Interfacial Solar Evaporation for Treating High-Salinity Wastewater: Chance and Necessity
Abstract
1. Introduction
2. Solar-Driven Interfacial Evaporation
2.1. Photothermal Conversion
2.2. Interfacial Evaporation
3. Micro-Nano Photothermal Materials
3.1. Metal-Based Photothermal Materials
3.2. Inorganic Semiconductor-Based Photothermal Materials
3.3. Carbon-Based Photothermal Materials
3.4. Photothermal Polymers
4. Design Principles of High-Efficiency Interfacial Evaporators
4.1. Optical Enhancement
4.2. Limiting Heat Conduction
4.3. Increasing the Evaporation Rate
4.4. Creating a Hydrophilic Surface
4.5. Reducing the Enthalpy of Evaporation
5. Conclusions and Prospective
- (1)
- Further development of photothermal materials. Semiconductor materials have high photothermal conversion efficiency but weak light absorption capacity, while carbon-based materials are the opposite, and metal nanoparticles and polymer materials have relatively high costs. Therefore, considering factors such as cost, light absorption rate, photothermal conversion efficiency, and the instability of light intensity during outdoor practical use, further research and development of photothermal materials are needed to enable them to have good light absorption capacity, excellent photothermal conversion ability under any light intensity (including low light intensity), and be obtainable through simple preparation processes.
- (2)
- Optimization and integrated design of evaporation devices. To enhance energy utilization efficiency, the interplay of various factors such as light absorption, water transport, thermal management, and salt tolerance and rejection capabilities should be considered when designing the structure of evaporators. Sometimes, there may be conflicting relationships among these factors. For instance, an increased water transport rate inevitably leads to higher energy losses, resulting in poorer thermal management capabilities of the evaporation device. Therefore, it is necessary to comprehensively consider all factors in the design of evaporation devices to maintain a balance in device performance. This requires researchers to have a thorough understanding of the theoretical mechanisms underlying interfacial evaporation, which is crucial for optimizing and integrating interfacial solar evaporators. Additionally, it is essential to comprehensively consider potential issues that may arise when constructing and deploying evaporation devices outdoors on a large scale.
- (3)
- Stability enhancement of evaporation devices. When solar evaporators are applied to desalination, the stability and service life of the evaporators need to be considered. In current research reports, the investigation of the device’s salt resistance/anti-scaling performance is not sufficient, and the salt resistance of some devices still needs further improvement. To ensure that the photothermal materials do not detach and release into the environment during long-term use, it is necessary to develop solar evaporators with biocompatibility, good corrosion resistance, and structural stability, and ensure their long-term usability.
- (4)
- Techno-economic analysis and practical application challenges. Research topics on interfacial solar evaporation typically focus on experimental results, and challenges still exist in terms of scaling up and practical applications [18]. As a result, economic analysis is not always conducted. Consequently, the cost-effectiveness of evaporators is not regularly obvious. Economic analysis is fundamental when expanding interfacial solar evaporation systems, encompassing materials, manufacturing, and operational costs [107]. Considering factors such as the structure, shape, substrate type, and salt resistance of interfacial solar evaporation systems, biomass-based evaporators, compared to other materials [108], have the lowest cost due to their relatively lower prices.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Lin, R.; Ni, G.; Xu, N.; Hu, X.; Zhu, B.; Lv, G.; Li, J.; Zhu, S.; Zhu, J. Three-Dimensional Artificial Transpiration for Efficient Solar Waste-Water Treatment. Natl. Sci. Rev. 2018, 5, 70–77. [Google Scholar] [CrossRef]
- Jesus, J.M.; Cassoni, A.C.; Danko, A.S.; Fiúza, A.; Borges, M.-T. Role of Three Different Plants on Simultaneous Salt and Nutrient Reduction from Saline Synthetic Wastewater in Lab-Scale Constructed Wetlands. Sci. Total Environ. 2017, 579, 447–455. [Google Scholar] [CrossRef]
- Foglia, A.; Akyol, Ç.; Frison, N.; Katsou, E.; Eusebi, A.L.; Fatone, F. Long-Term Operation of a Pilot-Scale Anaerobic Membrane Bioreactor (AnMBR) Treating High Salinity Low Loaded Municipal Wastewater in Real Environment. Sep. Purif. Technol. 2020, 236, 116279. [Google Scholar] [CrossRef]
- Voutchkov, N. Energy Use for Membrane Seawater Desalination—Current Status and Trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Kang, Z.; Fan, J. 3D Cellular Solar Crystallizer for Stable and Ultra-efficient High-salinity Wastewater Treatment. Adv. Sci. 2024, 11, 2305313. [Google Scholar] [CrossRef]
- Gu, R.; Yu, Z.; Su, Y.; Li, Y.; Cheng, S. High-Salinity Brine Desalination and Wastewater Treatment Strategies Based on Solar-Driven Interfacial Evaporators. Sep. Purif. Technol. 2023, 322, 124322. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, D.; Shen, Z.; Zhang, H.; Xu, H.; Yang, X. Design and Performance Boost of a MOF-Functionalized-Wood Solar Evaporator through Tuning the Hydrogen-Bonding Interactions. Nano Energy 2022, 95, 107016. [Google Scholar] [CrossRef]
- Sheng, M.; Yang, Y.; Bin, X.; Zhao, S.; Pan, C.; Nawaz, F.; Que, W. Recent Advanced Self-Propelling Salt-Blocking Technologies for Passive Solar-Driven Interfacial Evaporation Desalination Systems. Nano Energy 2021, 89, 106468. [Google Scholar] [CrossRef]
- Li, H.; Yan, Z.; Li, Y.; Hong, W. Latest Development in Salt Removal from Solar-Driven Interfacial Saline Water Evaporators: Advanced Strategies and Challenges. Water Res. 2020, 177, 115770. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Gao, Y.; Zhao, H.; Zhou, W. Seawater Toilet Flushing Sewage Treatment and Nutrients Recovery by Marine Bacterial-Algal Mutualistic System. Chemosphere 2018, 195, 70–79. [Google Scholar] [CrossRef]
- Liu, X.; Dai, J.; Wu, D.; Jiang, F.; Chen, G.; Chui, H.-K.; van Loosdrecht, M.C.M. Sustainable Application of a Novel Water Cycle Using Seawater for Toilet Flushing. Engineering 2016, 2, 460–469. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, H.; Xu, Z.; Wang, Z. Harnessing Solar-driven Photothermal Effect toward the Water–Energy Nexus. Adv. Sci. 2019, 6, 1900883. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, S.; Jin, B.; Yu, Z.; Gu, R. Extendable Solar Interfacial Evaporator with High Salt Resistance Achieved by Managing the Evaporation Region. Sol. RRL 2023, 7, 2300242. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, S.; Yu, Z.; Gu, R.; Li, Y.; Chen, H. Enhanced Evaporation Performance of Solar Interface Evaporator by Modifying the Evaporation Layer Surface with Hydrophobic Fumed Silica. J. Clean. Prod. 2023, 392, 136302. [Google Scholar] [CrossRef]
- Genduso, G.; Missinne, A.; Ali, Z.; Ogieglo, W.; Van der Bruggen, B.; Pinnau, I. Hydrophobic Polydimethylsiloxane Thin-Film Composite Membranes for the Efficient Pervaporative Desalination of Seawater and Brines. Sep. Purif. Technol. 2022, 280, 119819. [Google Scholar] [CrossRef]
- Wang, W.; Aleid, S.; Shi, Y.; Zhang, C.; Li, R.; Wu, M.; Zhuo, S.; Wang, P. Integrated Solar-Driven PV Cooling and Seawater Desalination with Zero Liquid Discharge. Joule 2021, 5, 1873–1887. [Google Scholar] [CrossRef]
- Ghenai, C.; Kabakebji, D.; Douba, I.; Yassin, A. Performance Analysis and Optimization of Hybrid Multi-Effect Distillation Adsorption Desalination System Powered with Solar Thermal Energy for High Salinity Sea Water. Energy 2021, 215, 119212. [Google Scholar] [CrossRef]
- Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-Driven Interfacial Evaporation. Nat. Energy 2018, 3, 1031–1041. [Google Scholar] [CrossRef]
- Ni, G.; Li, G.; Boriskina, S.V.; Li, H.; Yang, W.; Zhang, T.; Chen, G. Steam Generation under One Sun Enabled by a Floating Structure with Thermal Concentration. Nat. Energy 2016, 1, 16126. [Google Scholar] [CrossRef]
- Gu, R.; Yu, Z.; Sun, Y.; Xie, P.; Li, Y.; Cheng, S. Enhancing Stability of Interfacial Solar Evaporator in High-Salinity Solutions by Managing Salt Precipitation with Janus-Based Directional Salt Transfer Structure. Desalination 2022, 524, 115470. [Google Scholar] [CrossRef]
- Sharon, H.; Reddy, K.S. A Review of Solar Energy Driven Desalination Technologies. Renew. Sustain. Energy Rev. 2015, 41, 1080–1118. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Solar Powered Desalination—Technology, Energy and Future Outlook. Desalination 2019, 453, 54–76. [Google Scholar] [CrossRef]
- Aytaç, E.; Ahmed, F.E.; Aziz, F.; Khayet, M.; Hilal, N. A Metadata Survey of Photothermal Membranes for Solar-Driven Membrane Distillation. Sep. Purif. Technol. 2025, 364, 132565. [Google Scholar] [CrossRef]
- Lv, F.; Miao, J.; Hu, J.; Mantecon, D.O. 3D Solar Evaporation Enhancement by Superhydrophilic Copper Foam Inverted Cone and Graphene Oxide Functionalization Synergistic Cooperation. Small 2023, 19, 2208137. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.W.; Park, S.H.; Lee, S.J. 3D Thermoresponsive Hydrogel with Enhanced Water Uptake and Active Evaporation for Effective Interfacial Solar Steam Generation. Desalination 2023, 550, 116368. [Google Scholar] [CrossRef]
- Liu, X.; Chen, F.; Li, Y.; Jiang, H.; Mishra, D.D.; Yu, F.; Chen, Z.; Hu, C.; Chen, Y.; Qu, L.; et al. 3D Hydrogel Evaporator with Vertical Radiant Vessels Breaking the Trade-off between Thermal Localization and Salt Resistance for Solar Desalination of High-salinity. Adv. Mater. 2022, 34, 2203137. [Google Scholar] [CrossRef]
- Zhao, W.; Gong, H.; Song, Y.; Li, B.; Xu, N.; Min, X.; Liu, G.; Zhu, B.; Zhou, L.; Zhang, X.; et al. Hierarchically Designed Salt-resistant Solar Evaporator Based on Donnan Effect for Stable and High-performance Brine Treatment. Adv. Funct. Mater. 2021, 31, 2100025. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, H.; Yin, Z.; Zhao, J.; Yin, X.; Li, N.; Yin, D.; Li, Y.; Lei, B.; Du, Y.; et al. A General Salt-Resistant Hydrophilic/Hydrophobic Nanoporous Double Layer Design for Efficient and Stable Solar Water Evaporation Distillation. Mater. Horiz. 2018, 5, 1143–1150. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, X.; Guo, P.; Yao, X.; Cong, H.; Xu, B. Solar Interfacial Evaporation at the Water–Energy Nexus: Bottlenecks, Approaches, and Opportunities. Sol. RRL 2023, 7, 2201098. [Google Scholar] [CrossRef]
- Lei, C.; Guan, W.; Guo, Y.; Shi, W.; Wang, Y.; Johnston, K.P.; Yu, G. Polyzwitterionic Hydrogels for Highly Efficient High Salinity Solar Desalination. Angew. Chem. Int. Ed. 2022, 61, e202208487. [Google Scholar] [CrossRef]
- Li, L.; He, N.; Jiang, B.; Yu, K.; Zhang, Q.; Zhang, H.; Tang, D.; Song, Y. Highly Salt-resistant 3D Hydrogel Evaporator for Continuous Solar Desalination via Localized Crystallization. Adv. Funct. Mater. 2021, 31, 2104380. [Google Scholar] [CrossRef]
- Chen, C.; Kuang, Y.; Hu, L. Challenges and Opportunities for Solar Evaporation. Joule 2019, 3, 683–718. [Google Scholar] [CrossRef]
- Neumann, O.; Urban, A.S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N.J. Solar Vapor Generation Enabled by Nanoparticles. ACS Nano 2013, 7, 42–49. [Google Scholar] [CrossRef]
- Wu, X.; Chen, G.Y.; Owens, G.; Chu, D.; Xu, H. Photothermal Materials: A Key Platform Enabling Highly Efficient Water Evaporation Driven by Solar Energy. Mater. Today Energy 2019, 12, 277–296. [Google Scholar] [CrossRef]
- Wang, W.; Cai, Y.; Du, M.; Hou, X.; Liu, J.; Ke, H.; Wei, Q. Ultralight and Flexible Carbon Foam-Based Phase Change Composites with High Latent-Heat Capacity and Photothermal Conversion Capability. ACS Appl. Mater. Interfaces 2019, 11, 31997–32007. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-F.; Li, Y.-Z.; Xi, Y.-A.-M.; Xu, J.-L.; Zhang, Y. Key Technology Developments for Solar-Driven Interface Evaporation on Structural Innovation and Thermal Design. Nano Energy 2024, 132, 110369. [Google Scholar] [CrossRef]
- Asghar, M.S.; Arshad, N.; Tao, J.; Irshad, M.S.; Li, J.; Wang, X. Recent Advances in Multifunctional Photothermal Materials for Solar-driven Steam and Energy Generation. Energy Technol. 2023, 11, 2300500. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Yuan, S.; Kang, Y.; Jian, M.; Hou, Q.; Gao, L.; Wang, H.; Zhang, X. A Self-Rotating Solar Evaporator for Continuous and Efficient Desalination of Hypersaline Brine. J. Mater. Chem. A 2020, 8, 16212–16217. [Google Scholar] [CrossRef]
- Li, J.; Jing, Y.; Xing, G.; Liu, M.; Cui, Y.; Sun, H.; Zhu, Z.; Liang, W.; Li, A. Solar-Driven Interfacial Evaporation for Water Treatment: Advanced Research Progress and Challenges. J. Mater. Chem. A 2022, 10, 18470–18489. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.; Chen, X.; Ji, J.; Zhang, L.; Meng, C. Advancing Robust All-Weather Desalination: A Critical Review of Emerging Photothermal Evaporators and Hybrid Systems. Commun. Mater. 2025, 6, 29. [Google Scholar] [CrossRef]
- Baffou, G.; Quidant, R.; Girard, C. Heat Generation in Plasmonic Nanostructures: Influence of Morphology. Appl. Phys. Lett. 2009, 94, 153109. [Google Scholar] [CrossRef]
- Huang, P.; Lin, J.; Li, W.; Rong, P.; Wang, Z.; Wang, S.; Wang, X.; Sun, X.; Aronova, M.; Niu, G.; et al. Biodegradable Gold Nanovesicles with an Ultrastrong Plasmonic Coupling Effect for Photoacoustic Imaging and Photothermal Therapy. Angew. Chem. Int. Ed. 2013, 52, 13958–13964. [Google Scholar] [CrossRef]
- Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Solar-Driven Photothermal Nanostructured Materials Designs and Prerequisites for Evaporation and Catalysis Applications. Mater. Horiz. 2018, 5, 323–343. [Google Scholar] [CrossRef]
- Bae, K.; Kang, G.; Cho, S.K.; Park, W.; Kim, K.; Padilla, W.J. Flexible Thin-Film Black Gold Membranes with Ultrabroadband Plasmonic Nanofocusing for Efficient Solar Vapour Generation. Nat. Commun. 2015, 6, 10103. [Google Scholar] [CrossRef]
- Marimuthu, A.; Zhang, J.; Linic, S. Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State. Science 2013, 339, 1590–1593. [Google Scholar] [CrossRef]
- Lalisse, A.; Tessier, G.; Plain, J.; Baffou, G. Quantifying the Efficiency of Plasmonic Materials for Near-Field Enhancement and Photothermal Conversion. J. Phys. Chem. C 2015, 119, 25518–25528. [Google Scholar] [CrossRef]
- Clark, B.D.; Jacobson, C.R.; Lou, M.; Yang, J.; Zhou, L.; Gottheim, S.; DeSantis, C.J.; Nordlander, P.; Halas, N.J. Aluminum Nanorods. Nano Lett. 2018, 18, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Green, M.; Garcia, A.V.; Xiao, T.; Van Tran, A.T.; Zhang, Y.; Yin, Y.; Chen, X. Recent Progress of Nanostructured Interfacial Solar Vapor Generators. Appl. Mater. Today 2019, 17, 45–84. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Chen, G.; Wang, F.; Mao, J.; Long, Y.; Sun, H.; Zhu, Z.; Liang, W.; Li, A. Evaporation Efficiency Monitoring Device Based on Biomass Photothermal Material for Salt-Resistant Solar-Driven Interfacial Evaporation. Sol. Energy Mater. Sol. Cells 2021, 222, 110941. [Google Scholar] [CrossRef]
- Su, L.; Hu, Y.; Ma, Z.; Miao, L.; Zhou, J.; Ning, Y.; Chang, Z.; Wu, B.; Cao, M.; Xia, R.; et al. Synthesis of Hollow Copper Sulfide Nanocubes with Low Emissivity for Highly Efficient Solar Steam Generation. Sol. Energy Mater. Sol. Cells 2020, 210, 110484. [Google Scholar] [CrossRef]
- Sheikh, M.; Pazirofteh, M.; Dehghani, M.; Asghari, M.; Rezakazemi, M.; Valderrama, C.; Cortina, J.-L. Application of ZnO Nanostructures in Ceramic and Polymeric Membranes for Water and Wastewater Technologies: A Review. Chem. Eng. J. 2020, 391, 123475. [Google Scholar] [CrossRef]
- Yang, Y.; Que, W.; Zhao, J.; Han, Y.; Ju, M.; Yin, X. Membrane Assembled from Anti-Fouling Copper-Zinc-Tin-Selenide Nanocarambolas for Solar-Driven Interfacial Water Evaporation. Chem. Eng. J. 2019, 373, 955–962. [Google Scholar] [CrossRef]
- Dao, V.; Choi, H. Carbon-based Sunlight Absorbers in Solar-driven Steam Generation Devices. Glob. Chall. 2018, 2, 1700094. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, F.; Guo, Y.; Zhang, Y.; Yu, G. A Hydrogel-Based Antifouling Solar Evaporator for Highly Efficient Water Desalination. Energy Environ. Sci. 2018, 11, 1985–1992. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, G.; Mei, T.; Li, J.; Wang, J.; Wang, X. Accessible Graphene Aerogel for Efficiently Harvesting Solar Energy. ACS Sustain. Chem. Eng. 2017, 5, 4665–4671. [Google Scholar] [CrossRef]
- Han, S.; Yang, J.; Li, X.; Li, W.; Zhang, X.; Koratkar, N.; Yu, Z.-Z. Flame Synthesis of Superhydrophilic Carbon Nanotubes/Ni Foam Decorated with Fe2O3 Nanoparticles for Water Purification via Solar Steam Generation. ACS Appl. Mater. Interfaces 2020, 12, 13229–13238. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, B.; Ma, Y.; Huang, Y.; Li, N.; Zhang, F.; Chen, Y. Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films. Nano Res. 2010, 3, 661–669. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Zhu, H.; Wang, K.; Wei, J.; Li, X.; Sun, P.; Zhang, H.; Wu, D. Graphene nano-“patches” on a carbon nanotube network for highly transparent/conductive thin film applications. J. Phys. Chem. C 2010, 114, 14008–14012. [Google Scholar] [CrossRef]
- Yudasaka, M.; Komatsu, T.; Ichihashi, T.; Iijima, S. Single-Wall Carbon Nanotube Formation by Laser Ablation Using Double-Targets of Carbon and Metal. Chem. Phys. Lett. 1997, 278, 102–106. [Google Scholar] [CrossRef]
- Xue, G.; Liu, K.; Chen, Q.; Yang, P.; Li, J.; Ding, T.; Duan, J.; Qi, B.; Zhou, J. Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation. ACS Appl. Mater. Interfaces 2017, 9, 15052–15057. [Google Scholar] [CrossRef]
- Xu, N.; Hu, X.; Xu, W.; Li, X.; Zhou, L.; Zhu, S.; Zhu, J. Mushrooms as Efficient Solar Steam-generation Devices. Adv. Mater. 2017, 29, 1606762. [Google Scholar] [CrossRef]
- Bian, Y.; Du, Q.; Tang, K.; Shen, Y.; Hao, L.; Zhou, D.; Wang, X.; Xu, Z.; Zhang, H.; Zhao, L.; et al. Carbonized Bamboos as Excellent 3D Solar Vapor-generation Devices. Adv. Mater. Technol. 2019, 4, 1800593. [Google Scholar] [CrossRef]
- Ibrahim, I.; Bhoopal, V.; Seo, D.H.; Afsari, M.; Shon, H.K.; Tijing, L.D. Biomass-Based Photothermal Materials for Interfacial Solar Steam Generation: A Review. Mater. Today Energy 2021, 21, 100716. [Google Scholar] [CrossRef]
- Fillet, R.; Nicolas, V.; Fierro, V.; Celzard, A. A Review of Natural Materials for Solar Evaporation. Sol. Energy Mater. Sol. Cells 2021, 219, 110814. [Google Scholar] [CrossRef]
- Li, Y.; Shi, Y.; Wang, H.; Liu, T.; Zheng, X.; Gao, S.; Lu, J. Recent Advances in Carbon-based Materials for Solar-driven Interfacial Photothermal Conversion Water Evaporation: Assemblies, Structures, Applications, and Prospective. Carbon Energy 2023, 5, e331. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, B.; Wu, J.; Li, R.; Wang, P. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating. Adv. Mater. Deerfield 2015, 27, 4889–4894. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ozden, S.; Bizmark, N.; Arnold, C.B.; Datta, S.S.; Priestley, R.D. A Bioinspired Elastic Hydrogel for Solar-driven Water Purification. Adv. Mater. 2021, 33, 2007833. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Yang, F.; Bai, W.; Zhang, X.; Li, H.; Duan, G.; Xu, Y.; Li, Y. A Bioinspired Antibacterial and Photothermal Membrane for Stable and Durable Clean Water Remediation. Mater. Horiz. 2023, 10, 268–276. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, S.; Wen, B.; Su, Z. Sugarcane Inspired Polydopamine @ Attapulgite-Based Aerogels with Vertical Pore Structure for Solar-Driven Steam Generation. Sep. Purif. Technol. 2023, 321, 124188. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Lu, J.; Xu, N.; Chen, C.; Min, X.; Zhu, B.; Li, H.; Zhou, L.; Zhu, S.; et al. Enhancement of Interfacial Solar Vapor Generation by Environmental Energy. Joule 2018, 2, 1331–1338. [Google Scholar] [CrossRef]
- Menon, A.K.; Haechler, I.; Kaur, S.; Lubner, S.; Prasher, R.S. Enhanced Solar Evaporation Using a Photo-Thermal Umbrella for Wastewater Management. Nat. Sustain. 2020, 3, 144–151. [Google Scholar] [CrossRef]
- Luo, Y.; Yao, X.; Zhao, L.; Liu, L.; Zhou, Y.; Jiang, L.; Ju, J. Lubricant-interface Induced Mobile Crystallization for Hypersaline Wastewater Management. Adv. Funct. Mater. 2023, 33, 2301086. [Google Scholar] [CrossRef]
- Sun, S.; Shi, C.; Kuang, Y.; Li, M.; Li, S.; Chan, H.; Zhang, S.; Chen, G.; Nilghaz, A.; Cao, R.; et al. 3D-Printed Solar Evaporator with Seashell Ornamentation-Inspired Structure for Zero Liquid Discharge Desalination. Water Res. 2022, 226, 119279. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, Y.; Wu, P.; Zhao, J.; Lu, Y.; Yang, X.; Xu, H. Dual-zone Photothermal Evaporator for Antisalt Accumulation and Highly Efficient Solar Steam Generation. Adv. Funct. Mater. 2021, 31, 2102618. [Google Scholar] [CrossRef]
- Dong, X.; Li, H.; Gao, L.; Chen, C.; Shi, X.; Du, Y.; Deng, H. Janus Fibrous Mats Based Suspended Type Evaporator for Salt Resistant Solar Desalination and Salt Recovery. Small 2022, 18, 2107156. [Google Scholar] [CrossRef]
- Xu, W.; Hu, X.; Zhuang, S.; Wang, Y.; Li, X.; Zhou, L.; Zhu, S.; Zhu, J. Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination. Adv. Energy Mater. 2018, 8, 1702884. [Google Scholar] [CrossRef]
- Huang, Z.; Wei, J.; Wan, Y.; Li, P.; Yu, J.; Dong, J.; Wang, S.; Li, S.; Lee, C. Aligned Millineedle Arrays for Solar Power Seawater Desalination with Site-specific Salt Formation. Small 2021, 17, 2101487. [Google Scholar] [CrossRef]
- Gu, Y.; Mu, X.; Wang, P.; Wang, X.; Liu, J.; Shi, J.; Wei, A.; Tian, Y.; Zhu, G.; Xu, H.; et al. Integrated Photothermal Aerogels with Ultrahigh-Performance Solar Steam Generation. Nano Energy 2020, 74, 104857. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, Y.; Zhou, X.; Shi, W.; Yu, G. Materials for Solar-Powered Water Evaporation. Nat. Rev. Mater. 2020, 5, 388–401. [Google Scholar] [CrossRef]
- Zhao, F.; Zhou, X.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X.; Mendez, S.; Yang, R.; Qu, L.; Yu, G. Highly Efficient Solar Vapour Generation via Hierarchically Nanostructured Gels. Nat. Nanotechnol. 2018, 13, 489–495. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, H.; Zhao, F.; Zhou, X.; Shi, W.; Yu, G. Biomass-derived Hybrid Hydrogel Evaporators for Cost-effective Solar Water Purification. Adv. Mater. 2020, 32, 1907061. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, F.; Guo, Y.; Rosenberger, B.; Yu, G. Architecting Highly Hydratable Polymer Networks to Tune the Water State for Solar Water Purification. Sci. Adv. 2019, 5, eaaw5484. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Wu, S.; Xu, B.; Xu, H. Multilayer Polypyrrole Nanosheets with Self-organized Surface Structures for Flexible and Efficient Solar–Thermal Energy Conversion. Adv. Mater. 2019, 31, 1807716. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Yang, X.; Owens, G.; Xu, H. Reversing Heat Conduction Loss: Extracting Energy from Bulk Water to Enhance Solar Steam Generation. Nano Energy 2020, 78, 105269. [Google Scholar] [CrossRef]
- Xia, Y.; Kang, Y.; Wang, Z.; Yuan, S.; Li, Y.; Gao, L.; Wang, H.; Zhang, X. Rational Designs of Interfacial-Heating Solar-Thermal Desalination Devices: Recent Progress and Remaining Challenges. J. Mater. Chem. A 2021, 9, 6612–6633. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Song, X.; Huang, M.; Megarajan, S.K.; Shaukat, S.F.; Jiang, H. Improved Light-Harvesting and Thermal Management for Efficient Solar-Driven Water Evaporation Using 3D Photothermal Cones. J. Mater. Chem. A 2018, 6, 9874–9881. [Google Scholar] [CrossRef]
- Li, W.; Li, Z.; Bertelsmann, K.; Fan, D.E. Portable Low-pressure Solar Steaming-collection Unisystem with Polypyrrole Origamis. Adv. Mater. 2019, 31, 1900720. [Google Scholar] [CrossRef] [PubMed]
- Cooper, T.A.; Zandavi, S.H.; Ni, G.W.; Tsurimaki, Y.; Huang, Y.; Boriskina, S.V.; Chen, G. Contactless Steam Generation and Superheating under One Sun Illumination. Nat. Commun. 2018, 9, 5086. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Shi, Y.; Li, R.; Zhang, C.; Jin, Y.; Wang, P. Nature-Inspired, 3D Origami Solar Steam Generator toward near Full Utilization of Solar Energy. ACS Appl. Mater. Interfaces 2018, 10, 28517–28524. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, W.; Zada, I.; Zhang, Y.; Gu, J.; Liu, Q.; Su, H.; Pantelić, D.; Jelenković, B.; Zhang, D. 3D-Structured Carbonized Sunflower Heads for Improved Energy Efficiency in Solar Steam Generation. ACS Appl. Mater. Interfaces 2020, 12, 2171–2179. [Google Scholar] [CrossRef]
- Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D.N.; Yumura, M.; Hata, K. A Black Body Absorber from Vertically Aligned Single-Walled Carbon Nanotubes. Proc. Natl. Acad. Sci. USA 2009, 106, 6044–6047. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, N.; Li, N.; Yu, L.; Xu, X. A 3D Hemispheric Steam Generator Based on an Organic–Inorganic Composite Light Absorber for Efficient Solar Evaporation and Desalination. Adv. Mater. Interfaces 2020, 7, 1901715. [Google Scholar] [CrossRef]
- Bian, Y.; Shen, Y.; Tang, K.; Du, Q.; Hao, L.; Liu, D.; Hao, J.; Zhou, D.; Wang, X.; Zhang, H.; et al. Carbonized Tree-like Furry Magnolia Fruit-based Evaporator Replicating the Feat of Plant Transpiration. Glob. Chall. 2019, 3, 1900040. [Google Scholar] [CrossRef]
- He, C.; Li, Z.; Zhao, P.; Jiang, H.; Zhou, Z.; Gao, R.; La, P.; Wang, L.; Gao, X. High-efficiency Solar Selective Absorber: Using the High-entropy Nitride MoTaTiCrN Nanoceramics as a Perspective Strategy. EcoEnergy 2025, 3, 156–169. [Google Scholar] [CrossRef]
- Cao, F.; McEnaney, K.; Chen, G.; Ren, Z. A Review of Cermet-Based Spectrally Selective Solar Absorbers. Energy Environ. Sci. 2014, 7, 1615–1627. [Google Scholar] [CrossRef]
- Zhao, L.; Bhatia, B.; Yang, S.; Strobach, E.; Weinstein, L.A.; Cooper, T.A.; Chen, G.; Wang, E.N. Harnessing Heat beyond 200 °C from Unconcentrated Sunlight with Nonevacuated Transparent Aerogels. ACS Nano 2019, 13, 7508–7516. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tian, Y.; Caratenuto, A.; Chen, F.; Zheng, Y. Biomass-based Materials for Sustainably Sourced Solar-driven Interfacial Steam Generation. Adv. Eng. Mater. 2023, 25, 2300778. [Google Scholar] [CrossRef]
- Meng, S.; Zhao, X.; Tang, C.-Y.; Yu, P.; Bao, R.-Y.; Liu, Z.-Y.; Yang, M.-B.; Yang, W. A Bridge-Arched and Layer-Structured Hollow Melamine Foam/Reduced Graphene Oxide Composite with an Enlarged Evaporation Area and Superior Thermal Insulation for High-Performance Solar Steam Generation. J. Mater. Chem. A 2020, 8, 2701–2711. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Lin, Z.; Xu, N.; Li, X.; Liang, J.; Zhao, W.; Lin, R.; Zhu, B.; Liu, G.; et al. Over 10 kg m−2 h−1 Evaporation Rate Enabled by a 3D Interconnected Porous Carbon Foam. Joule 2020, 4, 928–937. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, C.; Ma, J.; Liu, D.; Qi, D.; You, S.; Cui, F.; Wei, Y.; Wang, W. Low-Tortuosity Water Microchannels Boosting Energy Utilization for High Water Flux Solar Distillation. Environ. Sci. Technol. 2020, 54, 5150–5158. [Google Scholar] [CrossRef]
- Xu, W.; Xing, Y.; Liu, J.; Wu, H.; Cui, Y.; Li, D.; Guo, D.; Li, C.; Liu, A.; Bai, H. Efficient Water Transport and Solar Steam Generation via Radially, Hierarchically Structured Aerogels. ACS Nano 2019, 13, 7930–7938. [Google Scholar] [CrossRef]
- Song, H.; Liu, Y.; Liu, Z.; Singer, M.H.; Li, C.; Cheney, A.R.; Ji, D.; Zhou, L.; Zhang, N.; Zeng, X.; et al. Cold Vapor Generation beyond the Input Solar Energy Limit. Adv. Sci. 2018, 5, 1800222. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, F.; Zhou, X.; Chen, Z.; Yu, G. Tailoring Nanoscale Surface Topography of Hydrogel for Efficient Solar Vapor Generation. Nano Lett. 2019, 19, 2530–2536. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Yang, C.; Tian, Y.; Han, Y.; Liu, J.; Yin, X.; Que, W. A Hydrophobic Surface Enabled Salt-Blocking 2D Ti3C2 MXene Membrane for Efficient and Stable Solar Desalination. J. Mater. Chem. A 2018, 6, 16196–16204. [Google Scholar] [CrossRef]
- Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion. Sci. Rep. 2015, 5, 13801. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Song, H.; Ji, D.; Li, C.; Cheney, A.; Liu, Y.; Zhang, N.; Zeng, X.; Chen, B.; Gao, J.; et al. Extremely Cost-effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper. Glob. Chall. 2017, 1, 1600003. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wang, P.; Che, H.; Chen, J.; Liu, B.; Ao, Y. Solar-Driven Interfacial Water Evaporation for Wastewater Purification: Recent Advances and Challenges. Chem. Eng. J. 2023, 477, 147158. [Google Scholar] [CrossRef]
- AlMallahi, M.N.; Selim, M.Y.E.; Elgendi, M. Interfacial Solar Evaporation Using Biomass: Environmental Impact, Financial Feasibility, and a Bibliometric Perspective. Desalination 2025, 614, 119160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, S.; Zhang, Z.; Zhang, M.; Yang, Z.; Fan, Y.; Zhang, J.; Pang, Y.; Cui, L. Interfacial Solar Evaporation for Treating High-Salinity Wastewater: Chance and Necessity. Processes 2025, 13, 2679. https://doi.org/10.3390/pr13092679
Ji S, Zhang Z, Zhang M, Yang Z, Fan Y, Zhang J, Pang Y, Cui L. Interfacial Solar Evaporation for Treating High-Salinity Wastewater: Chance and Necessity. Processes. 2025; 13(9):2679. https://doi.org/10.3390/pr13092679
Chicago/Turabian StyleJi, Shunjian, Zhihong Zhang, Meijie Zhang, Zexin Yang, Yaguang Fan, Juan Zhang, Yingping Pang, and Lin Cui. 2025. "Interfacial Solar Evaporation for Treating High-Salinity Wastewater: Chance and Necessity" Processes 13, no. 9: 2679. https://doi.org/10.3390/pr13092679
APA StyleJi, S., Zhang, Z., Zhang, M., Yang, Z., Fan, Y., Zhang, J., Pang, Y., & Cui, L. (2025). Interfacial Solar Evaporation for Treating High-Salinity Wastewater: Chance and Necessity. Processes, 13(9), 2679. https://doi.org/10.3390/pr13092679