheric variability in midlatitudes. Front. Astron. Space Sci. 2023, 10, 1197157. [Google Scholar] [CrossRef]
- Golubkov, G.V.; Adamson, S.O.; Borchevkina, O.P.; Wang, P.K.; Dyakov, Y.A.; Efishov, I.I.; Karpov, I.V.; Kurdyaeva, Y.A.; Lukhovitskaya, E.E.; Olkhov, O.A.; et al. Coupling of ionospheric disturbances with dynamic processes in the troposphere. Russ. J. Phys. Chem. B 2022, 16, 508–530. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Zhemyakov, I.N. Vertical plasma motions in the dynamics of the mesosphere and lower thermosphere of the Earth. Russ. J. Phys. Chem. B 2022, 16, 990–1007. [Google Scholar] [CrossRef]
- Bakhmetieva, N.V.; Grigoriev, G.I.; Kalinina, E.E. Propagation of pulses of acoustic gravity waves in the atmosphere and their passage through layers with the given temperature distribution. Russ. J. Phys. Chem. B 2023, 17, 495–502. [Google Scholar] [CrossRef]
- Gann, A.L.S.; Yiğit, E. Ionospheric and Thermospheric Effects of hurricane Grace in 2021 observed by satellites. J. Geophys. Res. Space Phys. 2024, 129, e2024JA032933. [Google Scholar] [CrossRef]
- Koucká Knížová, P.; Podolská, K.; Potužníková, K.; Kouba, D.; Mošna, Z.; Boška, J.; Kozubek, M. Evidence of vertical coupling: Meteorological storm Fabienne on 23 September 2018 and its related effects observed up to the ionosphere. Ann. Geophys. 2020, 38, 73–93. [Google Scholar] [CrossRef]
- Liu, T.; Yu, Z.; Ding, Z.; Nie, W.; Xu, G. Observation of ionospheric gravity waves introduced by thunderstorms in low latitudes China by GNSS. Remote Sens. 2021, 13, 4131. [Google Scholar] [CrossRef]
- Li, K.; Zhang, D.; Zeng, Y.; Tian, Y.; Dai, G.; Liu, Z.; Yang, G.; Sun, S.; Li, G.; Hao, Y.; et al. Revisiting the ionospheric disturbances over low latitude region of China during super typhoon Hato. Space Weather 2024, 22, e2023SW003694. [Google Scholar] [CrossRef]
- Snively, J.B.; Sabatini, R.; Calhoun, D.A.; Heale, C.J.; Inchin, P.A.; Zettergren, M.D. Modeling of acoustic and gravity wave interactions, coupling, and observables above meteorological systems. J. Acoust. Soc. Am. 2022, 151, A161. [Google Scholar] [CrossRef]
- Kshevetskii, S.P.; Kurdyaeva, Y.A.; Gavrilov, N.M. Coupled generation of acoustic and gravity waves by tropospheric heat sources. Russ. J. Phys. Chem. B 2023, 17, 1228–1240. [Google Scholar] [CrossRef]
- Zawdie, K.; Belehaki, A.; Burleigh, M.; Chou, M.Y.; Dhadly, M.S.; Greer, K.; Halford, A.J.; Hickey, D.; Inchin, P.; Kaeppler, S.R.; et al. Impacts of acoustic and gravity waves on the ionosphere. Front. Astron. Space Sci. 2022, 9, 1064152. [Google Scholar] [CrossRef]
- Kurdyaeva, Y.A.; Bessarab, F.S.; Borchevkina, O.P.; Klimenko, M.V. Multimodel study of the influence of atmospheric waves from a tropospheric source on the ionosphere during a geomagnetic storm on 27–29 May 2017. Russ. J. Phys. Chem. B 2024, 18, 852–862. [Google Scholar] [CrossRef]
- Richter, J.H.; Sassi, F.; Garcia, R.R. Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model. J. Atmos. Sci. 2010, 67, 136–156. [Google Scholar] [CrossRef]
- Kurdyaeva, Y.A.; Bessarab, F.S.; Borchevkina, O.P.; Klimenko, M.V. Model study of the influence of atmospheric waves on variations of upper atmosphere and ionosphere parameters during a meteorological storm on 29 May 2017. Adv. Space Res. 2024, 74, 2463–2474. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Kshevetskii, S.P. Three-dimensional numerical simulation of nonlinear acoustic-gravity wave propagation from the troposphere to the thermosphere. Earth Planets Space 2014, 66, 88–95. [Google Scholar] [CrossRef]
- Kurdyaeva, Y.A.; Kshevetskii, S.P.; Gavrilov, N.M.; Golikova, E.V. Well-posedness of a problem of propagation of nonlinear acoustic-gravity waves in the atmosphere generated by surface pressure variations. Numer. Analys. Appl. 2017, 10, 324–338. [Google Scholar] [CrossRef]
- Gavrilov, N.M. The thermal effect of internal gravity waves in the upper atmosphere. Izv. Atmos. Ocean. Phys. 1974, 10, 45–46. [Google Scholar]
- Namgaladze, A.A.; Korenkov, Y.N.; Klimenko, V.V.; Karpov, I.V.; Surotkin, V.A.; Naumova, N.M. Numerical modelling of the thermosphere-ionosphere-protonosphere system. J. Atmos. Terr. Phys. 1991, 53, 1113–1124. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V.; Bryukhanov, V.V. Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: The dynamo field and equatorial electrojet. Geomagn. Aeron. 2006, 46, 457–466. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Astafyeva, E.I.; Demyanov, V.V.; Edemskiy, I.K.; Gavrilyuk, N.S.; Ishin, A.B.; Kosogorov, E.A.; Leonovich, L.A.; Lesyuta, O.S.; Palamartchouk, K.S.; et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather Space Clim. 2013, 3, A27. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Kiselev, A.V.; Zhivetiev, I.V.; Edemskiy, I.K.; Syrovatskii, S.V.; Maletckii, B.M.; Vesnin, A.M. SIMuRG: System for ionosphere monitoring and research from GNSS. GPS Solut. 2020, 24, 69. [Google Scholar] [CrossRef]
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Ph.D. Thesis, University of Bern, Bern, Switzerland, 1999; p. 205. [Google Scholar]
- Padokhin, A.M.; Andreeva, E.S.; Nazarenko, M.O.; Kalashnikova, S.A. Phase-difference approach for GNSS global ionospheric total electron content mapping. Radiophys. Quantum Electron. 2022, 65, 481–495. [Google Scholar] [CrossRef]
- Shagimuratov, I.I.; Chernyak, Y.V.; Zakharenkova, I.E.; Yakimova, G.A. Use of total electron content maps for analysis of spatial-temporal structures of the ionosphere. Russ. J. Phys. Chem. B 2013, 7, 656–662. [Google Scholar] [CrossRef]
- Troshichev, O.A.; Andrezen, V.G. The relationship between interplanetary quantities and magnetic activity in the southern polar cap. Planet. Space Sci. 1985, 33, 415–419. [Google Scholar] [CrossRef]
- Stauning, P. A new index for the interplanetary merging electric field and geomagnetic activity: Application of the unified polar cap indices. Space Weather 2007, 5, S09001. [Google Scholar] [CrossRef]
- Rishbeth, H. How the Thermospheric Circulation Affects the Ionospheric F2-Layer. J. Atmos. Sol.-Terr. Phys. 1998, 60, 1385–1402. [Google Scholar] [CrossRef]
- Borchevkina, O.; Karpov, I.; Karpov, M. Meteorological storm influence on the ionosphere parameters. Atmosphere 2020, 11, 1017. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Mylnikova, A.A.; Kunitsyn, V.E.; Padokhin, A.M. Influence of GPS/GLONASS differential code biases on the determination accuracy of the absolute total electron content in the ionosphere. Geomagn. Aeron. 2015, 55, 763–769. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Mylnikova, A.A.; Polyakova, A.S. Estimating the total electron content absolute value from the GPS/GLONASS data. Results Phys. 2015, 5, 32–33. [Google Scholar] [CrossRef]
- Mylnikova, A.A.; Yasyukevich, Y.V.; Kunitsyn, V.E.; Padokhin, A.M. Variability of GPS/GLONASS differential code biases. Results Phys. 2015, 5, 9–10. [Google Scholar] [CrossRef]
- Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scott, C.J.; Stamper, R.; Rishbeth, H. Long-term changes in thermospheric composition inferred from a spectral analysis of ionospheric F-region data. Ann. Geophys. 2014, 32, 113–119. [Google Scholar] [CrossRef]
- Burkholder, B.L.; Cuellar, R.; Nykyri, K.; Ma, X.; Debchoudhury, S. A regional classification of time spectral amplitudes in total electron content: Southeastern United States during solar cycle 24. Front. Astron. Space Sci. 2022, 9, 1040082. [Google Scholar] [CrossRef]
Centers | |||
---|---|---|---|
CODE [31] | MOSGIM [32] | WD IZMIRAN [33] | |
Type of generated Maps | Global | Global | Regional Longitude: −10° to 40°, Latitude: 35° to 70° |
Temporal resolution | Two-hour | One-hour | One-hour with 10 min steps |
Spatial resolution | 5.0° × 2.5° | 5.0° × 2.5° | 1.0° × 1.0° |
Ionospheric model used | Single-layer (450 km) | Two-layer (450 km and 1500 km) | Single-layer (450 km) |
Map generation features | Uses spherical harmonic parameterization to compute vertical TEC, applying DCB estimates for both satellites and receivers. | Based on the analysis of GNSS signal phase measurements at a pair of coherent frequencies. Does not require DCB estimates for satellites/receivers. | Daily variations are calculated from satellite delay measurements. Simultaneously, hardware delays for all “satellite-receiver” pairs are determined. Differential delays are calibrated against hardware delays, resulting in absolute TEC values along the satellite track. These data serve as the input for TEC map generation programs. |
Station Name | Station Geographic Coordinates |
---|---|
DLF1 | 51.9° N, 4.4° E |
WSRT | 52.9° N, 6.6° E |
WARN | 54.2° N, 12.1° E |
VIS0 | 57.7° N, 18.4° E |
RIGA | 56.9° N, 24.1° E |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borchevkina, O.P.; Timchenko, A.V.; Bessarab, F.S.; Kurdyaeva, Y.A.; Karpov, I.V.; Yakimova, G.A.; Golubkov, M.G.; Stepanov, I.G.; Sasmal, S.; Dmitriev, A.V. Regional Total Electron Content Disturbance During a Meteorological Storm. Atmosphere 2025, 16, 690. https://doi.org/10.3390/atmos16060690
Borchevkina OP, Timchenko AV, Bessarab FS, Kurdyaeva YA, Karpov IV, Yakimova GA, Golubkov MG, Stepanov IG, Sasmal S, Dmitriev AV. Regional Total Electron Content Disturbance During a Meteorological Storm. Atmosphere. 2025; 16(6):690. https://doi.org/10.3390/atmos16060690
Chicago/Turabian StyleBorchevkina, Olga P., Aleksandr V. Timchenko, Fedor S. Bessarab, Yuliya A. Kurdyaeva, Ivan V. Karpov, Galina A. Yakimova, Maxim G. Golubkov, Ilya G. Stepanov, Sudipta Sasmal, and Alexei V. Dmitriev. 2025. "Regional Total Electron Content Disturbance During a Meteorological Storm" Atmosphere 16, no. 6: 690. https://doi.org/10.3390/atmos16060690
APA StyleBorchevkina, O. P., Timchenko, A. V., Bessarab, F. S., Kurdyaeva, Y. A., Karpov, I. V., Yakimova, G. A., Golubkov, M. G., Stepanov, I. G., Sasmal, S., & Dmitriev, A. V. (2025). Regional Total Electron Content Disturbance During a Meteorological Storm. Atmosphere, 16(6), 690. https://doi.org/10.3390/atmos16060690