Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,058)

Search Parameters:
Keywords = intermediate temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5597 KiB  
Article
Loading Eu2O3 Enhances the CO Oxidation Activity and SO2 Resistance of the Pt/TiO2 Catalyst
by Zehui Yu, Jianyu Cai, Yudong Meng, Jian Li, Wenjun Liang and Xing Fan
Catalysts 2025, 15(8), 783; https://doi.org/10.3390/catal15080783 (registering DOI) - 16 Aug 2025
Abstract
Pt/TiO2 and Pt-Eu2O3/TiO2 catalysts were prepared via the impregnation method for catalytic oxidation of CO. The Pt-2Eu2O3/TiO2 catalyst exhibited better CO oxidation activity as well as greater SO2 resistance than the [...] Read more.
Pt/TiO2 and Pt-Eu2O3/TiO2 catalysts were prepared via the impregnation method for catalytic oxidation of CO. The Pt-2Eu2O3/TiO2 catalyst exhibited better CO oxidation activity as well as greater SO2 resistance than the Pt/TiO2 catalyst. For the inlet gas consisting of 0.8% CO, 5% O2, and balanced N2, the lowest complete conversion temperatures (T100) of CO were 120 °C and 140 °C for the Pt-2Eu2O3/TiO2 and Pt/TiO2 catalysts, respectively. During the 72 h SO2-resistance test at 200 °C under an inlet gas composition of 0.8% CO, 5% O2, 15% H2O, 50 ppm SO2, and balanced N2, the CO conversion on the Pt-2Eu2O3/TiO2 catalyst remained >99%, while that on the Pt/TiO2 catalyst gradually decreased to 77.8%. Pre-loading 2 wt% Eu2O3 on TiO2 enhanced the dispersion of Pt, increased the proportion of Pt0, and facilitated the adsorption and dissociation of H2O, all of which promoted CO oxidation. SO2 preferentially occupied the Eu2O3 sites by forming stable sulfates on the Pt-2Eu2O3/TiO2 catalyst, which protected the Pt active sites from poisoning. The OH* species produced from the dissociation of H2O played a significant role in promoting CO oxidation through the formation of COOH* as the key reaction intermediate. The developed Pt-2Eu2O3/TiO2 catalyst has great application potential in terms of the removal of CO from industrial flue gases. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

19 pages, 5196 KiB  
Article
Exploring Different Metal-Oxide Cathode Materials for Structural Lithium-Ion Batteries Using Dip-Coating
by David Petrushenko, Thomas Burns, Paul Ziehl, Ralph E. White and Paul T. Coman
Energies 2025, 18(16), 4354; https://doi.org/10.3390/en18164354 - 15 Aug 2025
Abstract
In this study, a selection of active materials were coated onto commercially available intermediate modulus carbon fibers to form and analyze the performance of novel composite cathodes for structural power composites. Various slurries containing polyvinylidene fluoride (PVDF), active material powders, 1-methyl-2-pyrrolidone (NMP) and [...] Read more.
In this study, a selection of active materials were coated onto commercially available intermediate modulus carbon fibers to form and analyze the performance of novel composite cathodes for structural power composites. Various slurries containing polyvinylidene fluoride (PVDF), active material powders, 1-methyl-2-pyrrolidone (NMP) and carbon black (CB) were used to coat carbon fiber tows by immersion. Four active materials—lithium cobalt oxide (LCO), lithium iron phosphate (LFP), lithium nickel manganese cobalt oxide (NMC), and lithium nickel cobalt aluminum oxide (NCA)—were individually tested to assess their electrochemical reversibility. The cells were prepared with a polymer separator and liquid electrolytes and assembled in 2025-coin cells. Electrochemical analysis of the cathode materials showed that at C/5 and room temperature the measured capacities ranged from 39.8 Ah kg−1 to 64.7 Ah kg−1 for the LFP and NCA active materials, respectively. The full cells exhibited capacities of 18.1, 23.5, 27.2, and 28.2 Ah kg−1 after 55 cycles for LFP, LCO, NCA, and NMC811, respectively. Finally, visual and elemental analysis were performed via scanning electron microscope (SEM) and energy-dispersive x-ray (EDX) confirming desirable surface coverage and successful transfer of the active materials onto the carbon fiber tows. Full article
Show Figures

Figure 1

17 pages, 16769 KiB  
Article
Towards a Climate-Resilient Metropolis: A Neighborhood-Scale Nature-Based Urban Adaptation Planning Approach
by Merve Kalaycı Kadak
Sustainability 2025, 17(16), 7356; https://doi.org/10.3390/su17167356 - 14 Aug 2025
Abstract
This study aims to classify the Heat Risk Index (HRI), a critical component in climate change adaptation efforts, and to demonstrate how the cooling effect of trees influences HRI levels in areas suitable for afforestation. Istanbul, a global metropolis, was selected as the [...] Read more.
This study aims to classify the Heat Risk Index (HRI), a critical component in climate change adaptation efforts, and to demonstrate how the cooling effect of trees influences HRI levels in areas suitable for afforestation. Istanbul, a global metropolis, was selected as the study area. Spatial analyses were conducted at the neighborhood scale. Within this scope, an afforestation scenario was implemented for a selected neighborhood to explore how HRI values could be reduced. The neighborhood-level approach constitutes the distinctive aspect of this study. The HRI analysis was classified into five levels using three interrelated variables: lack of tree canopy, population density, and land surface temperature (LST). ArcGIS Pro 3.5.2, a geographic information systems software, was employed as the primary analytical tool. The analysis revealed that 24.97% of Istanbul’s neighborhoods fell into the “relatively high” risk category, while 36.45% fell into the “higher–intermediate” risk category. In this context, a critical neighborhood sample from the higher–intermediate risk group, representing the largest proportion, was selected for scenario testing. The scenario demonstrated that a 6% increase in afforestation within the neighborhood lowered its HRI classification by one level. As a result, the method applied in this scenario was proven applicable for use in climate adaptation planning. Full article
(This article belongs to the Special Issue Sustainable Built Environment: From Theory to Practice)
Show Figures

Figure 1

22 pages, 3050 KiB  
Article
Design of Active Hopping Sites via Trace Trivalent Cation in IT-SOFC Anode
by Ke Tong, Toshiyuki Mori, Andrii Rednyk, Shunya Yamamoto, Shigeharu Ito and Fei Ye
Energies 2025, 18(16), 4314; https://doi.org/10.3390/en18164314 - 13 Aug 2025
Viewed by 126
Abstract
Intermediate-temperature solid oxide fuel cells (IT-SOFCs) have attracted attention due to their potential to overcome the trade-off between the performance and lifetime of SOFC devices. However, the guiding principle for effective material design, which can reduce operating temperatures and overcome performance decreases caused [...] Read more.
Intermediate-temperature solid oxide fuel cells (IT-SOFCs) have attracted attention due to their potential to overcome the trade-off between the performance and lifetime of SOFC devices. However, the guiding principle for effective material design, which can reduce operating temperatures and overcome performance decreases caused by excessive overpotential on the anode surface, has not been clearly established. In the present work, we studied the reported Schottky anomaly, which has been observed exclusively in yttria-stabilized zirconia (YSZ). To investigate this phenomenon, a small amount (less than 1200 ppm) of trivalent cations (Rh3+ or Fe3+), chemically similar to Y3+ in Y2O3, was doped onto the YSZ surface in the anode layer. Then, the current density observed from the SOFC device at 973 K was found to be nine-times higher than the SOFC device with an undoped anode. The surface first-principles calculations in the present work indicate that this performance enhancement is caused by the delocalized electrons induced by trivalent cation doping in the vicinity of the three-phase boundary and the promotion of surface oxygen diffusion in YSZ. Based on all experimental data, the effective material design guiding principle was obtained for utilizing the unique physical property of YSZ for applications such as IT-SOFCs. Full article
(This article belongs to the Special Issue Advances in Fuel Cells: Materials, Technologies, and Applications)
Show Figures

Figure 1

18 pages, 19489 KiB  
Article
Oxidation Kinetics, Morphology Evolution, and Formation Mechanisms of the High-Temperature Oxide Scale for Cr-Alloyed Automotive Beam Steels
by Jiang Chang, Yuantao Hu, Yonggang Yang, Chen Jiang, Jianling Liu, Borui Zhang, Xiong Yang and Zhenli Mi
Materials 2025, 18(16), 3774; https://doi.org/10.3390/ma18163774 - 12 Aug 2025
Viewed by 203
Abstract
The oxidation behaviors of varying Cr-alloyed automotive beam steels—0.015 wt.% Cr, 0.15 wt.% Cr, and 1 wt.% Cr—were investigated using isothermal oxidation experiments. The morphologies of the oxide scale were characterized, and the formation mechanisms were analyzed to understand the change in the [...] Read more.
The oxidation behaviors of varying Cr-alloyed automotive beam steels—0.015 wt.% Cr, 0.15 wt.% Cr, and 1 wt.% Cr—were investigated using isothermal oxidation experiments. The morphologies of the oxide scale were characterized, and the formation mechanisms were analyzed to understand the change in the oxidation kinetics of the investigated steels. The results show that a small amount of Cr, up to 0.15 wt.%, can reduce oxidation kinetics; the addition of Cr at 1 wt.% causes the oxidation rate to decline at a low isothermal temperature, but the hindrance effect expires when the oxidation temperature is above 1050 °C. The oxidation scale, including the inner FeO layer, the intermediate Fe3O4 layer, and the outer Fe2O3 layer, exhibits a morphological evolution from marble-like to pore-like, then whisker-like, flocculation-like, fine oxide grains, and finally coarse oxide grains. With increasing Cr addition, the thickness of the FeO layer decreases significantly, leading to a reduction in the total thickness of the oxidation scale. During the oxidation process of the investigated steel with 0.15 wt.% Cr, a Cr-rich layer and FeO-(Cr, Fe, Mn)3O4 eutectic form; meanwhile, FeO-(Cr, Fe)2O3 eutectic and Si-rich oxides, as well as a (Cr, Si)-rich layer, occur in the oxidation scale when 1 wt.% Cr is added to the steel. The occurrence of voids in the (Cr, Si)-rich layer is responsible for the increasing oxidation kinetics of the 1 wt.% Cr steel when the isothermal temperature is above 1050 °C, and the optimal Cr concentration in automotive beam steel is 0.15 wt.%, considering both oxidation resistance and cost. Full article
Show Figures

Figure 1

15 pages, 3654 KiB  
Article
Kinetic Analysis of the Reaction of Silver with Elemental Sulfur in Mineral Insulating Oil
by Dejan Kolarski, Jelena Lukić, Jelena Janković and Sandra Glišić
Materials 2025, 18(16), 3771; https://doi.org/10.3390/ma18163771 - 12 Aug 2025
Viewed by 227
Abstract
Elemental sulfur (S8) reacts readily with silver, forming highly conductive silver sulfide on silver-coated components of on-load tap changers (OLTCs), forming a highly conductive silver sulfide film at the surface of an OLTC, which can lead to the failure of critical [...] Read more.
Elemental sulfur (S8) reacts readily with silver, forming highly conductive silver sulfide on silver-coated components of on-load tap changers (OLTCs), forming a highly conductive silver sulfide film at the surface of an OLTC, which can lead to the failure of critical components in power transformers. This study investigates the reaction between metallic silver and elemental sulfur dissolved in mineral insulating oil across temperatures from 60 °C to 180 °C. The process involves three stages: the diffusion of sulfur through oil, surface reaction, and product diffusion. For low-viscosity oil, diffusion is not the limiting factor, and sulfur does not react immediately on the silver’s surface, suggesting possible adsorption or intermediate formation. A kinetic analysis revealed that the reaction follows first-order kinetics, with a change in mechanism above 150 °C. The reaction follows the Arrhenius equation in two separate regions: 60–150 °C and 150–180 °C. Activation energy was calculated as 23.67 kJ mol−1, and it can be concluded that the reaction is controlled by the diffusion of sulfur through mineral oil, and at higher temperatures (150 °C to 180 °C), the calculated activation energy is 160.69 kJ mol−1, which leads to the conclusion that the combined chemisorption and diffusion through a silver sulfide–oil interface becomes the new limiting factor. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

25 pages, 1288 KiB  
Article
Performance of Mombaça Grass Under Irrigation and Doses of Biodegradable Hydroretentive Polymer
by Amilton Gabriel Siqueira de Miranda, Policarpo Aguiar da Silva, Job Teixeira de Oliveira and Fernando França da Cunha
Grasses 2025, 4(3), 32; https://doi.org/10.3390/grasses4030032 - 9 Aug 2025
Viewed by 156
Abstract
Biodegradable hydroretentive polymers, such as UPDT®, have emerged as promising alternatives to synthetic hydrogels, particularly in pasture systems where sustainable water management is crucial. These materials enhance subsurface drip irrigation by maintaining soil moisture, which supports germination and early root development [...] Read more.
Biodegradable hydroretentive polymers, such as UPDT®, have emerged as promising alternatives to synthetic hydrogels, particularly in pasture systems where sustainable water management is crucial. These materials enhance subsurface drip irrigation by maintaining soil moisture, which supports germination and early root development until roots access deeper water reserves. However, their degradation dynamics in tropical forage systems remain poorly characterized, posing a challenge to long-term application strategies. This study aimed to evaluate the effects of different UPDT® doses (0, 7.5, 15, 22.5, and 30 kg ha−1) on the morphological and agronomic traits of Mombaça grass under controlled conditions. After a uniformity cycle, treatments were evaluated across four cultivation cycles with monitored irrigation to avoid water deficits. Morphogenetic traits such as number of live leaves (NLL), final number of emerging leaves (NEmL), leaf appearance rate (LAR), and stem elongation rate (SER), as well as shoot dry mass (SDM), were analyzed. Results showed that morphological variables responded quadratically to polymer doses during the initial and intermediate cycles. In the final cycle, reductions in these traits and in water productivity suggested the onset of polymer degradation and loss of hydroretentive capacity. Agronomic traits were influenced throughout all cycles, with the fourth cycle showing the highest SDM due to elevated temperatures. These findings highlight the need to better understand the degradation kinetics of biodegradable hydrogels such as UPDT® in tropical pastures. Field trials are recommended to define optimal reapplication intervals and integrate degradation monitoring into irrigation planning, ensuring long-term sustainability in pasture management. Full article
Show Figures

Figure 1

22 pages, 6960 KiB  
Article
Synergistic Effect of Hetero Interstitial Atoms (C/N/O) on the Thermodynamic Stability in BCC Fe: A DFT Study
by Fang Wang, Tengge Mi, Pinghu Chen, Hongmei Zhu, Yong Chen, Pengbo Zhang, Ruiqing Li and Changjun Qiu
Coatings 2025, 15(8), 929; https://doi.org/10.3390/coatings15080929 - 8 Aug 2025
Viewed by 158
Abstract
Laser cladding rapid solidification technique is an effective strategy for manufacturing ultra-high-strength martensitic stainless steels (UHS-MSS). Due to super-saturation solution strengthening of interstitial atoms (IAs), martensitic stainless steels containing IAs exhibit excellent ultra-high strength and toughness and have high tolerance for oxygen impurities. [...] Read more.
Laser cladding rapid solidification technique is an effective strategy for manufacturing ultra-high-strength martensitic stainless steels (UHS-MSS). Due to super-saturation solution strengthening of interstitial atoms (IAs), martensitic stainless steels containing IAs exhibit excellent ultra-high strength and toughness and have high tolerance for oxygen impurities. Hence, studying the specific speciation and structural characteristics of IAs is of great significance for guiding laser cladding of ultra-high-strength steels. Herein, we use density functional theory (DFT) computations to analyze the stable occupancies of IAs and their interactions in body-centered cubic iron (BCC Fe). The findings show that single IAs prefer to occupy octahedral sites over tetrahedral sites. Therefore, octahedral sites are selected as the optimal sites for the following double IAs study. For homo IAs, C-C and N-N configurations exhibit greater stability at long-range distances, whereas O-O demonstrate optimal stability at intermediate distances. Crucially, hetero IAs configurations are more stable compared to single IAs and homo IAs, exhibiting a synergistic effect. Especially, the C-O combination shows the highest stability and strongest bonding character. Meanwhile, the dissociation behavior of O indicates that C-O and N-O have higher dissociation temperatures than single O, further verifying the synergistic effect of hetero IAs. This provides a theoretical basis for understanding the interstitial solution strengthening of laser cladding UHS-MSS. Full article
Show Figures

Graphical abstract

16 pages, 1369 KiB  
Article
Recycling Waste Cottonseed Hulls to Biomaterials for Ammonia Adsorption
by Thomas Klasson, Bretlyn Pancio and Allen Torbert
Recycling 2025, 10(4), 158; https://doi.org/10.3390/recycling10040158 - 6 Aug 2025
Viewed by 305
Abstract
Ammonia emissions in poultry houses are common and pose health concerns for animals and workers. However, effective control of these emissions with sustainable products is lacking. Therefore, we investigated if an agricultural byproduct, cottonseed hulls, could be recycled through pyrolysis and used to [...] Read more.
Ammonia emissions in poultry houses are common and pose health concerns for animals and workers. However, effective control of these emissions with sustainable products is lacking. Therefore, we investigated if an agricultural byproduct, cottonseed hulls, could be recycled through pyrolysis and used to remove ammonia from air. In this study, the efficacy of ammonia removal was observed using cottonseed hull biomaterials pyrolyzed at seven different temperatures: 250, 300, 350, 400, 500, 600, and 700 °C. In this study, ammonia was passed through a column filled with pyrolyzed material, and ammonia in the filtered air was monitored. The results showed that materials pyrolyzed at intermediate temperatures of 350 and 400 °C were the most efficient at ammonia removal and were able to adsorb approximately 3.7 mg NH3/g of material. Despite extensive characterization, ammonia adsorption could not be linked to intrinsic material properties. Evaluation of the materials showed that the carbon in the pyrolyzed materials would be stable over time should the spent material be used as a soil amendment. Full article
Show Figures

Figure 1

14 pages, 2584 KiB  
Article
Enhanced Catalytic Ozonation of Formaldehyde over MOFs- Derived MnOx Catalysts with Diverse Morphologies: The Role of Oxygen Vacancies
by Yulin Sun, Yiwei Zhang, Yong He, Wubin Weng, Yanqun Zhu and Zhihua Wang
Catalysts 2025, 15(8), 752; https://doi.org/10.3390/catal15080752 - 6 Aug 2025
Viewed by 388
Abstract
Metal–organic frameworks (MOFs) have become a hot topic in various research fields nowadays. And MOF-derived metal oxides prepared by the sacrificial template method have been widely applied as catalysts for pollutant removal. Accordingly, we prepared a series of MOF-derived MnOx catalysts with [...] Read more.
Metal–organic frameworks (MOFs) have become a hot topic in various research fields nowadays. And MOF-derived metal oxides prepared by the sacrificial template method have been widely applied as catalysts for pollutant removal. Accordingly, we prepared a series of MOF-derived MnOx catalysts with diverse morphologies (rod-like, flower-like, slab-like) via the pyrolysis of MOF precursors, and the as-prepared MnOx catalysts demonstrated superior performance compared to the one prepared using the co-precipitation method. MnOx-II, with a flower-like structure, exhibited excellent activity for formaldehyde (HCHO) catalytic ozonation at room temperature, reaching complete HCHO conversion at O3/HCHO of 1.5 and more than 90% CO2 selectivity at an O3/HCHO ratio of 2.5. On the basis of various characterization methods, it was clarified that the enhanced catalytic performance of MnOx-II benefited from its larger BET surface area, abundant oxygen vacancies, better redox ability at lower temperature, and more Lewis acid sites. The H2O resistance and stability tests were also conducted. Furthermore, DFT calculations substantiated the enhanced adsorption of HCHO and O3 on oxygen vacancies, while in–situ DRIFTS measurements elucidated the degradation pathway of HCHO during catalytic ozonation through detected intermediates. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

13 pages, 988 KiB  
Article
Assessing the Applicability of a Partial Alcohol Reduction Method to the Fine Wine Analytical Composition of Pinot Gris
by Diána Ágnes Nyitrainé Sárdy, Péter Bodor-Pesti and Szabina Steckl
Foods 2025, 14(15), 2738; https://doi.org/10.3390/foods14152738 - 5 Aug 2025
Viewed by 253
Abstract
Climate change has a significant negative impact on agriculture and food production. This trend requires technological development and the adaptation of new technologies in both the grapevine production and winemaking sectors. High temperatures and heat accumulation during the growing season result in faster [...] Read more.
Climate change has a significant negative impact on agriculture and food production. This trend requires technological development and the adaptation of new technologies in both the grapevine production and winemaking sectors. High temperatures and heat accumulation during the growing season result in faster ripening and a higher sugar content, leading to a higher alcohol content during fermentation. The negative consequences are an imbalanced wine character and consumer reluctance, as lower alcoholic beverages are now in high demand. Over the last decade, several methods have been developed to handle this impact and reduce the alcohol content of wines. In this study, we used the MASTERMIND® REMOVE membrane-based dealcoholization system to reduce the alcohol concentration in of Pinot gris wines from 12.02% v/v to 10.69% v/v and to investigate the effect on analytical parameters in three steps (0.5%, 1%, and 1.5% reductions) along the treatment. To evaluate the impact of the partial alcohol reduction and identify correlations between the wine chemical parameters, data were analyzed with ANOVA, PCA, multivariate linear regression and cluster analysis. The results showed that except for the extract, sugar content and proline content, the treatment had a significant effect on the chemical parameters. Both free and total SO2 levels were significantly reduced as well as volatile acid, glycerol and succinic acid levels. It must be highlighted that some parameters were not differing significantly between the untreated and the final wine, while the change was statistically verified in the intermediate steps of the partial alcohol reduction. This was the case for example for n-Propanol, i-Amylalcohol, Acetaldehyde, and Ethyl acetate. The multivariate linear regression model explained 18.84% of the total variance, indicating a modest but meaningful relationship between the alcohol content and the investigated analytical parameters. Our results showed that even if the applied instrument significantly modified some of the wine chemical parameters, those changes would not influence significantly the wine sensory attributes. Full article
(This article belongs to the Special Issue Winemaking: Innovative Technology and Sensory Analysis)
Show Figures

Figure 1

17 pages, 8464 KiB  
Article
Spatiotemporal Dynamics of the Aridity Index in Central Kazakhstan
by Sanim Bissenbayeva, Dana Shokparova, Jilili Abuduwaili, Alim Samat, Long Ma and Yongxiao Ge
Sustainability 2025, 17(15), 7089; https://doi.org/10.3390/su17157089 - 5 Aug 2025
Viewed by 361
Abstract
This study analyzes spatiotemporal aridity dynamics in Central Kazakhstan (1960–2022) using a monthly Aridity Index (AI = P/PET), where P is precipitation and PET is potential evapotranspiration, Mann–Kendall trend analysis, and climate zone classification. Results reveal a northeast–southwest aridity gradient, with Aridity Index [...] Read more.
This study analyzes spatiotemporal aridity dynamics in Central Kazakhstan (1960–2022) using a monthly Aridity Index (AI = P/PET), where P is precipitation and PET is potential evapotranspiration, Mann–Kendall trend analysis, and climate zone classification. Results reveal a northeast–southwest aridity gradient, with Aridity Index ranging from 0.11 to 0.14 in southern deserts to 0.43 in the Kazakh Uplands. Between 1960–1990 and 1991–2022, southern regions experienced intensified aridity, with Aridity Index declining from 0.12–0.15 to 0.10–0.14, while northern mountainous areas became more humid, where Aridity Index increased from 0.40–0.44 to 0.41–0.46. Seasonal analysis reveals divergent patterns, with winter showing improved moisture conditions (52.4% reduction in arid lands), contrasting sharply with aridification in spring and summer. Summer emerges as the most extreme season, with hyper-arid zones (8%) along with expanding arid territories (69%), while autumn shows intermediate conditions with notable dry sub-humid areas (5%) in northwestern regions. Statistical analysis confirms these observations, with northern areas showing positive Aridity Index trends (+0.007/10 years) against southwestern declines (−0.003/10 years). Key drivers include rising temperatures (with recent degradation) and variable precipitation (long-term drying followed by winter and spring), and PET fluctuations linked to temperature. Since 1991, arid zones have expanded from 40% to 47% of the region, with semi-arid lands transitioning to arid, with a northward shift of the boundary. These changes are strongly seasonal, highlighting the vulnerability of Central Kazakhstan to climate-driven aridification. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

23 pages, 5217 KiB  
Article
High-Performance Pd-Pt/α-MnO2 Catalysts for the Oxidation of Toluene
by Ning Dong, Wenjin Wang, Xuelong Zheng, Huan Liu, Jingjing Zhang, Qing Ye and Hongxing Dai
Catalysts 2025, 15(8), 746; https://doi.org/10.3390/catal15080746 - 5 Aug 2025
Viewed by 326
Abstract
Herein, α-MnO2-supported Pt-Pd bimetal (xPd-yPt/α-MnO2; x and y are the weight loadings (wt%) of Pd and Pt, respectively; x = 0, 0.23, 0.47, 0.93, and 0.92 wt%; and y = 0.91, 0.21, [...] Read more.
Herein, α-MnO2-supported Pt-Pd bimetal (xPd-yPt/α-MnO2; x and y are the weight loadings (wt%) of Pd and Pt, respectively; x = 0, 0.23, 0.47, 0.93, and 0.92 wt%; and y = 0.91, 0.21, 0.46, 0.89, and 0 wt%) catalysts were prepared using the polyvinyl alcohol-protected NaBH4 reduction method. The physicochemical properties of the catalysts were determined by means of various techniques and their catalytic activities for toluene oxidation were evaluated. It was found that among the xPd-yPt/α-MnO2 samples, 0.93Pd-0.89Pt/α-MnO2 showed the best catalytic performance, with the toluene oxidation rate at 156 °C (rcat) and space velocity = 60,000 mL/(g h) being 6.34 × 10−4 mol/(g s), much higher than that of 0.91Pt/α-MnO2 (1.31 × 10−4 mol/(g s)) and that of 0.92Pd/α-MnO2 (6.13 × 10−5 mol/(g s)) at the same temperature. The supported Pd-Pt bimetallic catalysts possessed higher Mn3+/Mn4+ and Oads/Olatt molar ratios, which favored the enhancement in catalytic activity of the supported Pd-Pt bimetallic catalysts. Furthermore, the 0.47Pd-0.46Pt/α-MnO2 sample showed better resistance to sulfur dioxide poisoning. The partial deactivation of 0.47Pd-0.46Pt/α-MnO2 was attributed to the formation of sulfate species on the sample surface, which covered the active site of the sample, thus decreasing its toluene oxidation activity. In addition, the in situ DRIFTS results demonstrated that benzaldehyde and benzoate were the intermediate products of toluene oxidation. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

18 pages, 2865 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Viewed by 308
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

18 pages, 1583 KiB  
Article
Heat Transfer Characteristics of Thermosyphons Used in Vacuum Water Heaters
by Zied Lataoui, Adel M. Benselama and Abdelmajid Jemni
Fluids 2025, 10(8), 199; https://doi.org/10.3390/fluids10080199 - 31 Jul 2025
Viewed by 170
Abstract
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to [...] Read more.
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to investigate the effects of the operating conditions for a thermosyphon used in solar water heaters. The study particularly focuses on the influence of the inclination angle. Thus, a comprehensive simulation model is developed using the volume of fluid (VOF) approach. Complex and related phenomena, including two-phase flow, phase change, and heat exchange, are taken into account. To implement the model, an open-source CFD toolbox based on finite volume formulation, OpenFOAM, is used. The model is then validated by comparing numerical results to the experimental data from the literature. The obtained results show that the simulation model is reliable for investigating the effects of various operating conditions on the transient and steady-state behavior of the thermosyphon. In fact, bubble creation, growth, and advection can be tracked correctly in the liquid pool at the evaporator. The effects of the designed operating conditions on the heat transfer parameters are also discussed. In particular, the optimal tilt angle is shown to be 60° for the intermediate saturation temperature (<50 °C) and 90° for the larger saturation temperature (>60 °C). Full article
(This article belongs to the Special Issue Convective Flows and Heat Transfer)
Show Figures

Figure 1

Back to TopTop