The Study of Internal Gravity Waves in the Earth’s Atmosphere by Radio Occultations: A Review
Abstract
:1. Introduction
2. The Properties of Internal Gravity Waves
3. Study of IGW Activity from RO Observations
3.1. Studies Based on Retrieved Temperature Profiles
3.2. Retrieved Temperature Fluctuation Spectra
3.3. Space–Frequency Analysis
3.4. Wave Parameter Estimates
3.5. Studies Based on Diffraction Theory
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BA | Bending angle |
CDAAC | COSMIC Data Analysis and Archive Center |
CHAMP | Challenging Minisatellite Payload |
COSMIC | Constellation Observing System for Meteorology Ionosphere and Climate |
CWT | Continuous wavelet transform |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ENSO | El Niño–Southern Oscillation |
ERA | ECMWF reanalysis |
ERW | Equatorial Rossby waves |
EUMETSAT | European Organisation for the Exploitation of Meteorological Satellites |
GNSS | Global Navigation Satellite System |
GO | Geometric optics |
GPS/MET | GPS Meteorology |
IFS | Integrated Forecast System |
IGW | Internal gravity wave |
II | Inertial instability |
KW | Kelvin wave |
METOP | Meteorological operational satellite |
MF | Momentum flux |
MRGW | Mixed Rossby–gravity wave |
QBO | Quasi-biennial oscillation |
RO | Radio occultation |
UCAR | University Corporation of Atmospheric Research |
WO | Wave optics |
References
- Fritts, D.C.; Alexander, M.J. Gravity waves dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef]
- Tsuda, T.; VanZandt, T.E.; Mizumoto, M.; Kato, S.; Fukao, S. Spectral analysis of temperature and Brunt-Vaisala frequency fluctuations observed by radiosondes. J. Geophys. Res. Atmos. 1991, 96, 17265–17278. [Google Scholar] [CrossRef]
- Vincent, R.A.; Alexander, M.J. Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability. J. Geophys. Res. Atmos. 2000, 105, 17971–17982. [Google Scholar] [CrossRef]
- Wang, L.; Geller, M.A.; Alexander, M.J. Spatial and Temporal Variations of Gravity Wave Parameters. Part I: Intrinsic Frequency, Wavelength, and Vertical Propagation Direction. J. Atmos. Sci. 2005, 62, 125–142. [Google Scholar] [CrossRef]
- Fritts, D.C.; Tsuda, T.; Zandt, T.E.V.; Smith, S.A.; Sato, T.; Fukao, S.; Sato, K. Studies of velocity fluctuations in the lower atmosphere using the MU radar. II. Momentum fluxes and energy densities. J. Atmos. Sci. 1990, 47, 51–66. [Google Scholar] [CrossRef]
- Murayama, Y.; Tsuda, T.; Fukao, S. Seasonal variation of gravity wave activity in the lower atmosphere observed with the MU radar. J. Geophys. Res. Atmos. 1994, 99, 23057–23069. [Google Scholar] [CrossRef]
- Bacmeister, J.T.; Eckermann, S.D.; Newman, P.A.; Lait, L.; Chan, K.R.; Loewenstein, M.; Proffitt, M.H.; Gary, B.L. Stratospheric horizontal wavenumber spectra of winds, potential temperature and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res. 1996, 101, 9441–9470. [Google Scholar] [CrossRef]
- Cho, J.Y.N.; Zhu, Y.; Newell, R.E.; Anderson, B.E.; Barrick, J.D.; Gregory, G.L.; Sachse, G.W.; Carroll, M.A.; Albercook, G.M. Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 1. Climatology. J. Geophys. Res. Atmos. 1999, 104, 5697–5716. [Google Scholar] [CrossRef]
- Alexander, M.J.; Gille, J.; Cavanaugh, C.; Coffey, M.; Craig, C.; Eden, T.; Francis, G.; Halvorson, C.; Hannigan, J.; Khosravi, R.; et al. Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J. Geophys. Res. 2008, 113, D15S18. [Google Scholar] [CrossRef]
- Ern, M.; Preusse, P.; Alexander, M.J.; Warner, C.D. Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res. 2004, 109, D20103. [Google Scholar] [CrossRef]
- Gurvich, A.S.; Kan, V. Structure of air density irregularities in the stratosphere from spacecraft observations of stellar scintillation: 1. Three-dimensional spectrum model and recovery of its parameters. Izv. Atm. Ocean. Phys. 2003, 39, 300–310. [Google Scholar]
- Gurvich, A.S.; Kan, V. Structure of air density irregularities in the stratosphere from spacecraft observations of stellar scintillation: 2. Characteristic scales, structure characteristics, and kinetic energy dissipation. Izv. Atm. Ocean. Phys. 2003, 39, 311–321. [Google Scholar]
- Sofieva, V.F.; Gurvich, A.S.; Dalaudier, F.; Kan, V. Reconstruction of internal gravity wave and turbulence parameters in the stratosphere using GOMOS scintillation measurements. J. Geophys. Res. 2007, 112, D12113. [Google Scholar] [CrossRef]
- Sofieva, V.F.; Kyrölä, E.; Hassinen, S.; Backman, L.; Tamminen, J.; Seppälä, A.; Thölix, L.; Gurvich, A.S.; Kan, V.; Dalaudier, F.; et al. Global analysis of scintillation variance: Indication of gravity wave breaking in the polar winter upper stratosphere. Geophys. Res. Lett. 2007, 34, L03812. [Google Scholar] [CrossRef]
- Rocken, C.; Anthes, R.; Exner, M.; Hunt, D.; Sokolovskiy, S.; Ware, R.; Gorbunov, M.; Schreiner, W.; Feng, D.; Herman, B.; et al. Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res. Atmos. 1997, 102, 29849–29866. [Google Scholar] [CrossRef]
- Yunck, T.; Liu, C.; Ware, R. A History of GPS Sounding. Terr. Atmos. Ocean. Sci. 2000, 11, 1–20. [Google Scholar] [CrossRef]
- Wickert, J.; Reigber, C.; Beyerle, G.; Konig, R.; Marquardt, C.; Schmidt, T.; Grunwaldt, L.; Galas, R.; Meehan, T.K.; Melbourne, W.G.; et al. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett. 2001, 28, 3263–3266. [Google Scholar] [CrossRef]
- Bonnedal, M.; Christensen, J.; Carlström, A.; Berg, A. Metop-GRAS in-orbit instrument performance. GPS Solut. 2010, 14, 109–120. [Google Scholar] [CrossRef]
- Chu, C.H.; Fong, C.J.; Xia-Serafino, W.; Shiau, A.; Taylor, M.; Chang, M.S.; Chen, W.J.; Liu, T.Y.; Liu, N.C.; Martins, B.; et al. An Era of Constellation Observation-FORMOSAT-3/COSMIC and FORMOSAT-7/COSMIC-2. J. Aeronaut. Astrnaut. Aviat. 2018. [Google Scholar] [CrossRef]
- Fong, C.J.; Chu, C.H.; Lin, C.L.; da Silva Curiel, A. Toward the Most Accurate Thermometer in Space: FORMOSAT-7/COSMIC-2 Constellation. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 12–20. [Google Scholar] [CrossRef]
- Ho, S.P.; Zhou, X.; Shao, X.; Zhang, B.; Adhikari, L.; Kireev, S.; He, Y.; Yoe, J.G.; Xia-Serafino, W.; Lynch, E. Initial Assessment of the COSMIC-2/FORMOSAT-7 Neutral Atmosphere Data Quality in NESDIS/STAR Using In Situ and Satellite Data. Remote Sens. 2020, 12, 4099. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, X.; Zhou, K.; Zhang, J.; Chen, Y.; Li, H.; Liu, D.; Yuan, H. Comparative Assessment of Spire and COSMIC-2 Radio Occultation Data Quality. Remote Sens. 2023, 15, 5082. [Google Scholar] [CrossRef]
- Gorbunov, M.E. Canonical transform method for processing radio occultation data in the lower troposphere. Radio Sci. 2002, 37, 1–10. [Google Scholar] [CrossRef]
- Jensen, A.S.; Lohmann, M.S.; Nielsen, A.S.; Benzon, H.H. Geometrical optics phase matching of radio occultation signals. Radio Sci. 2004, 39, RS3009. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Lauritsen, K.B. Analysis of wave fields by Fourier integral operators and its application for radio occultations. Radio Sci. 2004, 39, RS4010. [Google Scholar] [CrossRef]
- Tsuda, T.; Nishida, M.; Rocken, C.; Ware, R.H. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res. Atmos. 2000, 105, 7257–7273. [Google Scholar] [CrossRef]
- Hocke, K.; Tsuda, T. Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation. Geophys. Res. Lett. 2001, 28, 2815–2818. [Google Scholar] [CrossRef]
- Ratnam, M.V.; Tetzlaff, G.; Jacobi, C. Global and Seasonal Variations of Stratospheric Gravity Wave Activity Deduced from the CHAMP/GPS Satellite. J. Atmospheric Sci. 2004, 61, 1610–1620. [Google Scholar] [CrossRef]
- Hei, H.; Tsuda, T.; Hirooka, T. Characteristics of atmospheric gravity wave activity in the polar regions revealed by GPS radio occultation data with CHAMP. J. Geophys. Res. 2008, 113, D04107. [Google Scholar] [CrossRef]
- Khaykin, S.M.; Hauchecorne, A.; Mzé, N.; Keckhut, P. Seasonal variation of gravity wave activity at midlatitudes from 7years of COSMIC GPS and Rayleigh lidar temperature observations. Geophys. Res. Lett. 2015, 42, 1251–1258. [Google Scholar] [CrossRef]
- Alexander, P.; de la Torre, A.; Hierro, R.; Llamedo, P. An improvement of the sensitivity of GPS radio occultation data to detect gravity waves through observational and modeling factors. Adv. Space Res. 2016, 57, 543–551. [Google Scholar] [CrossRef]
- Rapp, M.; Dörnbrack, A.; Kaifler, B. An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data. Atmos. Meas. Tech. 2018, 11, 1031–1048. [Google Scholar] [CrossRef]
- Yu, D.; Xu, X.; Luo, J.; Li, J. On the Relationship between Gravity Waves and Tropopause Height and Temperature over the Globe Revealed by COSMIC Radio Occultation Measurements. Atmosphere 2019, 10, 75. [Google Scholar] [CrossRef]
- Luo, J.; Hou, J.; Xu, X. Variations in Stratospheric Gravity Waves Derived from Temperature Observations of Multi-GNSS Radio Occultation Missions. Remote Sens. 2021, 13, 4835. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, Y.; Li, L.; He, X.; Yang, W.; Luo, H.; Gong, X.; Lv, K. An Investigation of the Lower Stratospheric Gravity Wave Activity in Tibetan Plateau Based on Multi-GNSS RO Dry Temperature Observations. Remote Sens. 2022, 14, 5671. [Google Scholar] [CrossRef]
- Rapp, M.; Dörnbrack, A.; Preusse, P. Large Midlatitude Stratospheric Temperature Variability Caused by Inertial Instability: A Potential Source of Bias for Gravity Wave Climatologies. Geophys. Res. Lett. 2018, 45, 682–690. [Google Scholar] [CrossRef]
- Harvey, V.L.; Knox, J.A. Beware of Inertial Instability Masquerading as Gravity Waves in Stratospheric Temperature Perturbations. Geophys. Res. Lett. 2019, 46, 1740–1745. [Google Scholar] [CrossRef]
- Steiner, A.K.; Kirchengast, G. Gravity Wave Spectra from GPS/MET Occultation Observations. J. Atmos. Oceanic Technol. 2000, 17, 495–503. [Google Scholar] [CrossRef]
- Tsuda, T.; Hocke, K. Vertical Wave Number Spectrum of Temperature Fluctuations in the Stratosphere using GPS Occultation Data. J. Meteor. Soc. Japan. Ser. II 2002, 80, 925–938. [Google Scholar] [CrossRef]
- Tsuda, T.; Lin, X.; Hayashi, H. Analysis of vertical wave number spectrum of atmospheric gravity waves in the stratosphere using COSMIC GPS radio occultation data. Atmos. Meas. Tech. 2011, 4, 1627–1636. [Google Scholar] [CrossRef]
- Šácha, P.; Foelsche, U.; Pišoft, P. Analysis of internal gravity waves with GPS RO density profiles. Atmos. Meas. Tech. 2014, 7, 4123–4132. [Google Scholar] [CrossRef]
- Pisoft, P.; Sacha, P.; Miksovsky, J.; Huszar, P.; Scherllin-Pirscher, B.; Foelsche, U. Revisiting internal gravity waves analysis using GPS RO density profiles: Comparison with temperature profiles and application for wave field stability study. Atmos. Meas. Tech. 2018, 11, 515–527. [Google Scholar] [CrossRef]
- Wang, L.; Alexander, M.J. Global estimates of gravity wave parameters from GPS radio occultation temperature data. J. Geophys. Res. 2010, 115, D21122. [Google Scholar] [CrossRef]
- McDonald, A.J. Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations. J. Geophys. Res. 2012, 117, D15406. [Google Scholar] [CrossRef]
- Faber, A.; Llamedo, P.; Schmidt, T.; de la Torre, A.; Wickert, J. On the determination of gravity wave momentum flux from GPS radio occultation data. Atmos. Meas. Tech. 2013, 6, 3169–3180. [Google Scholar] [CrossRef]
- Hindley, N.P.; Wright, C.J.; Smith, N.D.; Mitchell, N.J. The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO. Atmos. Chem. Phys. 2015, 15, 7797–7818. [Google Scholar] [CrossRef]
- Hierro, R.; Steiner, A.K.; de la Torre, A.; Alexander, P.; Llamedo, P.; Cremades, P. Orographic and convective gravity waves above the Alps and Andes Mountains during GPS radio occultation events – a case study. Atmos. Meas. Tech. 2018, 11, 3523–3539. [Google Scholar] [CrossRef]
- Alexander, P.; Schmidt, T.; de la Torre, A. A Method to Determine Gravity Wave Net Momentum Flux, Propagation Direction, and “Real” Wavelengths: A GPS Radio Occultations Soundings Case Study. Earth Space Sci. 2018, 5, 222–230. [Google Scholar] [CrossRef]
- Schmidt, T.; Alexander, P.; Torre, A. Stratospheric gravity wave momentum flux from radio occultations. J. Geophys. Res. Atmos. 2016, 121, 4443–4467. [Google Scholar] [CrossRef]
- Nath, D.; Chen, W.; Guharay, A. Climatology of stratospheric gravity waves and their interaction with zonal mean wind over the tropics using GPS RO and ground-based measurements in the two phases of QBO. Theor. Appl. Climatol. 2014, 119, 757–769. [Google Scholar] [CrossRef]
- Gubenko, V.N.; Pavelyev, A.G.; Andreev, V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement. J. Geophys. Res. 2008, 113, D08109. [Google Scholar] [CrossRef]
- Gubenko, V.N.; Pavelyev, A.G.; Salimzyanov, R.R.; Andreev, V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere. Cosmic Res. 2012, 50, 21–31. [Google Scholar] [CrossRef]
- Kan, V.; Gorbunov, M.E.; Shmakov, A.V.; Sofieva, V.F. The Reconstruction of the Parameters of Internal Gravity Waves in the Atmosphere from Amplitude Fluctuations in the Radio Occultation Experiment. Izv. Atm. Ocean. Phys. 2020, 56, 435–447. [Google Scholar] [CrossRef]
- Kan, V.; Gorbunov, M.E.; Fedorova, O.V.; Sofieva, V.F. Latitudinal Distribution of the Parameters of Internal Gravity Waves in the Atmosphere Derived from Amplitude Fluctuations of Radio Occultation Signals. Izv. Atm. Ocean. Phys. 2020, 56, 564–575. [Google Scholar] [CrossRef]
- Kan, V.; Gorbunov, M.E.; Shmakov, A.V.; Fedorova, O.V.; Sofieva, V.F. The parameters of internal gravity waves in the atmosphere from the amplitude fluctuations of radio occultation signals. IOP Conf. Ser. Earth Environ. Sci. 2022, 1040, 012008. [Google Scholar] [CrossRef]
- Dewan, E.M.; Good, R.F. Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res. 1986, 91, 2742–2748. [Google Scholar] [CrossRef]
- Fritts, D.C. A review of gravity wave saturation processes, effects, and variability in the middle atmosphere. Pure Appl. Geophys. 1989, 130, 343–371. [Google Scholar] [CrossRef]
- Gurvich, A.S.; Brekhovskikh, V.L. Study of the turbulence and inner waves in the stratosphere based on the observations of stellar scintillations from space: A model of scintillation spectra. Waves Random Media 2001, 11, 163–181. [Google Scholar] [CrossRef]
- Gurvich, A.S. A heuristic model of three-dimensional spectra of temperature inhomogeneities in the stably stratified atmosphere. Ann. Geophys. 1997, 15, 856–869. [Google Scholar] [CrossRef]
- Gurvich, A.S.; Chunchuzov, I.P. Three-dimensional spectrum of temperature fluctuations in stably stratified atmosphere. Ann. Geophys. 2008, 26, 2037–2042. [Google Scholar] [CrossRef]
- Ahmad, B.; Tyler, G.L. The two-dimensional resolution kernel associated with retrieval of ionospheric and atmospheric refractivity profiles by abelian inversion of radio occultation phase data. Radio Sci. 1998, 33, 129–142. [Google Scholar] [CrossRef]
- Preusse, P.; Ern, M.; Eckermann, S.D.; Warner, C.D.; Picard, R.H.; Knieling, P.; Krebsbach, M.; Russell, J.M.; Mlynczak, M.G.; Mertens, C.J.; et al. Tropopause to mesopause gravity waves in August: Measurement and modeling. J. Atmos. Sol. Terr. Phys. 2006, 68, 1730–1751. [Google Scholar] [CrossRef]
- VanZandt, T.E. A model for gravity wave spectra observed by Doppler sounding systems. Radio Sci. 1985, 20, 1323–1330. [Google Scholar] [CrossRef]
- Syndergaard, S. Modeling the impact of the Earth’s oblateness on the retrieval of temperature and pressure profiles from limb sounding. J. Atmos. Sol. Terr. Phys. 1998, 60, 171–180. [Google Scholar] [CrossRef]
- Vorob’ev, V.V.; Krasil’nikova, T.G. Estimation of the Accuracy of the Atmospheric Refractive Index Recovery from Doppler Shift Measurements at Frequencies Used in the NAVSTAR System. Izv. Atm. Ocean. Phys. 1994, 29, 602–609. [Google Scholar]
- Gorbunov, M.E.; Sokolovskiy, S.V.; Bengtsson, L. Space Refractive Tomography of the Atmosphere: Modeling of Direct and Inverse Problems; Report No. 210; Max-Planck Institute for Meteorology: Hamburg, Germany, 1996. [Google Scholar]
- Gorbunov, M.; Stefanescu, R.; Irisov, V.; Zupanski, D. Variational Assimilation of Radio Occultation Observations into Numerical Weather Prediction Models: Equations, Strategies, and Algorithms. Remote Sens. 2019, 11, 2886. [Google Scholar] [CrossRef]
- Jensen, A.S.; Benzon, H.H.; Lohmann, M.S. A New High Resolution Method for Processing Radio Occultation Data; Scientific Report 02-06; Danish Meteorological Institute: Copenhagen, Denmark, 2002. [Google Scholar]
- Jensen, A.S.; Lohmann, M.S.; Benzon, H.H.; Nielsen, A.S. Full spectrum inversion of radio occultation signals. Radio Sci. 2003, 38, 1040. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Gurvich, A.S.; Bengtsson, L. Advanced Algorithms of Inversion of GPS/MET Satellite Data and Their Application to Reconstruction of Temperature and Humidity; Report No. 211; Max-Planck Institute for Meteorology: Hamburg, Germany, 1996. [Google Scholar]
- Sokolovskiy, S.; Hunt, D. Statistical optimization approach for GPS/MET data inversions. In Proceedings of the URSI GPS/MET Workshop, Tucson, AZ, USA, 21–24 February 1996. [Google Scholar]
- Gorbunov, M.E. Ionospheric correction and statistical optimization of radio occultation data. Radio Sci. 2002, 37, 1–9. [Google Scholar] [CrossRef]
- Lohmann, M.S. Application of dynamical error estimation for statistical optimization of radio occultation bending angles. Radio Sci. 2005, 40, RS3011. [Google Scholar] [CrossRef]
- Sokolovskiy, S.; Schreiner, W.; Rocken, C.; Hunt, D. Optimal Noise Filtering for the Ionospheric Correction of GPS Radio Occultation Signals. J. Atmos. Oceanic Technol. 2009, 26, 1398–1403. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Lauritsen, K.B.; Rhodin, A.; Tomassini, M.; Kornblueh, L. Radio holographic filtering, error estimation, and quality control of radio occultation data. J. Geophys. Res. 2006, 111, D10105. [Google Scholar] [CrossRef]
- Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Wu, S.; Schwärz, M.; Fritzer, J.; Zhang, S.; Carter, B.A.; Zhang, K. A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility. J. Geophys. Res. 2013, 118, 13022–13040. [Google Scholar] [CrossRef]
- Hedin, A.E. Extension of MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res. 1991, 96, 1159–1172. [Google Scholar] [CrossRef]
- Rycroft, M.J.; Keating, G.; Rees, D. Upper Atmosphere Models and Research: Proceedings of Workshops X, XI and of the Topical Meeting of the COSPAR Interdisciplinary Scientific Commission C (Meeting C1) of the COSPAR Twenty-seventh Plenary Meeting Held in Espoo, Finland, 18–29 July 1988; Advances in Space Research; Committee on Space Research Pergamon Press: Oxford, UK, 1989; Volume 5. [Google Scholar]
- Scherllin-Pirscher, B.; Syndergaard, S.; Foelsche, U.; Lauritsen, K.B. Generation of a bending angle radio occultation climatology (BAROCLIM) and its use in radio occultation retrievals. Atmos. Meas. Tech. 2015, 8, 109–124. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Shmakov, A.V. Statistically average atmospheric bending angle model based on COSMIC experimental data. Izv. Atm. Ocean. Phys. 2016, 52, 622–628. [Google Scholar] [CrossRef]
- Phinney, R.A.; Anderson, D.L. On the radio occultation method for studying planetary atmospheres. J. Geophys. Res. 1968, 73, 1819–1827. [Google Scholar] [CrossRef]
- Tatarskii, V.I. Determining Atmospheric Density from Satellite Phase and Refraction Angle Measurements. Izv. Atm. Ocean. Phys. 1968, 4, 401–406. [Google Scholar]
- Fjeldbo, G.; Kliore, A.; Eshleman, R. The Neutral Atmosphere of Venus as Studied with the Mariner-5 Radio Occultation Experiments. Astron. J. 1971, 76, 123–140. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Sokolovskiy, S.V. Remote Sensing of Refractivity from Space for Global Observations of Atmospheric Parameters; Report 119; Max-Planck Institute for Meteorology: Hamburg, Germany, 1993; 58p. [Google Scholar]
- Ware, R.; Rocken, C.; Solheim, F.; Exner, M.; Schreiner, W.; Anthes, R.; Feng, D.; Herman, B.; Gorbunov, M.; Sokolovskiy, S.; et al. GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results. Bull. Amer. Meteor. Soc. 1996, 77, 19–40. [Google Scholar] [CrossRef]
- Rocken, C.; Kuo, Y.H.; Schreiner, W.S.; Hunt, D.; Sokolovskiy, S.; McCormick, C. COSMIC System Description. Terr. Atmos. Ocean. Sci. 2000, 11, 21–52. [Google Scholar] [CrossRef]
- Marquardt, C.; Healy, S.B. Measurement Noise and Stratospheric Gravity Wave Characteristics Obtained from GPS Occultation Data. J. Meteor. Soc. Japan. Ser. II 2005, 83, 417–428. [Google Scholar] [CrossRef]
- Vorob’ev, V.V.; Kan, V. Background fluctuations measured by the radio sounding of the ionosphere in the GPS-Microlab-1 experiment. Radiophys. Quantum Electron. 1999, XLII, 511–523. [Google Scholar] [CrossRef]
- Gorbunov, M.E.; Kirchengast, G. Uncertainty propagation through wave optics retrieval of bending angles from GPS radio occultation: Theory and simulation results. Radio Sci. 2015, 50, 1086–1096. [Google Scholar] [CrossRef]
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Cohen, L. Time-frequency distributions—A review. Proc. IEEE 1989, 77, 941–981. [Google Scholar] [CrossRef]
- Randel, W.J.; Wu, F. Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res. Atmos. 2005, 110, D03102. [Google Scholar] [CrossRef]
- Alexander, S.P.; Tsuda, T.; Kawatani, Y.; Takahashi, M. Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res. Atmos. 2008, 113, D24115. [Google Scholar] [CrossRef]
- Eckermann, S.D.; Hirota, I.; Hocking, W.K. Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Quart. J. Roy. Meteor. Soc. 1995, 121, 149–186. [Google Scholar] [CrossRef]
- Fritts, D.C.; Rastogi, P.K. Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci. 1985, 20, 1247–1277. [Google Scholar] [CrossRef]
- Kan, V.; Sofieva, V.F.; Dalaudier, F. Anisotropy of small-scale stratospheric irregularities retrieved from scintillations of a double star α-cru observed by GOMOS/ENVISAT. Atmos. Meas. Tech. 2012, 5, 2713–2722. [Google Scholar] [CrossRef]
- Kan, V.; Sofieva, V.F.; Dalaudier, F. Variable anisotropy of small-scale stratospheric irregularities retrieved from stellar scintillation measurements by GOMOS/ENVISAT. Atmos. Meas. Tech. 2014, 7, 1861–1872. [Google Scholar] [CrossRef]
- Chang, H.; Lee, J.; Yoon, H.; Morton, Y.J.; Saltman, A. Performance assessment of radio occultation data from GeoOptics by comparing with COSMIC data. Earth Planets Space 2022, 74, 108. [Google Scholar] [CrossRef]
- Kursinski, E.R. Weather & Space Weather RO Data from PlanetiQ Commercial GNSS RO. In Proceedings of the Joint 6th ROM SAF Data User Workshop and 7th IROWG Workshop, Konventum, Elsinore, Denmark, 19–25 September 2019. [Google Scholar]
- Gorbunov, M.E.; Gurvich, A.S. Microlab-1 experiment: Multipath effects in the lower troposphere. J. Geophys. Res. 1998, 103, 13819–13826. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorbunov, M.; Kan, V. The Study of Internal Gravity Waves in the Earth’s Atmosphere by Radio Occultations: A Review. Remote Sens. 2024, 16, 221. https://doi.org/10.3390/rs16020221
Gorbunov M, Kan V. The Study of Internal Gravity Waves in the Earth’s Atmosphere by Radio Occultations: A Review. Remote Sensing. 2024; 16(2):221. https://doi.org/10.3390/rs16020221
Chicago/Turabian StyleGorbunov, Michael, and Valery Kan. 2024. "The Study of Internal Gravity Waves in the Earth’s Atmosphere by Radio Occultations: A Review" Remote Sensing 16, no. 2: 221. https://doi.org/10.3390/rs16020221
APA StyleGorbunov, M., & Kan, V. (2024). The Study of Internal Gravity Waves in the Earth’s Atmosphere by Radio Occultations: A Review. Remote Sensing, 16(2), 221. https://doi.org/10.3390/rs16020221