Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = internal convective coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2261 KB  
Article
Fractional Modeling of Coupled Heat and Moisture Transfer with Gas-Pressure-Driven Flow in Raw Cotton
by Normakhmad Ravshanov and Istam Shadmanov
Processes 2026, 14(3), 481; https://doi.org/10.3390/pr14030481 - 29 Jan 2026
Viewed by 111
Abstract
This study introduces a multidimensional mathematical model and a robust numerical algorithm with second-order accuracy for modeling the complex coupled processes of heat and moisture transfer with gas-pressure-driven flow, based on time-fractional differential equations (with Caputo derivatives of order 0 < α ≤ [...] Read more.
This study introduces a multidimensional mathematical model and a robust numerical algorithm with second-order accuracy for modeling the complex coupled processes of heat and moisture transfer with gas-pressure-driven flow, based on time-fractional differential equations (with Caputo derivatives of order 0 < α ≤ 1), which capture the memory effects and anomalous diffusion inherent in heterogeneous porous media. The proposed model integrates conductive and convective heat transfer; moisture diffusion and phase change; and pressure dynamics within the pore space and their bidirectional couplings. It also incorporates environmental interactions through boundary conditions for heat and moisture exchange with the ambient air; internal heat and moisture release; transient influx of solar radiation; and material heterogeneity, where all transport coefficients are spatially variable functions. To solve this nonlinear and coupled system, we developed a high-order, stable finite-difference scheme. The numerical algorithm employs an alternating direction-implicit approach, which ensures computational efficiency while maintaining numerical stability. We demonstrate the algorithm’s capability through numerical simulations that monitor and predict the spatiotemporal evolution of coupled transport temperature, moisture content, and pressure fields. The results reveal how heterogeneity, diurnal solar radiation, and internal sources create localized hot spots, moisture accumulation zones, and pressure gradients that significantly influence the overall dynamics of storage and drying processes. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Graphical abstract

20 pages, 4094 KB  
Article
Theoretical and Experimental Studies of Permeate Fluxes in Double-Flow Direct-Contact Membrane Distillation (DCMD) Modules with Internal Recycle
by Chii-Dong Ho, Ching-Yu Li, Thiam Leng Chew and Yi-Ting Lin
Membranes 2026, 16(1), 37; https://doi.org/10.3390/membranes16010037 - 6 Jan 2026
Viewed by 369
Abstract
A new DCMD module design that introduces an insulation barrier of negligible thickness to divide the open duct of the hot-saline feed into two subchannels for dual-flow operation was investigated. This configuration enables one subchannel to operate in a cocurrent-flow mode and the [...] Read more.
A new DCMD module design that introduces an insulation barrier of negligible thickness to divide the open duct of the hot-saline feed into two subchannels for dual-flow operation was investigated. This configuration enables one subchannel to operate in a cocurrent-flow mode and the other in a countercurrent-flow recycling mode, thereby significantly enhancing the permeate flux. Theoretical and experimental investigations were conducted to develop modeling equations capable of predicting the permeate flux in DCMD modules. These studies demonstrated the technical feasibility of minimizing temperature polarization effects while improving flow characteristics to boost permeate flux. Results indicated that increasing both convective heat-transfer coefficients and residence time generally improved device performance. The dual-flow operation increased fluid velocity and extended residence time, leading to reduced heat-transfer resistance and enhanced heat-transfer efficiency. Theoretical predictions and experimental results consistently showed that the absorption flux improved by up to 40.77% under the double-flow operation with internal recycling configuration compared to a single-pass device of identical dimensions. The effects of inserting the insulation barrier on permeate flux enhancement, power consumption, and overall economic feasibility were also discussed. Full article
Show Figures

Figure 1

18 pages, 2961 KB  
Article
Experimental Design and Numerical Analysis of Volume Internal Heat Generation Source in Fluids Based on Microwave Heating
by Shanwu Wang, Hui Deng, Jian Tian, Pinyan Huang, Hongxiang Yu, Shuaiyu Xue, Ying Cao, Chong Zhou and Yang Zou
Energies 2026, 19(1), 172; https://doi.org/10.3390/en19010172 - 28 Dec 2025
Viewed by 380
Abstract
Liquid-fueled molten salt reactors (MSRs) are characterized by the use of liquid nuclear fuel, which leads to a unique thermal-hydraulic phenomenon in the core involving the simultaneous occurrence of nuclear fission heat generation and convective heat transfer. This distinctive behavior creates a critical [...] Read more.
Liquid-fueled molten salt reactors (MSRs) are characterized by the use of liquid nuclear fuel, which leads to a unique thermal-hydraulic phenomenon in the core involving the simultaneous occurrence of nuclear fission heat generation and convective heat transfer. This distinctive behavior creates a critical need for high-fidelity experimental data on internally heated flows, yet such studies are severely constrained by the lack of methods to generate controllable, high-power-density volumetric heat sources in fluids. To address this methodological gap, this study proposes and numerically investigates a novel experimental concept based on microwave heating. The design features an innovative multi-tier hexagonal resonant cavity with fifteen strategically staggered magnetrons. A comprehensive multi-physics model was developed using COMSOL Multiphysics to simulate the coupled electromagnetic, thermal, and fluid flow processes. Simulation results confirm the feasibility of generating a volumetric heat source, achieving an average power density of 6.9 MW/m3. However, the inherent non-uniformity in microwave power deposition was quantitatively characterized, revealing a high coefficient of variation (COV) for power density. Crucially, parametric studies demonstrate that this non-uniformity can be effectively mitigated by optimizing the flow channel geometry. Specifically, using a smaller diameter tube or an annulus pipe significantly improved temperature field uniformity, reducing the temperature COV by over an order of magnitude, albeit at the cost of reduced absorption efficiency. Preliminary discussion also addresses the extension of this approach towards molten salt experiments. The findings establish a practical design framework and provide quantitative guidance for subsequent experimental investigations into the thermal-hydraulic behavior of internally heated fluids, offering a promising pathway to support the design and safety analysis of liquid-fueled MSRs. Full article
Show Figures

Figure 1

20 pages, 4453 KB  
Article
Computational Fluid Dynamics Simulation of Heavy Crude Oil Transport Under Ecuadorian Oriente Conditions
by José Cabrera-Escobar, Patricio Villacres Cevallos, Elba Bodero-Poveda, Ciro Diego Radicelli-García, Luis Contreras-Vásquez and Dario Benavides
Processes 2025, 13(11), 3487; https://doi.org/10.3390/pr13113487 - 30 Oct 2025
Viewed by 813
Abstract
The surface transportation of heavy crude oil remains an operational challenge due to its high viscosity and rapid heat loss when exposed to ambient conditions, which significantly increases the energy required for pumping. Although previous studies have estimated thermal losses using average convective [...] Read more.
The surface transportation of heavy crude oil remains an operational challenge due to its high viscosity and rapid heat loss when exposed to ambient conditions, which significantly increases the energy required for pumping. Although previous studies have estimated thermal losses using average convective coefficients, they have not characterized the internal development of the thermal and velocity boundary layers, nor their direct influence on viscosity and flow regime. The objective of this study is to develop a predictive model based on computational fluid dynamics with temperature-dependent properties, enabling the analysis of the interaction between heat transfer phenomena and flow dynamics along a 50 m SCH-80 pipeline segment under real conditions of the Ecuadorian Oriente and to propose a mathematical tool capable of accurately predicting temperature loss over long pipeline sections. The results show a temperature decrease from 346.5 K to 342.5 K, accompanied by the formation of a thermal boundary layer that reaches 87% of the pipe radius and a reduction in the Reynolds number to approximately 5 due to the increase in viscosity. Furthermore, an effective external convective heat transfer coefficient of 5 W·m−2·K was determined, and the developed polynomial model achieved a coefficient of determination R2 of 0.998, confirming its predictive capability for optimizing the transportation of heavy crude oils. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 9262 KB  
Article
Experimental Investigation on Melting Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry Under Stirring
by Zhaohao Xu, Minjie Wu and Yu Xu
Aerospace 2025, 12(10), 868; https://doi.org/10.3390/aerospace12100868 - 26 Sep 2025
Viewed by 747
Abstract
As avionics advance, heat dissipation becomes more challenging. Microencapsulated phase change material slurry (MPCMS), with its latent heat transfer properties, offers a potential solution. However, the low thermal conductivity of microencapsulated phase change material (MPCM) limits heat transfer rates, and most studies focus [...] Read more.
As avionics advance, heat dissipation becomes more challenging. Microencapsulated phase change material slurry (MPCMS), with its latent heat transfer properties, offers a potential solution. However, the low thermal conductivity of microencapsulated phase change material (MPCM) limits heat transfer rates, and most studies focus on improving conductivity, with little attention given to convective enhancement. This study prepared MPCMS with an MPCM mass fraction (Wm) of 10% and 20%, investigating melting heat transfer under mechanical stirring at 0–800 RPM and heat fluxes of 8.5–17.0 kW/m2. Stirring significantly alters MPCMS heat transfer behavior. As rotational speed increases, both wall-to-slurry and internal temperature differences decrease. Stirring extends the time at which the heating wall temperature (Tw) stays below a threshold. For example, at Wm = 10% MPCM and 8.50 kW/m2, increasing speed from 0 to 800 RPM raises the holding time below 70 °C by 169.6%. The effect of MPCM mass fraction on heat transfer under stirring is complex: at 0 RPM, 0% > 10% > 20%; at 400 RPM, 10% > 0% > 20%; and at 800 RPM, 10% > 20% > 0%. This is because as Wm increases, the latent heat and volume expansion coefficients of MPCMS rise, promoting heat transfer, while viscosity and thermal conductivity decrease, hindering it. At 0 RPM, the net effect is negative even at Wm = 10%. Stirring enhances internal convection and significantly improves heat transfer. At 400 RPM, heat transfer is positive at Wm = 10% but still negative at Wm = 20%. At 800 RPM, both Wm levels show positive effects, with slightly better performance at Wm = 10%. In addition, at the same heat flux, higher speeds maintain Tw below a threshold longer. Overall, stirring improves MPCMS cooling performance, offering an effective means of convective enhancement for avionics thermal management. Full article
Show Figures

Figure 1

24 pages, 4376 KB  
Article
Experimental and ANN-Based Evaluation of Water-Based Al2O3, TiO2, and CuO Nanofluids for Enhanced Engine Cooling Performance
by Gadisa Sufe, Zbigniew J. Sroka and Monika Magdziak-Tokłowicz
Energies 2025, 18(18), 4828; https://doi.org/10.3390/en18184828 - 11 Sep 2025
Viewed by 833
Abstract
This study presents an integrated experimental and computational investigation into the thermal and hydraulic performance of three oxide-based nanofluids: aluminum oxide (Al2O3), titanium dioxide (TiO2), and copper oxide (CuO) for advanced engine cooling applications. A custom-built test [...] Read more.
This study presents an integrated experimental and computational investigation into the thermal and hydraulic performance of three oxide-based nanofluids: aluminum oxide (Al2O3), titanium dioxide (TiO2), and copper oxide (CuO) for advanced engine cooling applications. A custom-built test rig was used to assess nanofluid behavior under varying flow rates, nanoparticle volume fractions, and temperature gradients, replicating realistic engine conditions. According to the results, at ideal concentrations, CuO nanofluids continuously demonstrate better heat transfer properties, outperforming TiO2 by up to 15% and AlO3 by 7%. However, performance plateaus beyond 1.5% volume fraction due to increased viscosity and pressure drop. A multilayer feedforward artificial neural network (ANN) model was developed to predict convective heat transfer coefficients and friction factors based on experimental inputs, achieving a mean absolute percentage error below 5% and a coefficient of determination (R2) exceeding 0.98. The ANN demonstrated robust generalization across varying operating conditions and nanoparticle types, confirming its utility for surrogate modeling and optimization. This work is distinguished by its dual focus on thermal efficiency and hydraulic stability, as well as its use of data-driven modeling validated by empirical results. The findings provide actionable insights for thermal management system design in internal combustion, hybrid, and electric vehicles, where efficient, compact, and reliable cooling solutions are increasingly vital. The study advances the practical application of nanofluids by offering a comparative, ANN-validated framework that bridges the gap between lab-scale performance and real-world automotive cooling demands. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

17 pages, 3811 KB  
Article
Enhanced Cooling Performance in Cutting Tools Using TPMS-Integrated Toolholders: A CFD-Based Thermal-Fluidic Study
by Haiyang Ji, Zhanqiang Liu, Jinfu Zhao and Bing Wang
Modelling 2025, 6(3), 73; https://doi.org/10.3390/modelling6030073 - 28 Jul 2025
Cited by 2 | Viewed by 1212
Abstract
The efficient thermal management of cutting tools is critical for ensuring dimensional accuracy, surface integrity, and tool longevity, especially in the high-speed dry machining process. However, conventional cooling methods often fall short in reaching the heat-intensive zones near the cutting inserts. This study [...] Read more.
The efficient thermal management of cutting tools is critical for ensuring dimensional accuracy, surface integrity, and tool longevity, especially in the high-speed dry machining process. However, conventional cooling methods often fall short in reaching the heat-intensive zones near the cutting inserts. This study proposes a novel internal cooling strategy that integrates triply periodic minimal surface (TPMS) structures into the toolholder, aiming to enhance localized heat removal from the cutting region. The thermal-fluidic behaviors of four TPMS topologies (Gyroid, Diamond, I-WP, and Fischer–Koch S) were systematically analyzed under varying coolant velocities using computational fluid dynamics (CFD). Several key performance indicators, including the convective heat transfer coefficient, Nusselt number, friction factor, and thermal resistance, were evaluated. The Diamond and Gyroid structures exhibited the most favorable balance between heat transfer enhancement and pressure loss. The experimental validation confirmed the CFD prediction accuracy. The results establish a new design paradigm for integrating TPMS structures into toolholders, offering a promising solution for efficient, compact, and sustainable cooling in advanced cutting applications. Full article
Show Figures

Figure 1

17 pages, 1742 KB  
Article
Assessment of Aerodynamic Properties of the Ventilated Cavity in Curtain Wall Systems Under Varying Climatic and Design Conditions
by Nurlan Zhangabay, Aizhan Zhangabay, Kenzhebek Akmalaiuly, Akmaral Utelbayeva and Bolat Duissenbekov
Buildings 2025, 15(15), 2637; https://doi.org/10.3390/buildings15152637 - 25 Jul 2025
Cited by 2 | Viewed by 928
Abstract
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to [...] Read more.
Creating a comfortable microclimate in the premises of buildings is currently becoming one of the priorities in the field of architecture, construction and engineering systems. The increased attention from the scientific community to this topic is due not only to the desire to ensure healthy and favorable conditions for human life but also to the need for the rational use of energy resources. This area is becoming particularly relevant in the context of global challenges related to climate change, rising energy costs and increased environmental requirements. Practice shows that any technical solutions to ensure comfortable temperature, humidity and air exchange in rooms should be closely linked to the concept of energy efficiency. This allows one not only to reduce operating costs but also to significantly reduce greenhouse gas emissions, thereby contributing to sustainable development and environmental safety. In this connection, this study presents a parametric assessment of the influence of climatic and geometric factors on the aerodynamic characteristics of the air cavity, which affect the heat exchange process in the ventilated layer of curtain wall systems. The assessment was carried out using a combined analytical calculation method that provides averaged thermophysical parameters, such as mean air velocity (Vs), average internal surface temperature (tin.sav), and convective heat transfer coefficient (αs) within the air cavity. This study resulted in empirical average values, demonstrating that the air velocity within the cavity significantly depends on atmospheric pressure and façade height difference. For instance, a 10-fold increase in façade height leads to a 4.4-fold increase in air velocity. Furthermore, a three-fold variation in local resistance coefficients results in up to a two-fold change in airflow velocity. The cavity thickness, depending on atmospheric pressure, was also found to affect airflow velocity by up to 25%. Similar patterns were observed under ambient temperatures of +20 °C, +30 °C, and +40 °C. The analysis confirmed that airflow velocity is directly affected by cavity height, while the impact of solar radiation is negligible. However, based on the outcomes of the analytical model, it was concluded that the method does not adequately account for the effects of solar radiation and vertical temperature gradients on airflow within ventilated façades. This highlights the need for further full-scale experimental investigations under hot climate conditions in South Kazakhstan. The findings are expected to be applicable internationally to regions with comparable climatic characteristics. Ultimately, a correct understanding of thermophysical processes in such structures will support the advancement of trends such as Lightweight Design, Functionally Graded Design, and Value Engineering in the development of curtain wall systems, through the optimized selection of façade configurations, accounting for temperature loads under specific climatic and design conditions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 6442 KB  
Article
Study on Heat Transfer of Fluid in a Porous Media by VOF Method with Fractal Reconstruction
by Shuai Liu, Qingyong Zhu and Wenjun Xu
Energies 2025, 18(15), 3935; https://doi.org/10.3390/en18153935 - 23 Jul 2025
Viewed by 697
Abstract
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a [...] Read more.
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a lack of effective methods to accurately track fractal evaporation surfaces, which are ubiquitous in natural and engineering porous media (e.g., geological formations, industrial heat exchangers). This research is significant because understanding heat transfer in these complex porous media is essential for optimizing energy systems, enhancing thermal management in industrial processes, and improving the efficiency of phase-change-based technologies. For this scientific issue, a general model is designed. There is a significant temperature difference on the left and right sides of the model, which drives the internal fluid movement through the temperature difference. The upper end of the model is designed as a complex evaporation surface, and there is flowing steam above it, thus forming a coupled flow field. The VOF fractal reconstruction method is adopted to approximate the shape of the complex evaporation surface, which is a major highlight of this study. Different from previous research, this method can more accurately reflect the flow and phase change on the upper surface of the porous medium. Through numerical simulation, the influence of the evaporation coefficient on the flow and heat transfer rate can be determined. Key findings from numerical simulations reveal the following: (1) Heat transfer rates decrease with increasing fractal dimension (surface complexity) and evaporation coefficient; (2) As the thermal Rayleigh number increases, the influence of the Marangoni number on heat transfer diminishes; (3) The coupling of buoyancy and Marangoni effects in porous media with complex evaporation surfaces significantly alters flow and heat transfer patterns compared to smooth-surfaced porous media. This study provides a robust numerical framework for analyzing non-Newtonian fluid convection in complex porous media, offering insights into optimizing thermal systems involving phase changes and irregular surfaces. The findings contribute to advancing heat transfer theory and have practical implications for industries such as energy storage, chemical engineering, and environmental remediation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

15 pages, 326 KB  
Article
Weakly Nonlinear Instability of a Convective Flow in a Plane Vertical Channel
by Natalja Budkina, Valentina Koliskina, Andrei Kolyshkin and Inta Volodko
Fluids 2025, 10(5), 111; https://doi.org/10.3390/fluids10050111 - 26 Apr 2025
Cited by 2 | Viewed by 874
Abstract
The weakly nonlinear stability analysis of a convective flow in a planar vertical fluid layer is performed in this paper. The base flow in the vertical direction is generated by internal heat sources distributed within the fluid. The system of Navier–Stokes equations under [...] Read more.
The weakly nonlinear stability analysis of a convective flow in a planar vertical fluid layer is performed in this paper. The base flow in the vertical direction is generated by internal heat sources distributed within the fluid. The system of Navier–Stokes equations under the Boussinesq approximation and small-Prandtl-number approximation is transformed to one equation containing a stream function. Linear stability calculations with and without a small-Prandtl-number approximation lead to the range of the Prantdl numbers for which the approximation is valid. The method of multiple scales in the neighborhood of the critical point is used to construct amplitude evolution equation for the most unstable mode. It is shown that the amplitude equation is the complex Ginzburg–Landau equation. The coefficients of the equation are expressed in terms of integrals containing the linear stability characteristics and the solutions of three boundary value problems for ordinary differential equations. The results of numerical calculations are presented. The type of bifurcation (supercritical bifurcation) predicted by weakly nonlinear calculations is in agreement with experimental data. Full article
Show Figures

Figure 1

19 pages, 6828 KB  
Article
Experimental Study on Heat Transfer Coefficients in an Office Room with a Radiant Ceiling During Low Heating Loads
by Piotr Michalak
Energies 2025, 18(7), 1591; https://doi.org/10.3390/en18071591 - 22 Mar 2025
Cited by 1 | Viewed by 1712
Abstract
Estimation of the heating or cooling capacity of radiant systems requires selecting appropriate internal heat transfer coefficients by convection (CHTCs) and radiation (RHTCs). Due to practical reasons, their measurement during the normal use of buildings is very troublesome. This study attempts to present [...] Read more.
Estimation of the heating or cooling capacity of radiant systems requires selecting appropriate internal heat transfer coefficients by convection (CHTCs) and radiation (RHTCs). Due to practical reasons, their measurement during the normal use of buildings is very troublesome. This study attempts to present the results of measurements of CHTCs and RHTCs taken in an office room located in a passive building with a heated concrete ceiling. Special attention was paid to the proper choice of reference temperatures. For better accuracy, view factors for radiant heat exchange were calculated using Matlab. Average values of CHTCs and RHTCs calculated from measurements amounted to 0.80 W/m2K and 5.66 W/m2K. RHTCs showed a significant correlation against the ceiling temperature, with the coefficient of determination being R2 = 0.96. Finally, the total heat transfer coefficient of 6.47 W/m2K was obtained. These values are comparable with other studies and standards and confirm that measurements were performed correctly. Full article
Show Figures

Figure 1

19 pages, 19315 KB  
Article
Fluid Flow and Heat Transfer Performances of Aluminum Alloy Lattices with Triply Periodic Minimal Surfaces
by Zhensen Liu, Zetian Gao, Mingqiu Dai, Bingke Song, Biqi Yang, Tao Zhang, Shuangyin Yuan, Gang Liu and Miao Zhao
Materials 2025, 18(7), 1407; https://doi.org/10.3390/ma18071407 - 22 Mar 2025
Cited by 4 | Viewed by 1395
Abstract
Thermal protection systems play a pivotal role in astronautical engineering fields. However, traditional rectangular fin (RF) structures exhibit low thermo-fluid properties. Inspired by the minimal surfaces in nature, this study develops three types of triply periodic minimal surface (TPMS) lattices, namely, sheet primitive [...] Read more.
Thermal protection systems play a pivotal role in astronautical engineering fields. However, traditional rectangular fin (RF) structures exhibit low thermo-fluid properties. Inspired by the minimal surfaces in nature, this study develops three types of triply periodic minimal surface (TPMS) lattices, namely, sheet primitive (SP), network I-WP (NW), and sheet I-WP (SW) by using mathematical formulae. The TPMS lattices are fabricated by laser powder bed fusion using AlSi10Mg powder. A convective heat transfer simulation model of TPMS lattices is established and validated through experiments. The fluid flow characteristics, heat transfer characteristics, and overall heat transfer performance of the TPMS lattices are comprehensively investigated based on the simulation model. Results show that the relationship between pressure loss and flow velocity of the TPMS lattices satisfies the Darcy–Forchheimer law. Compared to traditional RF structures, the TPMS lattices exhibit a more uniform temperature distribution at the same flow rate, and the highest convective heat transfer coefficient is increased by approximately 96.62%. This is due to the complex internal structures of the TPMS lattices, which enhance the disturbance of the fluid flow and further improve the heat transfer coefficient. The overall thermal transfer index (α) of the TPMS lattices is higher than that of traditional RF structures with an order of αSP>αSW>αNW>αRF, which confirms the potential applications of TPMS lattices in thermal protection systems. Full article
(This article belongs to the Special Issue Metamaterials: Design, Properties, and Applications)
Show Figures

Figure 1

16 pages, 4125 KB  
Article
Heat and Mass Transfer in Shrimp Hot-Air Drying: Experimental Evaluation and Numerical Simulation
by Jhony T. Teleken, Suélen M. Amorim, Sarah S. S. Rodrigues, Thailla W. P. de Souza, João P. Ferreira and Bruno A. M. Carciofi
Foods 2025, 14(3), 428; https://doi.org/10.3390/foods14030428 - 28 Jan 2025
Cited by 7 | Viewed by 2915
Abstract
Shrimp is one of the most popular and widely consumed seafood products worldwide. It is highly perishable due to its high moisture content. Thus, dehydration is commonly used to extend its shelf life, mostly via air drying, leading to a temperature increase, moisture [...] Read more.
Shrimp is one of the most popular and widely consumed seafood products worldwide. It is highly perishable due to its high moisture content. Thus, dehydration is commonly used to extend its shelf life, mostly via air drying, leading to a temperature increase, moisture removal, and matrix shrinkage. In this study, a mathematical model was developed to describe the changes in moisture and temperature distribution in shrimp during hot-air drying. The model considered the heat and mass transfer in an irregular-shaped computational domain and was solved using the finite element method. Convective heat and mass transfer coefficients (57.0–62.9 W/m2∙K and 0.007–0.008 m/s, respectively) and the moisture effective diffusion coefficient (6.5 × 10−10–8.5 × 10−10 m2/s) were determined experimentally and numerically. The shrimp temperature and moisture numerical solution were validated using a cabinet dryer with a forced air circulation at 60 and 70 °C. The model predictions demonstrated close agreement with the experimental data (R2 0.95 for all conditions) and revealed three distinct drying stages: initial warming up, constant drying rate, and falling drying rate at the end. Initially, the shrimp temperature increased from 25 °C to around 46 °C and 53 °C for the process at 60 °C and 70 °C. Thus, it presented a constant drying rate, around 0.04 kg/kg min at 60 °C and 0.05 kg/kg min at 70 °C. During this stage, the process is controlled by the heat transferred from the surroundings. Subsequently, the internal resistance to mass transfer becomes the dominant factor, leading to a decrease in the drying rate and an increase in temperatures. A numerical analysis indicated that considering the irregular shape of the shrimp provides more realistic moisture and temperature profiles compared to the simplified finite cylinder geometry. Furthermore, a sensitivity analysis was performed using the validated model to assess the impact of the mass and heat transfer parameters and relative humidity inside the cavity on the drying process. The proposed model accurately described the drying, allowing the further evaluation of the quality and safety aspects and optimizing the process. Full article
Show Figures

Graphical abstract

23 pages, 9176 KB  
Article
Influence of Boundary Conditions on the Estimation of Thermal Properties in Insulated Building Walls
by Manon Rendu, Jérôme Le Dréau, Patrick Salagnac and Maxime Doya
Buildings 2024, 14(12), 3706; https://doi.org/10.3390/buildings14123706 - 21 Nov 2024
Cited by 1 | Viewed by 1185
Abstract
The objective of this study is to evaluate the ability of inverse techniques to estimate the resistance and the capacity of a highly insulated multilayer wall under real weather conditions. The wall is equipped with temperature sensors inside and on its inner and [...] Read more.
The objective of this study is to evaluate the ability of inverse techniques to estimate the resistance and the capacity of a highly insulated multilayer wall under real weather conditions. The wall is equipped with temperature sensors inside and on its inner and outer surfaces, and the boundary conditions have been measured over a 14-day period. Uncertainties on various parameters of the model are evaluated, including internal and external convective heat transfer coefficients (±20% and ±7 W.m-².K−1 respectively), external long-wave heat transfer coefficient (±0.15 W.m−2.K−1) and solar absorption coefficient (±0.06). A sensitivity analysis demonstrated the high correlation with some parameters defining the thermal performance of the walls (thermal resistance or capacity). A solution is proposed to limit the number of identified parameters, while allowing the identification of the thermal resistance and the thermal capacity of the walls. There are two cases: either the weather conditions are accurately measured (temperature, short- and long-wave radiation) and the thermal characteristics can be assessed, or intrusive sensors are installed, and the thermal characteristics can be evaluated more accurately. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 3161 KB  
Article
Dynamic Characterization and Optimization of Heat Flux and Thermal Efficiency of a Penetrable Moving Hemispherical Fin Embedded in a Shape Optimized Fe3O4-Ni/C6H18OSi2 Hybrid Nanofluid: L-IIIA Solution
by Ammembal Gopalkrishna Pai, Rekha G. Pai, Karthi Pradeep and Likith Raj
Symmetry 2024, 16(11), 1532; https://doi.org/10.3390/sym16111532 - 15 Nov 2024
Cited by 2 | Viewed by 1688
Abstract
The present paper reports the theoretical results on the thermal performance of proposed Integrated Hybrid Nanofluid Hemi-Spherical Fin Model assuming a combination of Fe3O4-Ni/C6H18OSi2 hybrid nanofluid. The model leverages the concept of symmetrical [...] Read more.
The present paper reports the theoretical results on the thermal performance of proposed Integrated Hybrid Nanofluid Hemi-Spherical Fin Model assuming a combination of Fe3O4-Ni/C6H18OSi2 hybrid nanofluid. The model leverages the concept of symmetrical geometries and optimized nanoparticle shapes to enhance the heat flux, with a focus on symmetrical design applications in thermal engineering. The simulations are carried out by assuming a silicone oil as a base fluid, due to its exceptional stability in hot and humid conditions, enriched with superparamagnetic Fe3O4 and Ni nanoparticles to enhance the heat transfer capabilities, with the aim of contributing to the field of nanotechnology, electronics and thermal engineering, The focus of this work is to optimize the heat dissipation in systems that require high thermal efficiency and stability such as automotive cooling systems, aerospace components and power electronics. In addition, the study explores the influence of key parameters such as heat transfer coefficients and thermal conductivity that play an important role in improving the thermal performance of cooling systems. The overall thermal performance of the model is evaluated based on its heat flux and thermal efficiency. The study also examines the impact of the shape optimized nanoparticles in silicone oil by incorporating shape-factor in its modelling equations and proposes optimization of parameters to enhance the overall thermal performance of the system. Darcy’s flow model is used to analyse the key parameters in the system and study the thermal behaviour of the hybrid nanofluid within the fin by incorporating natural convection, temperature-dependent internal heat generation, and radiation effects. By using the similarity approach, the governing equations were reduced to non-linear ordinary differential equations and numerical solutions were obtained by using four-stage Lobatto-IIIA numerical technique due to its robust stability and convergence properties. This enables a systematic investigation of various influential parameters, including thermal conductivity, emissivity and heat transfer coefficients. Additionally, it stimulates interest among researchers in applying mathematical techniques to complex heat transfer systems, thereby contributing towards the development of highly efficient cooling system. Our findings indicate that there is a significant enhancement in the heat flux as well as improvement in the thermal efficiency due to the mixture of silicone oil and shape optimized nanoparticles, that was visualized through comprehensive graphical analysis. Quantitatively, the proposed model displays a maximum thermal efficiency of 57.5% for lamina shaped nanoparticles at Nc = 0.5, Nr = 0.2, Ng = 0.2 and Θa = 0.4. The maximum enhancement in the heat flux occurs when Nc doubles from 5 to 10 for m2 = 0.2 and Nr = 0.1. Optimal thermal performance is found for Nc, Nr and m2 values in the range 5 to 10, 0.2 to 0.4 and 0.4 to 0.8 respectively. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

Back to TopTop