Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = interlocking interface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3731 KB  
Article
A Novel Strategy for Introducing Metal-Organic Frameworks into Carbon Fiber to Improve the Interfacial and Mechanical Properties of Carbon Fiber/Epoxy Composites
by Jin Yan, Hongyi Ma, Qiyu Deng, Hongyun Li and Lei Xiong
Materials 2025, 18(21), 4856; https://doi.org/10.3390/ma18214856 (registering DOI) - 23 Oct 2025
Abstract
The interfacial properties in carbon fiber (CF)-reinforced polymer composites are substantially limited by the chemically inactive and smooth CF surfaces. In this study, zeolitic imidazolate framework 90 (ZIF90) was chemically grafted onto CF surfaces via polyethyleneimine (PEI) as a coupling agent to construct [...] Read more.
The interfacial properties in carbon fiber (CF)-reinforced polymer composites are substantially limited by the chemically inactive and smooth CF surfaces. In this study, zeolitic imidazolate framework 90 (ZIF90) was chemically grafted onto CF surfaces via polyethyleneimine (PEI) as a coupling agent to construct a hierarchical reinforcement interface in CF/epoxy composite. The successful synthesis of CF grafted with PEI and ZIF90 (CF-PEI-ZIF90) was systematically characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The incorporation of ZIF90 nanocrystals and PEI molecules into CF surfaces effectively improved interfacial adhesion through mechanical interlocking and chemical interactions, thereby optimizing stress transfer efficiency at the fiber–matrix interface and improving the interfacial properties of the composite. Additionally, the resultant CF-PEI-ZIF90/epoxy composite demonstrated significant mechanical enhancement, with the tensile and bending strengths increasing by 33.5% and 21.4%, respectively, compared to unmodified CF/epoxy composites. This work provides a novel strategy for enhancing the interfacial performance of CF composites by leveraging the unique properties of metal-organic frameworks, which is critical for advancing high-performance structural materials in aerospace and automotive applications. Full article
34 pages, 1919 KB  
Systematic Review
Hybrid Rule-Based and Reinforcement Learning for Urban Signal Control in Developing Cities: A Systematic Literature Review and Practice Recommendations for Indonesia
by Freddy Kurniawan, Harliyus Agustian, Denny Dermawan, Riani Nurdin, Nurfi Ahmadi and Okto Dinaryanto
Appl. Sci. 2025, 15(19), 10761; https://doi.org/10.3390/app151910761 - 6 Oct 2025
Viewed by 557
Abstract
Hybrid rule-based and reinforcement-learning (RL) signal control is gaining traction for urban coordination by pairing interpretable cycles, splits, and offsets with adaptive, data-driven updates. However, systematic evidence on their architectures, safeguards, and deployment prerequisites remains scarce, motivating this review that maps current hybrid [...] Read more.
Hybrid rule-based and reinforcement-learning (RL) signal control is gaining traction for urban coordination by pairing interpretable cycles, splits, and offsets with adaptive, data-driven updates. However, systematic evidence on their architectures, safeguards, and deployment prerequisites remains scarce, motivating this review that maps current hybrid controller designs under corridor coordination. Searches across major databases and arXiv (2000–2025) followed PRISMA guidance; screening is reported in the flow diagram. Eighteen studies were included, nine with quantitative comparisons, spanning simulation and early field pilots. Designs commonly use rule shields, action masking, and bounded adjustments of offsets or splits; effectiveness is assessed via arrivals on green, Purdue Coordination diagrams, delay, and travel time. Across the 18 studies, the majority reported improvements in arrivals on green, delay, travel time, or related coordination metrics compared to fixed-time or actuated baselines, while only a few showed neutral or mixed effects and very few indicated deterioration. These results indicate that hybrid safeguards are generally associated with positive operational gains, especially under heterogeneous traffic conditions. Evidence specific to Indonesia remains limited; this review addresses that gap and offers guidance transferable to other developing-country contexts with similar sensing, connectivity, and institutional constraints. Practical guidance synthesizes sensing choices and fallbacks, controller interfaces, audit trails, and safety interlocks into a deployment checklist, with a staged roadmap for corridor roll-outs. This paper is not only a systematic review but also develops a practice-oriented framework tailored to Indonesian corridors, ensuring that evidence synthesis and practical recommendations are clearly distinguished. Full article
Show Figures

Figure 1

49 pages, 11576 KB  
Article
Interpretable AI-Driven Modelling of Soil–Structure Interface Shear Strength Using Genetic Programming with SHAP and Fourier Feature Augmentation
by Rayed Almasoudi, Abolfazl Baghbani and Hossam Abuel-Naga
Geotechnics 2025, 5(4), 69; https://doi.org/10.3390/geotechnics5040069 - 1 Oct 2025
Viewed by 256
Abstract
Accurate prediction of soil–structure interface shear strength (τmax) is critical for reliable geotechnical design. This study combines experimental testing with interpretable machine learning to overcome the limitations of traditional empirical models and black-box approaches. Ninety large-displacement ring shear tests were performed [...] Read more.
Accurate prediction of soil–structure interface shear strength (τmax) is critical for reliable geotechnical design. This study combines experimental testing with interpretable machine learning to overcome the limitations of traditional empirical models and black-box approaches. Ninety large-displacement ring shear tests were performed on five sands and three interface materials (steel, PVC, and stone) under normal stresses of 25–100 kPa. The results showed that particle morphology, quantified by the regularity index (RI), and surface roughness (Rt) are dominant factors. Irregular grains and rougher interfaces mobilised higher τmax through enhanced interlocking, while smoother particles reduced this benefit. Harder surfaces resisted asperity crushing and maintained higher shear strength, whereas softer materials such as PVC showed localised deformation and lower resistance. These experimental findings formed the basis for a hybrid symbolic regression framework integrating Genetic Programming (GP) with Shapley Additive Explanations (SHAP), Fourier feature augmentation, and physics-informed constraints. Compared with multiple linear regression and other hybrid GP variants, the Physics-Informed Neural Fourier GP (PIN-FGP) model achieved the best performance (R2 = 0.9866, RMSE = 2.0 kPa). The outcome is a set of five interpretable and physics-consistent formulas linking measurable soil and interface properties to τmax. The study provides both new experimental insights and transparent predictive tools, supporting safer and more defensible geotechnical design and analysis. Full article
(This article belongs to the Special Issue Recent Advances in Soil–Structure Interaction)
Show Figures

Figure 1

35 pages, 7715 KB  
Article
Micro-Interface Slip Damping in a Compressed Coir Vibration Isolator
by Jem A. Rongong, Jin-Song Pei, Joseph P. Wright and Gerald A. Miller
Materials 2025, 18(19), 4521; https://doi.org/10.3390/ma18194521 - 29 Sep 2025
Viewed by 273
Abstract
The micro-interface slip damping mechanism is insensitive to temperature, making it suitable for applications where the operating environment makes viscoelastic polymers ineffective. Damping material systems that rely on micro-interface slip typically embody randomly disposed interlocking units leading to complex material behaviors. This work [...] Read more.
The micro-interface slip damping mechanism is insensitive to temperature, making it suitable for applications where the operating environment makes viscoelastic polymers ineffective. Damping material systems that rely on micro-interface slip typically embody randomly disposed interlocking units leading to complex material behaviors. This work studies a compressed coir vibration isolator that provides a lightweight, low cost and environmentally friendly alternative to common polymer devices. Under cyclic loading, it displays highly nonlinear hysteresis and a gradual change in properties based on the load history. The nonlinear hysteresis is captured with a Masing model, which has been shown to provide an adequate phenomenological representation of systems with large numbers of miniature stick-slip contacts. This study further explores a new way to enrich the Masing model by encoding time evolution using restoring force or displacement time integral, directly adopted from mem-models, a new family of models transferred from electrical engineering. In addition to using the data from the coir isolator, two additional datasets from clayey soil, another application of micro-interface slip damping, are used to validate the modeling approach. Full article
Show Figures

Figure 1

20 pages, 4662 KB  
Article
Experimental Study on the Shear Performance of Epoxy Resin-Bolted Steel-Cross Laminated Timber (CLT) Connections
by Qing Lyu, Jinxun Ye, Huake Wang, Jiale Xu, Yunfeng Xiao, Bo Fu, Xianlei Li and Zhaoyang Zhang
Buildings 2025, 15(18), 3400; https://doi.org/10.3390/buildings15183400 - 19 Sep 2025
Viewed by 318
Abstract
Steel–timber composite (STC) structures offer a sustainable and low-carbon structural solution. Steel–timber interface behavior is critical for the mechanical performance of STC structures. This paper introduces a novel connection for steel–timber composites (STC) that combines mechanical interlocking with adhesive bonding through an epoxy-bonded [...] Read more.
Steel–timber composite (STC) structures offer a sustainable and low-carbon structural solution. Steel–timber interface behavior is critical for the mechanical performance of STC structures. This paper introduces a novel connection for steel–timber composites (STC) that combines mechanical interlocking with adhesive bonding through an epoxy-bonded bolted design. Epoxy resin is injected into the timber dowel slots, followed by pre-tightening of the bolts, forming a composite dowel system where the ‘bolt–epoxy resin–timber’ components work in synergy. The load–displacement characteristics and failure modes of nine specimen groups were investigated through a series of double-shear push-out tests. The influence of a wide range of connector parameters on the stiffness, shear bearing capacity, and ductility of STC joints was systematically investigated. The parameters included fastener strength grade, thread configuration, diameter, number, and the use of epoxy resin reinforcement. The experimental results demonstrated that high-strength partially threaded bolts were crucial for achieving a synergy of high load-bearing capacity and commendable ductility, while full-threaded bolts exhibited vulnerability to brittle shear failure, a consequence of stress concentration at the root of the threads. Although screw connections provided enhanced initial stiffness through timber anchorage, ordinary bolt connections exhibited superior ultimate load-bearing capacity. In comparison with conventional bolt connections, epoxy resin–bolt connections exhibited enhanced mechanical properties, with an augmentation in ultimate load and initial stiffness of 12% and 11.8%, respectively, without sacrificing ductility. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

18 pages, 3843 KB  
Article
Dual Micromechanical Interlocking Through Filler Surface Modification for Enhanced Dental Composites
by Hongyan Chen, Jiaxuan Lyu, Jia Nie, Xuhui Wang, Na Yang, Sheng Han and Mingliang Zhou
Polymers 2025, 17(17), 2384; https://doi.org/10.3390/polym17172384 - 31 Aug 2025
Cited by 1 | Viewed by 842
Abstract
A novel structure–functional-integrated particle featuring dual micromechanical interlocking property with resin matrix was constructed through surface modification of urchin-like serried hydroxyapatite (UHA) in this work, and the effect of this modification strategy on physicochemical and biological properties of dental resin composite was also [...] Read more.
A novel structure–functional-integrated particle featuring dual micromechanical interlocking property with resin matrix was constructed through surface modification of urchin-like serried hydroxyapatite (UHA) in this work, and the effect of this modification strategy on physicochemical and biological properties of dental resin composite was also investigated. A porous silica coating layer was anchored onto UHA surface via a simple template method in an oil−water biphase reaction system, and the coating time had a prominent effect on the coating thickness and morphology-structure of the particle. When these particles with different porous silica coating thickness were used as fillers for dental resin composite, results showed that UHA/PS5 (porous silica coating reaction time: 5 h) exhibited the optimal 3D urchin-like structure and a desirable porous silica coating thickness. Additionally, UHA/PS5 formed the best dual physical micromechanical interlocking structure when mixing with resin matrix, making the dental resin composites presented the desirable matrix/filler interfacial bonding, and the excellent physicochemical–biological properties, especially for flexural strength and water sorption-solubility. In vitro remineralization and cellular biological properties confirmed that the coating layer did not compromise their remineralization activity. The use of UHA/PSx provides a promising approach to develop strong, durable, and biocompatible DRCs. Full article
Show Figures

Figure 1

25 pages, 15343 KB  
Article
Experimental Investigation of the Effects of Moisture Levels on Geocomposite Drainage–Geomembrane Interface Shear Behavior
by Juan Hou, Ying Zhang and Xuelei Xie
Sustainability 2025, 17(17), 7850; https://doi.org/10.3390/su17177850 - 31 Aug 2025
Viewed by 629
Abstract
Engineered landfill covers are vital for environmental sustainability. This study investigates the shear behaviors of geocomposite drainage (GCD) and geomembrane (GM) interfaces—smooth (GMS), impinged texture (GMTI), and embossed texture (GMTE)—under 10, 30, and 50 kPa of normal stress and 0%, 50%, and 100% [...] Read more.
Engineered landfill covers are vital for environmental sustainability. This study investigates the shear behaviors of geocomposite drainage (GCD) and geomembrane (GM) interfaces—smooth (GMS), impinged texture (GMTI), and embossed texture (GMTE)—under 10, 30, and 50 kPa of normal stress and 0%, 50%, and 100% moisture levels using large-scale direct shear tests. All interfaces showed strain-softening behavior. At 50 kPa and 0% moisture, GCD–GMTI had the highest peak strength (28 kPa), whereas GCD–GMS had the lowest (10 kPa) at 100% moisture. Moisture and normal stress showed a coupling effect, reducing strength and friction angle. At a 0% moisture level, the strength of the GCD–GMS and GCD–GMTI interfaces under 50 kPa of normal stress was 500% and 250% of that at 10 kPa, respectively; at a 100% moisture level, these proportions decreased to 310% and 230%, respectively. For GCD–GMTE, the ratio slightly increased from 3.0 to 3.2, indicating better wet performance. Texture significantly affected strength: peak strength at 50 kPa was reduced by 41% (GCD–GMS), 16% (GCD–GMTI), and 26% (GCD–GMTE) as moisture increased from 0% to 100%. Large displacement (LD)-to-peak ratios were 0.8–0.9 (GCD–GMS), 0.7–0.8 (GCD–GMTI), and up to 1.0 (GCD–GMTE). Friction angles were reduced from 18° to 9°, 23° to 18°, and 18° to 14° for GCD–GMS, GCD–GMTI, and GCD–GMTE, respectively. Vertical deformation was <0.6 mm. Shear mechanisms depended on texture and moisture. Microscopic and 3D scans revealed moisture-induced GMTI smoothing, reducing interlocking and strength. Full article
Show Figures

Figure 1

19 pages, 7555 KB  
Article
Effects of Two Dental Implant Micromotor Systems for Dental Implant Placement on Implant Stability and Removal Torque: An Animal Experiment
by Keunbada Son, Young-Tak Son, Sung-Min Hwang, Jae Mok Lee, Jin-Wook Kim and Kyu-Bok Lee
Materials 2025, 18(17), 4048; https://doi.org/10.3390/ma18174048 - 29 Aug 2025
Viewed by 641
Abstract
This in vivo animal study aimed to evaluate the effects of two different implant placement micromotor systems on implant stability and removal torque. In a within-animal crossover design, twenty titanium implants (AnyOne fixture; internal type; diameter, 3.5 mm; length, 7.0 mm; Megagen, Daegu, [...] Read more.
This in vivo animal study aimed to evaluate the effects of two different implant placement micromotor systems on implant stability and removal torque. In a within-animal crossover design, twenty titanium implants (AnyOne fixture; internal type; diameter, 3.5 mm; length, 7.0 mm; Megagen, Daegu, Republic of Korea) were placed in the tibiae of five rabbits using a conventional micromotor system (NSK group: SurgicPro+; NSK, Kanuma, Japan) and a diode laser-integrated micromotor system (SAESHIN group: BLP 10; Saeshin, Daegu, Republic of Korea). Resonance frequency analysis provided the implant stability quotient (ISQ) immediately after placement and at four weeks. Micro-computed tomography quantified the bone–implant interface gap (BIG). Removal torque was measured at sacrifice. Linear mixed-effects models with a random intercept for rabbit generated adjusted means with 95% confidence intervals (CIs) (α = 0.05). Equivalence for the four-week ISQ used two one-sided tests with a margin of ±5 ISQ. The SAESHIN group achieved a higher immediate ISQ than the NSK group (difference =+6.9 ISQ; 95% CI +1.3–+12.5; p = 0.018). At four weeks, the ISQ did not differ (difference = −1.2 ISQ; 95% CI −4.3–+1.9; p = 0.42), and equivalence was supported (TOST p_lower = 0.024; p_upper = 0.019). Removal torque was comparable (difference = +4.3 N·cm; 95% CI −5.2–+13.8; p = 0.36). BIG metrics showed no between-system differences across regions. ICC indicated clustering for ISQ and torque (0.36 and 0.31). The diode laser-integrated micromotor system yielded a higher immediate ISQ under a standardized 35 N·cm seating torque, whereas the ISQ, removal torque, and BIG at four weeks were comparable to those of the conventional system. The immediate ISQ should be interpreted as stiffness under fixed torque rather than superior device-dependent interlocking. These findings support the clinical interchangeability of the two systems for early osseointegration endpoints in preclinical settings. Full article
(This article belongs to the Special Issue Innovations in Digital Dentistry: Novel Materials and Technologies)
Show Figures

Figure 1

22 pages, 8553 KB  
Article
Research on Laser Cladding Single-Pass Continuous Carbon Fiber-Reinforced Aluminum Matrix Composite Process Based on Abaqus
by Pengtao Zhang, Xiaole Cheng, Yuanyuan Deng, Yao Peng, Meijiao Qu, Peng Ren and Teng Wang
Materials 2025, 18(16), 3859; https://doi.org/10.3390/ma18163859 - 18 Aug 2025
Viewed by 615
Abstract
This study addresses the critical challenges of interfacial stress mismatch, fiber degradation, and unstable clad geometry in manufacturing continuous carbon fiber-reinforced aluminum composites (Cf/Al) via laser cladding, driven by rapid thermal gradients. A dual-ellipsoid heat source-based thermoelastic–plastic finite element model was developed in [...] Read more.
This study addresses the critical challenges of interfacial stress mismatch, fiber degradation, and unstable clad geometry in manufacturing continuous carbon fiber-reinforced aluminum composites (Cf/Al) via laser cladding, driven by rapid thermal gradients. A dual-ellipsoid heat source-based thermoelastic–plastic finite element model was developed in Abaqus, integrating phase-dependent material properties and latent heat effects to simulate multi-physics interactions during single-track deposition, resolving transient temperature fields peaking at 1265 °C, and residual stresses across uncoated and Ni-coated fiber configurations. The work identifies an optimal parameter window characterized by laser power ranging from 700 to 800 W, scan speed of 2 mm/s, and spot radius of 3 mm that minimizes thermal distortion below 5% through gradient-controlled energy delivery, while quantitatively demonstrating nickel interlayers’ dual protective role in achieving 42% reduction in fiber degradation at 1200 °C compared to uncoated systems and enhancing interfacial load transfer efficiency by 34.7%, thereby reducing matrix tensile stresses to 159 MPa at fiber interfaces. Experimental validation confirms the model’s predictive capability, revealing nickel-coated systems exhibit superior thermal stability with temperature differentials below 12.6 °C across interfaces and mechanical interlocking, achieving interfacial void fractions under 8%. These results establish a process–structure linkage framework, advancing defect-controlled composite fabrication and providing a digital twin methodology for aerospace-grade manufacturing. Full article
Show Figures

Figure 1

19 pages, 4418 KB  
Article
Interfacial Shrinkage Properties and Mechanism Analysis of Light-Conductive Resin–Cement-Based Materials
by Shengtian Zhai, Ran Hai, Zhihang Yu, Jianjun Ma, Chao Hou, Jiufu Zhang, Shaohua Du and Xingang Wang
Buildings 2025, 15(15), 2754; https://doi.org/10.3390/buildings15152754 - 5 Aug 2025
Viewed by 531
Abstract
To address the issue of interfacial shrinkage deformation in optical resin–cement-based composites, this study examined the effects of casting methods and coupling agent treatments on the interfacial deformation behavior and underlying mechanisms at the resin–cement interface. A self-developed interfacial shrinkage testing apparatus, combined [...] Read more.
To address the issue of interfacial shrinkage deformation in optical resin–cement-based composites, this study examined the effects of casting methods and coupling agent treatments on the interfacial deformation behavior and underlying mechanisms at the resin–cement interface. A self-developed interfacial shrinkage testing apparatus, combined with ABAQUS numerical simulations, was employed to facilitate this analysis. The results revealed that the interfacial shrinkage strain followed a characteristic distribution—higher at both ends and lower in the middle region—as the temperature increased. The experimental data showed a strong agreement with the simulation outcomes. A comparative analysis indicated that the pre-cast cement method reduced the interfacial shrinkage strain by 16% compared to the pre-cast resin method. Furthermore, treatment with a coupling agent resulted in a 31% reduction in the strain, while combining a serrated surface modification with a coupling agent treatment achieved a maximum reduction of 43.5%. Microscopic characterization confirmed that the synergy between the coupling agent and surface roughening significantly enhanced interfacial bonding by filling microcracks, improving adhesion, and increasing mechanical interlocking. This synergistic effect effectively suppressed the relative slippage caused by asynchronous shrinkage between dissimilar materials, thereby mitigating the interfacial cracking issue in optical resin–cement-based composites. These findings provide theoretical insights for optimizing the interface design in organic–inorganic composite systems. Full article
Show Figures

Figure 1

20 pages, 6738 KB  
Article
Biocompatible Inorganic PVD MeSiON Thin Films (Me = Cr or Zr) Used to Enhance the Bond Strength Between NiCr-Based Metallic Frameworks and Ceramic in Dental Restorations
by Mihaela Dinu, Cosmin Mihai Cotrut, Alina Vladescu (Dragomir), Florin Baciu, Anca Constantina Parau, Iulian Pana, Lidia Ruxandra Constantin and Catalin Vitelaru
Dent. J. 2025, 13(7), 318; https://doi.org/10.3390/dj13070318 - 14 Jul 2025
Viewed by 696
Abstract
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve [...] Read more.
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve the bond strength between NiCr-based metal frameworks and ceramic coatings by introducing biocompatible inorganic MeSiON thin films (Me = Cr or Zr) as interlayers. Methods: MeSiON coatings with a thickness of ~2 μm were deposited on NiCr alloy using cathodic arc evaporation. To tailor the stoichiometry, morphology, and mechanical properties of the coatings, the substrate bias voltage was varied: −50 V, −100 V, −150 V, −200 V. Structural and surface characterization was performed using SEM/EDS, XRD, profilometry, and contact angle analysis. The coating adhesion was evaluated by using standardized scratch testing, while the bond strength was evaluated using a three-point bending test. Results: The NiCr alloy exhibited a dendritic microstructure, and the ceramic layer consisted mainly of quartz, feldspar, kaolin, and ZrO2. ZrSiON coatings showed superior roughness, elemental incorporation, and adhesion compared to Cr-based coatings, these properties being further improved by increasing the substrate bias. The highest bond strength was achieved with a ZrSiON coating deposited at −200 V, a result we attributed to increased surface roughness and mechanical interlocking at the ceramic-metal interface. Conclusions: CrSiON and ZrSiON interlayers enhanced ceramic-to-metal adhesion in NiCr-based dental restorations. The enhancement in bond strength is primarily ascribed to substrate bias-induced modifications in the coating’s stoichiometry, roughness, and adhesion. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

15 pages, 4106 KB  
Article
Effect of Alumina Microparticle-Infused Polymer Matrix on Mechanical Performance of Carbon Fiber Reinforced Polymer (CFRP) Composite
by Ganesh Radhakrishnan, Teodora Odett Breaz, Abdul Hamed Hamed Al Hinai, Fisal Hamed Al Busaidi, Laqman Malik Al Sheriqi, Mohammed Ali Al Hattali, Mohammed Ibrahim Al Rawahi, Mohammed Nasser Al Rabaani and Kadhavoor R. Karthikeyan
J. Compos. Sci. 2025, 9(7), 360; https://doi.org/10.3390/jcs9070360 - 10 Jul 2025
Viewed by 641
Abstract
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the [...] Read more.
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the field of transportation and building engineering, replacing conventional materials due to their attractive properties as mentioned. In this work, a CFRP laminate is fabricated with carbon fiber mats and epoxy by a hand layup technique. Alumina (Al2O3) micro particles are used as a filler material, mixed with epoxy at different weight fractions of 0% to 4% during the fabrication of CFRP laminates. The important objective of the study is to investigate the influence of alumina micro particles on the mechanical performance of the laminates through characterization for various physical and mechanical properties. It is revealed from the results of study that the mass density of the laminates steadily increased with the quantity of alumina micro particles added and subsequently, the porosity of the laminates is reduced significantly. The SEM micrograph confirmed the constituents of the laminate and uniform distribution of Al2O3 micro particles with no significant agglomeration. The hardness of the CFRP laminates increased significantly for about 60% with an increase in weight % of Al2O3 from 0% to 4%, whereas the water gain % gradually drops from 0 to 2%, after which a substantial rise is observed for 3 to 4%. The improved interlocking due to the addition of filler material reduced the voids in the interfaces and thereby resist the absorption of water and in turn reduced the plasticity of the resin too. Tensile, flexural and inter-laminar shear strengths of the CFRP laminate were improved appreciably with the addition of alumina particles through extended grain boundary and enhanced interfacial bonding between the fibers, epoxy and alumina particles, except at 1 and 3 wt.% of Al2O3, which may be due to the pooling of alumina particles within the matrix. Inclusion of hard alumina particles resulted in a significant drop in impact strength due to appreciable reduction in softness of the core region of the laminates. Full article
Show Figures

Figure 1

20 pages, 4718 KB  
Article
Shear Performance of New-to-Old Concrete Under Different Interface Treatments
by Shoukun Shi, Da Wang, Zhiyun Li, Yan Jiang, Jinchao Yue and Yibin Huang
Coatings 2025, 15(7), 805; https://doi.org/10.3390/coatings15070805 - 9 Jul 2025
Cited by 1 | Viewed by 795
Abstract
In shield tunneling, ensuring bonding performance at new-to-old concrete interfaces between segments and linings is crucial for composite lining stability. While extensive research exists on the mechanical bonding behavior of such interfaces, comparative studies on two prevalent treatment methods—scabbling and grooving—remain limited. This [...] Read more.
In shield tunneling, ensuring bonding performance at new-to-old concrete interfaces between segments and linings is crucial for composite lining stability. While extensive research exists on the mechanical bonding behavior of such interfaces, comparative studies on two prevalent treatment methods—scabbling and grooving—remain limited. This study systematically evaluates these techniques’ effects on interfacial bonding via direct shear tests, benchmarking against smooth-interface specimens. Complementary cohesive zone modeling simulations further analyze stress distribution and damage evolution during shear failure. The results demonstrate that scabbled specimens exhibit 10.5%~18.2% higher shear strength than grooved counterparts under increasing normal stress, with both treatments significantly enhancing load–transfer synergy through mechanical interlocking. Furthermore, the energy-based bilinear cohesive model accurately predicts full-interface behavior, providing practical guidance for interface treatment selection in tunneling engineering. Full article
Show Figures

Figure 1

22 pages, 5625 KB  
Article
Corrosion Resistance Mechanism in WC/FeCrNi Composites: Decoupling the Role of Spherical Versus Angular WC Morphologies
by Xiaoyi Zeng, Renquan Wang, Xin Tian and Ying Liu
Metals 2025, 15(7), 777; https://doi.org/10.3390/met15070777 - 9 Jul 2025
Cited by 1 | Viewed by 454
Abstract
In this study, we investigated the electrochemical corrosion behavior and mechanisms of FeCrNi/WC alloys with varying contents of CTC-S (spherical WC) and CTC-A (angular WC) in a 3.5 wt.% NaCl solution, addressing the corrosion resistance requirements for stainless steel composites in marine environments. [...] Read more.
In this study, we investigated the electrochemical corrosion behavior and mechanisms of FeCrNi/WC alloys with varying contents of CTC-S (spherical WC) and CTC-A (angular WC) in a 3.5 wt.% NaCl solution, addressing the corrosion resistance requirements for stainless steel composites in marine environments. The electrochemical test results demonstrate that the corrosion resistance of the alloy initially increases with the CTC-A content, followed by a decrease, which is associated with the formation, stability, and rupture of the passivated film. Nyquist and Bode diagrams for electrochemical impedance spectroscopy confirm that the charge transfer resistance of the passivated film is the primary determinant of the composite’s corrosion performance. A modest increase in CTC-A contributes to the formation of a more heterogeneous second phase, providing a physical barrier and enhancing solid solution strengthening, and thus delaying the cracking and corrosion processes of the passivation film. However, excessive CTC-A content leads to significant dissolution of the alloy’s reinforcement phase and promotes decarburization, resulting in the formation of corrosion pits, craters, and cracks that compromise the passivation film and expose fresh alloy surfaces to further corrosion. When the CTC-A content is 10% and the CTC-S content is 30%, this combination results in minimal degradation in the corrosion performance (0.213 μA·cm2) while balancing the hardness and toughness of the alloy. Additionally, electrochemical evaluations reveal that incorporating angular CTC-A particles at 10 vol% effectively delays the breakdown of the passivation film by mitigating the interfacial galvanic coupling through enhancing the mechanical interlocking at the WC/FeCrNi interface. The CTC-A/CTC-S hybrid system exhibits a remarkable 62% reduction in the pitting propagation rate compared to composites reinforced solely with spherical WC, which is attributed to the preferential dissolution of angular WC protrusions that sacrificially suppress crack initiation at the phase boundaries. Full article
Show Figures

Figure 1

14 pages, 3895 KB  
Article
An Experimental Study on the Interface Characteristics of Geogrid-Reinforced Construction and Demolition (C&D) Waste Recycled Aggregate Based on Pullout Tests
by Da Zhang, Haixiang Gao, Haifeng Wang and Guangqing Yang
Buildings 2025, 15(13), 2355; https://doi.org/10.3390/buildings15132355 - 4 Jul 2025
Viewed by 494
Abstract
China generates substantial construction and demolition (C&D) waste, owing to rapid urbanization. However, the resource utilization rate of C&D waste remains low. This work is devoted to promoting the application of C&D waste in reinforced soil structures. In this research, the physical and [...] Read more.
China generates substantial construction and demolition (C&D) waste, owing to rapid urbanization. However, the resource utilization rate of C&D waste remains low. This work is devoted to promoting the application of C&D waste in reinforced soil structures. In this research, the physical and mechanical properties of C&D waste recycled aggregate, biaxial geogrids and triaxial geogrids were first clarified. Then, a series of pullout tests were carried out based on the large-size pullout test setup. With the help of macroscopic indicators, including pullout resistance, horizontal displacement and interface friction coefficient, the effects of normal stress, pullout rate and reinforcement type on the characteristics of the reinforcement–C&D waste recycled aggregate interface were clarified. The test results show that normal stress has the greatest influence on pullout resistance. The pullout rate has the lowest effect on pullout resistance. In addition, the interface effect between the triaxial geogrid and the C&D waste recycled aggregate is more significant than that in biaxial geogrid–C&D waste recycled aggregate. The interface friction angle of triaxial geogrids is 18.1% higher than that of biaxial geogrids (11.6° vs. 9.82°), correlating with an enhanced particle interlocking mechanism. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop