Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,008)

Search Parameters:
Keywords = interfacial mechanics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 4290 KiB  
Review
Carbon/High-Entropy Alloy Nanocomposites: Synergistic Innovations and Breakthrough Challenges for Electrochemical Energy Storage
by Li Sun, Hangyu Li, Yu Dong, Wan Rong, Na Zhou, Rui Dang, Jianle Xu, Qigao Cao and Chunxu Pan
Batteries 2025, 11(9), 317; https://doi.org/10.3390/batteries11090317 (registering DOI) - 23 Aug 2025
Abstract
Against the backdrop of accelerating global energy transition, developing high-performance energy-storage systems is crucial for achieving carbon neutrality. Traditional electrode materials are limited by a single densification storage mechanism and low conductivity, struggling to meet demands for high energy/power density and a long [...] Read more.
Against the backdrop of accelerating global energy transition, developing high-performance energy-storage systems is crucial for achieving carbon neutrality. Traditional electrode materials are limited by a single densification storage mechanism and low conductivity, struggling to meet demands for high energy/power density and a long cycle life. Carbon/high-entropy alloy nanocomposites provide an innovative solution through multi-component synergistic effects and cross-scale structural design: the “cocktail effect” of high-entropy alloys confers excellent redox activity and structural stability, while the three-dimensional conductive network of the carbon skeleton enhances charge transfer efficiency. Together, they achieve synergistic enhancement via interfacial electron coupling, stress buffering, and dual storage mechanisms. This review systematically analyzes the charge storage/attenuation mechanisms and performance advantages of this composite material in diverse energy-storage devices (lithium-ion batteries, lithium-sulfur batteries, etc.), evaluates the characteristics and limitations of preparation techniques such as mechanical alloying and chemical vapor deposition, identifies five major challenges (including complex and costly synthesis, ambiguous interfacial interaction mechanisms, lagging theoretical research, performance-cost trade-offs, and slow industrialization processes), and prospectively proposes eight research directions (including multi-scale structural regulation and sustainable preparation technologies, etc.). Through interdisciplinary perspectives, this review aims to provide a theoretical foundation for deepening the understanding of carbon/high-entropy alloy composite energy-storage mechanisms and guiding industrial applications, thereby advancing breakthroughs in electrochemical energy-storage technology under the energy transition. Full article
20 pages, 2806 KiB  
Review
Interfacial Solar Evaporation for Treating High-Salinity Wastewater: Chance and Necessity
by Shunjian Ji, Zhihong Zhang, Meijie Zhang, Zexin Yang, Yaguang Fan, Juan Zhang, Yingping Pang and Lin Cui
Processes 2025, 13(9), 2679; https://doi.org/10.3390/pr13092679 - 22 Aug 2025
Abstract
The tension in the relationship between water and energy seriously restricts the harmonious coexistence between man and the ecological environment. The solar-powered interface evaporation technology emerging in recent years has shown good application prospects in high-salt wastewater treatment for achieving the zero-discharge treatment [...] Read more.
The tension in the relationship between water and energy seriously restricts the harmonious coexistence between man and the ecological environment. The solar-powered interface evaporation technology emerging in recent years has shown good application prospects in high-salt wastewater treatment for achieving the zero-discharge treatment of wastewater. In this review, advanced solar-driven interfacial evaporation is primarily focused on its mechanisms, photothermal materials optimization, and the structure of solar evaporators for salt removal. The high wide-spectrum solar absorption rate of photothermal materials determines the total energy that can be utilized in the evaporation system. The light-to-heat conversion capacity of photothermal materials directly affects the efficiency and performance of solar interface evaporators. We highlight the microstructures enabled by the nanophotonic designs of photothermal material-based solar absorbers, which can achieve highly efficient light harvesting across the entire solar irradiance spectral range with weighted solar absorptivity. Finally, based on current research, existing problems, and future development directions for high-salt wastewater evaporation research are proposed. The review provides insights into the effective treatment of high-salt wastewater. Full article
(This article belongs to the Special Issue Clean Combustion and Emission Control Technologies)
Show Figures

Figure 1

21 pages, 8415 KiB  
Article
In Situ Constructing Highly Aligned Ribbon-like PHBV Lamellae in PBAT: Towards Strong, Ductile and High-Barrier PBAT/PHBV Films
by Yaqiao Wang, Jun Xu and Baohua Guo
Materials 2025, 18(17), 3947; https://doi.org/10.3390/ma18173947 - 22 Aug 2025
Abstract
This study presents a facile approach to fabricate PBAT/PHBV films with superior mechanical and barrier properties by in situ forming ribbon-like lamellae, achieving a PHBV platelet-reinforced PBAT films. The fabrication involves melt blending of PBAT and PHBV, where styrene–methyl methacrylate–glycidyl methacrylate copolymer as [...] Read more.
This study presents a facile approach to fabricate PBAT/PHBV films with superior mechanical and barrier properties by in situ forming ribbon-like lamellae, achieving a PHBV platelet-reinforced PBAT films. The fabrication involves melt blending of PBAT and PHBV, where styrene–methyl methacrylate–glycidyl methacrylate copolymer as a multifunctional reactive compatibilizer (RC) regulates PHBV domain size by forming a branched/cross-linked PBAT-B-PHBV structure. The introduction of a compatibilizer into the PBAT/PHBV system can reduce domain size and improve interfacial adhesion, thereby elevating PBAT’s storage modulus and complex viscosity for optimized blow-molding processability. During blow-molding, biaxial stretching with rapid cooling transforms PHBV sea–island structures into well-aligned ribbon-like lamellae. Notably, when PHBV content is ≤30 wt.%, lamellae form in the PBAT matrix, significantly enhancing both mechanical and barrier properties. The addition of RC reduces the lateral dimensions of PHBV lamellae while increasing PHBV number density. The introduction of 0.2 wt.% RC optimizes lamellar dimensions and density to maximize permeation pathway tortuosity. Ultimately, the lamellae in the PBAT matrix yield remarkable property enhancements: yield strength increased by >600%, elastic modulus by >200%, and water vapor/oxygen transmission rate reduced by ~81% and ~85%, respectively. Full article
(This article belongs to the Section Thin Films and Interfaces)
22 pages, 1344 KiB  
Article
Effect of Nanoclay on the Performance Characteristics of SBS-Modified Asphalt Concrete Mixtures
by Asmat Khan, Sarfraz Ahmed, Naqeeb Ullah Khattak, Menglim Hoy and Chamroeun Se
Coatings 2025, 15(9), 984; https://doi.org/10.3390/coatings15090984 - 22 Aug 2025
Abstract
This study examined the synergistic effects of Styrene–Butadiene–Styrene (SBS) polymer and nanoclay on asphalt concrete mixture performance through a systematic experimental program using 4.5% SBS with varying nanoclay concentrations (0–8%). Performance evaluation included Indirect Tensile Strength (ITS), Indirect Tensile Resilient Modulus (ERI [...] Read more.
This study examined the synergistic effects of Styrene–Butadiene–Styrene (SBS) polymer and nanoclay on asphalt concrete mixture performance through a systematic experimental program using 4.5% SBS with varying nanoclay concentrations (0–8%). Performance evaluation included Indirect Tensile Strength (ITS), Indirect Tensile Resilient Modulus (ERI), and Hamburg Wheel Tracking Tests (HWTT), along with novel quantitative analysis of visco-plastic and moisture resistance indices. Results demonstrated that 4.5% SBS with 6% nanoclay (4.5S6N) yielded optimal performance, achieving 38% increase in dry ITS, 68% improvement in wet ITS, and enhanced moisture resistance with Tensile strength Ratio (TSR) improving from 79.53% to 97.14%. The ERI value increased by 39%, while rutting resistance improved by 39.3%. At this optimal concentration, nanoclay’s uniform dispersion and layered silicate structure created an effective reinforcement network, enhancing stress distribution and interfacial bonding with the SBS polymer network and asphalt components. However, exceeding 6% nanoclay content led to performance deterioration due to particle agglomeration. These findings demonstrate that optimized SBS–nanoclay modification effectively addresses both mechanical and moisture-related performance requirements for modern pavement applications. Full article
Show Figures

Figure 1

23 pages, 5691 KiB  
Article
Mechanistic Investigation of the Corrosion Behavior of Organic Zn14Al1.4 Composite Coating Under Simulated Tropical Marine Atmospheric Conditions
by Hao Zhang, Hao Yu, Chang Liu, Yesheng Huang, Haoyu Wu, Pan Yi, Kui Xiao and Jin Gao
Coatings 2025, 15(9), 981; https://doi.org/10.3390/coatings15090981 - 22 Aug 2025
Abstract
The coupled factors of high temperature, high humidity, and high salinity in tropical marine atmospheres severely threaten the long-term service performance of power transmission and transformation infrastructure. This paper establishes an accelerated cyclic testing protocol (salt spray → drying → damp heat → [...] Read more.
The coupled factors of high temperature, high humidity, and high salinity in tropical marine atmospheres severely threaten the long-term service performance of power transmission and transformation infrastructure. This paper establishes an accelerated cyclic testing protocol (salt spray → drying → damp heat → drying) to evaluate performance and elucidate the dynamic corrosion failure mechanisms of the organic Zn14Al1.4 composite coating. By integrating multiphysical characterization techniques (SEM, EDS, XPS) with electrochemical analysis, this study for the first time elucidates the dynamic transformation of corrosion products: initially dominated by Zn(OH)2, progressing to complex passive phases such as Zn5(OH)8Cl2·H2O, Zn5(OH)6(CO3)2, and Zn6Al2(OH)16CO3 in the mid-term, and ultimately dominated by Fe-based products (FeO, Fe2O3, Fe3O4, FeOOH) that drive interfacial failure. And a four-stage corrosion evolution model was defined: incubation period, accelerated degradation phase, substrate nucleation stage, and catastrophic failure phase. The investigation reveals a shift in the coating/substrate interface failure mechanism from purely physical barrier effects to electrochemical synergy, providing a theoretical framework for the optimized design and service-life prediction of anticorrosive coatings for transmission and transformation equipment in tropical environments. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

16 pages, 1328 KiB  
Article
Low-Frequency Noise Characteristics of Graphene/h-BN/Si Junctions
by Justinas Glemža, Ingrida Pliaterytė, Jonas Matukas, Rimantas Gudaitis, Andrius Vasiliauskas, Šarūnas Jankauskas and Šarūnas Meškinis
Crystals 2025, 15(9), 747; https://doi.org/10.3390/cryst15090747 - 22 Aug 2025
Abstract
Graphene/h-BN/Si heterostructures show considerable potential for future use in infrared detection and photovoltaic technologies due to their adjustable electrical behavior and well-matched interfacial structure. The near-lattice match between graphene and hexagonal boron nitride (h-BN) enables the deposition of low-defect-density graphene on h-BN surfaces. [...] Read more.
Graphene/h-BN/Si heterostructures show considerable potential for future use in infrared detection and photovoltaic technologies due to their adjustable electrical behavior and well-matched interfacial structure. The near-lattice match between graphene and hexagonal boron nitride (h-BN) enables the deposition of low-defect-density graphene on h-BN surfaces. This study presents a thorough exploration of the low-frequency electrical noise behavior of graphene/h-BN/Si heterojunctions under both forward and reverse bias conditions at room temperature. Graphene nanolayers were directly grown on h-BN films using microwave plasma-enhanced CVD. The h-BN layers were formed by reactive high-power impulse magnetron sputtering (HIPIMS). Four h-BN thicknesses were examined: 1 nm, 3 nm, 5 nm, and 15 nm. A reference graphene/Si junction (without h-BN) prepared under identical synthesis conditions was also studied for comparison. Low-frequency noise analysis enabled the identification of dominant charge transport mechanisms in the different device structures. Our results demonstrate that grain boundaries act as dominant defects contributing to increased noise intensity under high forward bias. Statistical analysis of voltage noise spectral density across multiple samples, supported by Raman spectroscopy, reveals that hydrogen-related defects significantly contribute to 1/f noise in the linear region of the junction’s current–voltage characteristics. This study provides the first in-depth insight into the impact of h-BN interlayers on low-frequency noise in graphene/Si heterojunctions. Full article
(This article belongs to the Special Issue Recent Advances in Graphene and Other Two-Dimensional Materials)
Show Figures

Figure 1

13 pages, 1917 KiB  
Article
Sequential Fractionation of Lignin for Interfacial Optimization and Enhanced Mechanical Performance in PBAT Composites
by Meng He, Mengfan Xu, Xian Yang, Chao Liu and Binghua Yan
Polymers 2025, 17(17), 2270; https://doi.org/10.3390/polym17172270 - 22 Aug 2025
Abstract
To address the inherent challenge of poor interfacial compatibility in lignin/poly(butylene adipate-co-terephthalate) (PBAT) composites, lignin was extracted from Camellia oleifera shells and subjected to sequential solvent fractionation using ethanol, acetone, and tetrahydrofuran (THF). Two representative fractions—acetone-soluble (ACL) and THF-soluble (THFL)—were selected for composite [...] Read more.
To address the inherent challenge of poor interfacial compatibility in lignin/poly(butylene adipate-co-terephthalate) (PBAT) composites, lignin was extracted from Camellia oleifera shells and subjected to sequential solvent fractionation using ethanol, acetone, and tetrahydrofuran (THF). Two representative fractions—acetone-soluble (ACL) and THF-soluble (THFL)—were selected for composite preparation with PBAT via solvent casting. The influence of lignin fractionation on the structural and performance characteristics of the resulting composites was systematically evaluated through Fourier-transform infrared (FTIR) spectroscopy, the water contact angle (WCA), differential scanning calorimetry (DSC), tensile testing, and scanning electron microscopy (SEM). The results revealed that the abundant hydroxyl groups and benzene rings present in both ACL and THFL facilitated hydrogen bonding and conjugation interactions with the PBAT matrix, significantly improving interfacial adhesion. Notably, the ACL fraction effectively suppressed phase separation and increased the glass transition temperature (Tg) by 1.9 °C, leading to a 13.9% enhancement in tensile strength compared to neat PBAT. More strikingly, the incorporation of only 7 wt% THFL resulted in a remarkable 31% improvement in tensile strength. This substantial enhancement was primarily attributed to the favorable polarity match between THFL and PBAT, as well as the nucleating effect of THFL, which increased the crystallinity of PBAT by 25.3%. This study highlights the effectiveness of sequential lignin fractionation in tailoring the interfacial properties of biodegradable polymer composites. It also provides a promising strategy for the high-value utilization of lignin toward the development of high-performance, environmentally friendly materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 3908 KiB  
Article
Structure, Mechanical Properties, and Rheological Characteristics of Poly(Butylene Adipate-co-Terephthalate)–Polylactic Acid Blends Modified via In Situ Maleic Anhydride Grafting
by Min Jin, Bei Qi, Kang Chen, Lijun Cao, Pengrui Chen, Ce Sun, Jianfeng Zhan, Zhuofeng Shao, Haiyan Tan and Yanhua Zhang
Polymers 2025, 17(16), 2264; https://doi.org/10.3390/polym17162264 - 21 Aug 2025
Abstract
Polylactic acid (PLA) materials face inherent limitations in many applications due to their low toughness. To address this challenge, this study employed a reactive melt-grafting method to prepare maleic anhydride (MA)-grafted poly(butylene adipate-co-terephthalate) (PBAT–MA), providing an effective approach to improve the interfacial compatibility [...] Read more.
Polylactic acid (PLA) materials face inherent limitations in many applications due to their low toughness. To address this challenge, this study employed a reactive melt-grafting method to prepare maleic anhydride (MA)-grafted poly(butylene adipate-co-terephthalate) (PBAT–MA), providing an effective approach to improve the interfacial compatibility between PLA and PBAT, thereby significantly enhancing the toughness and impact resistance of PLA and expanding its application scope. The grafting reaction process of PBAT–MA was investigated, as well as its toughening mechanism and effect on PLA. The results showed that at a maleic anhydride concentration of 2 wt%, the obtained PLA–PBAT–MA composite material exhibited the best performance, with a fracture elongation of 358.1%, 450.4% higher than that of the unmodified composite material. The impact strength was 333.9 kJ/m2, 917.3% higher than that of the unmodified composite material. This enhanced effect is attributed to the optimal MA concentration preserving the tough structure of PBAT while effectively bridging the interface between PLA and PBAT, promoting efficient stress transfer between the two phases, and ultimately achieving exceptional toughness. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 4167 KiB  
Article
Effects of Graphene Quantum Dots on Thermal Properties of Epoxy Using Molecular Dynamics
by Swapnil S. Bamane and Ozgur Keles
Appl. Nano 2025, 6(3), 15; https://doi.org/10.3390/applnano6030015 - 20 Aug 2025
Viewed by 152
Abstract
Polymer matrix composites (PMCs) are crucial for their applications in aerospace, electronics, defense, and structural materials. PMCs reinforced with nanofillers offer substantial potential for enhanced thermal and mechanical performance. Although there have been significant developments in nanofiller-based high-performance composites involving graphene, carbon nanotubes, [...] Read more.
Polymer matrix composites (PMCs) are crucial for their applications in aerospace, electronics, defense, and structural materials. PMCs reinforced with nanofillers offer substantial potential for enhanced thermal and mechanical performance. Although there have been significant developments in nanofiller-based high-performance composites involving graphene, carbon nanotubes, and metal oxides, the smallest of all the fillers, the graphene quantum dot (GQD), has not been explored thoroughly. The objective of this study is to investigate the effects of GQDs on the thermal properties of epoxy nanocomposites using all-atom molecular dynamics (MD) simulations. Specifically, the influence of GQDs on the glass transition temperature (Tg) and coefficient of linear thermal expansion (CTE) of the bisphenol F epoxy is evaluated. Further, the effects of surface functionalization and edge functionalization of GQDs are analyzed. Results demonstrate that the inclusion of functionalized GQDs leads to a 16% improvement in Tg, attributed to enhanced interfacial interactions and restricted molecular mobility in the epoxy network. MD simulations reveal that functional groups on GQDs form strong physical and chemical interactions with the polymer matrix, effectively altering its dynamics at the Tg. These results provide key molecular-level insights into the design of the next generation of thermally stable epoxy nanocomposites for high-performance applications in aerospace and defense. Full article
Show Figures

Figure 1

32 pages, 9996 KiB  
Article
Innovative Composite Aggregates from Thermoplastic Waste for Circular Economy Mortars
by Abdelhak Badache, Noureddine Latroch, Mostefa Hacini, Ahmed Soufiane Benosman, Mohamed Mouli, Yassine Senhadji and Walid Maherzi
Constr. Mater. 2025, 5(3), 58; https://doi.org/10.3390/constrmater5030058 - 20 Aug 2025
Viewed by 192
Abstract
This study investigates sustainable mortars using lightweight synthetic sand (LSS), made from dune sand and recycled PET bottles, to replace natural sand (0–100% by volume). This aligns with circular economy principles by valorizing plastic waste into a construction aggregate. LSS is produced via [...] Read more.
This study investigates sustainable mortars using lightweight synthetic sand (LSS), made from dune sand and recycled PET bottles, to replace natural sand (0–100% by volume). This aligns with circular economy principles by valorizing plastic waste into a construction aggregate. LSS is produced via controlled thermal treatment (250 ± 5 °C, 50–60 rpm), crushing, and sieving (≤3.15 mm), leading to a significantly improved interfacial transition zone (ITZ) with the cement matrix. The evaluation included physico-mechanical tests (density, strength, UPV, dynamic modulus, ductility), thermal properties (conductivity, diffusivity, heat capacity), porosity, sorptivity, alkali–silica reaction (ASR), and SEM. The results show LSS incorporation reduces mortar density (4–23% for 25–100% LSS), lowering material and logistical costs. While compressive strength decreases (35–70%), these mortars remain suitable for low-stress applications. Specifically, at ≤25% LSS, composites retain 80% of their strength, making them ideal for structural uses. LSS also enhances ductility and reduces dynamic modulus (18–69%), providing beneficial flexibility. UPV decreases (8–39%), indicating improved acoustic insulation. Thermal performance improves (4–18% conductivity reduction), suggesting insulation applicability. A progressive decrease in sorptivity (up to 46%) enhances durability. Crucially, the lack of ASR susceptibility reinforces long-term durability. This research significantly contributes to the repurposing of plastic waste into sustainable cement-based materials, advancing sustainable material management in the construction sector. Full article
Show Figures

Figure 1

23 pages, 6843 KiB  
Review
Injectivity, Potential Wettability Alteration, and Mineral Dissolution in Low-Salinity Waterflood Applications: The Role of Salinity, Surfactants, Polymers, Nanomaterials, and Mineral Dissolution
by Hemanta K. Sarma, Adedapo N. Awolayo, Saheed O. Olayiwola, Shasanowar H. Fakir and Ahmed F. Belhaj
Processes 2025, 13(8), 2636; https://doi.org/10.3390/pr13082636 - 20 Aug 2025
Viewed by 187
Abstract
Waterflooding, a key method for secondary hydrocarbon recovery, has been employed since the early 20th century. Over time, the role of water chemistry and ions in recovery has been studied extensively. Low-salinity water (LSW) injection, a common technique since the 1930s, improves oil [...] Read more.
Waterflooding, a key method for secondary hydrocarbon recovery, has been employed since the early 20th century. Over time, the role of water chemistry and ions in recovery has been studied extensively. Low-salinity water (LSW) injection, a common technique since the 1930s, improves oil recovery by altering the wettability of reservoir rocks and reducing residual oil saturation. Recent developments emphasize the integration of LSW with various recovery methods such as CO2 injections, surfactants, alkali, polymers, and nanoparticles (NPs). This article offers a comprehensive perspective on how LSW injection is combined with these enhanced oil recovery (EOR) techniques, with a focus on improving oil displacement and recovery efficiency. Surfactants enhance the effectiveness of LSW by lowering interfacial tension (IFT) and improving wettability, while ASP flooding helps reduce surfactant loss and promotes in situ soap formation. Polymer injections boost oil recovery by increasing fluid viscosity and improving sweep efficiency. Nevertheless, challenges such as fine migration and unstable flow persist, requiring additional optimization. The combination of LSW with nanoparticles has shown potential in modifying wettability, adjusting viscosity, and stabilizing emulsions through careful concentration management to prevent or reduce formation damage. Finally, building on discussions around the underlying mechanisms involved in improved oil recovery and the challenges associated with each approach, this article highlights their prospects for future research and field implementation. By combining LSW with advanced EOR techniques, the oil industry can improve recovery efficiency while addressing both environmental and operational challenges. Full article
Show Figures

Figure 1

16 pages, 1942 KiB  
Article
Ultrasonic Inactivation of Escherichia coli with Multi-Walled Carbon Nanotubes: Effects of Solution Chemistry
by Dong Chen and Elisa I. Chen
Water 2025, 17(16), 2472; https://doi.org/10.3390/w17162472 - 20 Aug 2025
Viewed by 165
Abstract
Disinfection by ultrasound and carbon nanotubes (CNTs) provides attractive alternatives to conventional methods for water and wastewater treatment. This study explored the inactivation of Escherichia coli (E. coli) by 5 mg/L pristine short and long multi-walled CNTs (MWCNTs) and 20 kHz [...] Read more.
Disinfection by ultrasound and carbon nanotubes (CNTs) provides attractive alternatives to conventional methods for water and wastewater treatment. This study explored the inactivation of Escherichia coli (E. coli) by 5 mg/L pristine short and long multi-walled CNTs (MWCNTs) and 20 kHz ultrasound individually or in combinations in DI water, Suwannee River natural organic matter (SRNOM), and sodium dodecyl sulfate (SDS) solution, respectively. The results indicated that the dispersity of MWCNTs was the single most important factor determining the inactivation rate of E. coli. The dispersity of short MWCNTs in solutions increased in the order of DI water <10 mgC/L SRNOM < 2 mM SDS. Correspondingly, the greatest log inactivation of E. coli was achieved in SDS when short MWCNTs were used alone (0.67 ± 0.12) and combined with ultrasound (1.80 ± 0.02) for 10 min. Short MWCNTs alone had a slightly greater inactivation (0.29 ± 0.07) in SRNOM solution than in DI water (0.18 ± 0.05). However, long MWCNTs had a slightly higher inactivation in DI water (0.24 ± 0.03) than short ones (0.18 ± 0.05), because of better dispersity in DI. The observed synergistic inactivation when ultrasound and short MWCNTs were used together in 2 mM SDS shows that ultrasound energized the MWCNTs more effectively when they were well dispersed, although SDS and MWCNTs can occupy the reaction sites at the cavitational bubble–water interfacial regions and scavenge •OH radicals. The results suggest that sonophysical effects are more important to inactivate E. coli than sonochemical effects. Ultrasound inactivates E. coli and/or energizes MWCNTs through the mechanisms of acoustic streaming, microstreaming, microstreamers, transient cavitation collapse-generated shock waves and microjets (transitional forms), and localized hot temperatures. The results of this study indicate that the cytotoxicity of CNTs includes impinging bacterial cells and/or direct contact with the bacteria. Full article
Show Figures

Figure 1

17 pages, 8493 KiB  
Article
Effect of Surface-Modified Mica in Hybrid Filler Systems on the Curing and Mechanical Behavior of Ethylene–Propylene–Diene Monomer (EPDM)/Butadiene Rubber (BR) Blend
by Won-Young Jung, Seong-Woo Cho and Keon-Soo Jang
Polymers 2025, 17(16), 2250; https://doi.org/10.3390/polym17162250 - 20 Aug 2025
Viewed by 166
Abstract
This study investigates the influence of hybrid filler systems comprising carbon black (CB), mica, and surface-modified mica (SM) on the properties of ethylene–propylene–diene monomer (EPDM)/butadiene rubber (PB) composites. To reduce the environmental issues associated with CB, mica was incorporated as a partial substitute, [...] Read more.
This study investigates the influence of hybrid filler systems comprising carbon black (CB), mica, and surface-modified mica (SM) on the properties of ethylene–propylene–diene monomer (EPDM)/butadiene rubber (PB) composites. To reduce the environmental issues associated with CB, mica was incorporated as a partial substitute, and its compatibility with the rubber matrix was enhanced through surface modification using ureidopropyltrimethoxysilane (URE). The composites with hybrid filler systems and surface modification were evaluated in terms of curing behavior, crosslink density, mechanical and elastic properties, and dynamic viscoelasticity. Rheological analysis revealed that high mica loadings delayed vulcanization due to reduced thermal conductivity and accelerator adsorption, whereas SM composites maintained comparable curing performance. Swelling tests showed a reduction in crosslink density with increased unmodified mica content, while SM-filled samples improved the network density, confirming enhanced interfacial interaction. Mechanical testing demonstrated that the rubber compounds containing SM exhibited average improvements of 17% in tensile strength and 20% in toughness. In particular, the CB20/SM10 formulation achieved a well-balanced enhancement in tensile strength, elongation at break, and toughness, surpassing the performance of the CB-only system. Furthermore, rebound resilience and Tan δ analyses showed that low SM content reduced energy dissipation and improved elasticity, whereas excessive filler loadings led to increased hysteresis. The compression set results supported the thermal stability and recovery capacity of the SM-containing systems. Overall, the results demonstrated that the hybrid filler system incorporating URE-modified mica significantly enhanced filler dispersion and rubber–filler interaction, offering a sustainable and high-performance solution for elastomer composite applications. Full article
Show Figures

Figure 1

14 pages, 3359 KiB  
Article
Effects of Boron Addition on Microstructure and Mechanical Properties of B4C/Al Composites Fabricated by Pressureless Infiltration
by Yao Liu, Jianle Xie, Hao Peng, Chunli Liu, Donglin Ma and Yongxiang Leng
Metals 2025, 15(8), 919; https://doi.org/10.3390/met15080919 - 19 Aug 2025
Viewed by 119
Abstract
Boron (B) is widely used as a neutron-absorbing nuclide and has significant applications in the nuclear industry. B4C/Al composites combine the high hardness of B4C with the ductility of Al, making them commonly used neutron-absorbing materials. Under current preparation [...] Read more.
Boron (B) is widely used as a neutron-absorbing nuclide and has significant applications in the nuclear industry. B4C/Al composites combine the high hardness of B4C with the ductility of Al, making them commonly used neutron-absorbing materials. Under current preparation methods, the poor wettability and low reactivity of B4C with molten Al limit its effective incorporation into the matrix, and the addition of B4C in B4C/Al composites has reached its threshold limit, making it difficult to achieve breakthrough improvements in neutron absorption performance. However, incorporating additional B elements into the B4C/Al composite can break this limit, effectively enhancing the material’s neutron absorption performance. Nevertheless, research on the impact of this addition on the mechanical properties of the composite remains unclear. The requirements for B4C/Al composites as spent fuel storage and transportation devices include high mechanical strength and certain machinability. This study fabricated B4C/Al composites with varying B contents (5 wt.%, 10 wt.%, and 15 wt.%), and the influence of B addition on the microstructure and mechanical properties of B4C/Al composites was investigated. The results demonstrate that the composites exhibit a density of approximately 99% with well-established interfacial bonds. Increasing B content leads to a higher quantity of interfacial reaction products Al3BC and AlB2, enhancing the Vickers hardness to 370.93 HV. The bending strength and fracture toughness of composites with 5 wt.% and 15 wt.% B addition decreased, whereas those with 10 wt.% B exhibited excellent resistance to crack growth and high-temperature plastic deformation due to a high content of ductile phase. Full article
Show Figures

Figure 1

33 pages, 14383 KiB  
Article
Mechanistic Investigation of Machine-Made Sand Methylene Blue Value Effects on Mortar Performance
by Yan Shi, Jinyang Huo, Yuanyi Wang, Yuqiang Lin, Qingpeng Deng and Sheng Peng
Appl. Sci. 2025, 15(16), 9115; https://doi.org/10.3390/app15169115 - 19 Aug 2025
Viewed by 97
Abstract
This investigation examines the impact of machine-made sand methylene blue (MB) values on mortar properties and microstructure through controlled clay type and content testing, encompassing macro-performances, microstructures, and mechanisms measuring compressive strength, flexural strength, drying shrinkage, frost resistance, impermeability, pore structure, microstructure, interfacial [...] Read more.
This investigation examines the impact of machine-made sand methylene blue (MB) values on mortar properties and microstructure through controlled clay type and content testing, encompassing macro-performances, microstructures, and mechanisms measuring compressive strength, flexural strength, drying shrinkage, frost resistance, impermeability, pore structure, microstructure, interfacial transition zones (ITZs), and hydration products. MB testing demonstrates that montmorillonite and illite exhibit a significant sensitivity divergence, where 1% montmorillonite achieves an MB value of 1.42, exceeding 1.40, while illite requires a 5% content to attain an MB of 1.50, complying with SL/T 352-2020 specifications. Increasing MB values induce an initial rise followed by a decline in 7d compressive strength yet a persistent increase in flexural strength for montmorillonite mortars, with both strength parameters decreasing at 28d and 90d. Illite mortars exhibit progressive declines in compressive and flexural strength across all curing ages (7d, 28d, and 90d) with rising MB values. SEM-EDS analyses reveal a deteriorating mortar microstructure, reduced paste compactness, and thickened ITZ under identical clay types as MB values increase. Combined XRD and TG-DTA analyses demonstrate a diminishing hydration degree and decreased hydration products in mortars with ascending MB values. Given a constant clay mineralogy, elevated MB values inhibit hydration-product formation, causing incomplete cement hydration reactions and deteriorated ITZ microstructures, consequently impairing mortar macro-performances. Full article
Show Figures

Figure 1

Back to TopTop