Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (230)

Search Parameters:
Keywords = interface heat control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2521 KiB  
Article
Interface-Driven Electrothermal Degradation in GaN-on-Diamond High Electron Mobility Transistors
by Huanran Wang, Yifan Liu, Xiangming Dong, Abid Ullah, Jisheng Sun, Chuang Zhang, Yucheng Xiong, Peng Gu, Ge Chen and Xiangjun Liu
Nanomaterials 2025, 15(14), 1114; https://doi.org/10.3390/nano15141114 - 18 Jul 2025
Viewed by 177
Abstract
Diamond is an attractive substrate candidate for GaN high-electron-mobility transistors (HEMT) to enhance heat dissipation due to its exceptional thermal conductivity. However, the thermal boundary resistance (TBR) at the GaN–diamond interface poses a significant bottleneck to heat transport, exacerbating self-heating and limiting device [...] Read more.
Diamond is an attractive substrate candidate for GaN high-electron-mobility transistors (HEMT) to enhance heat dissipation due to its exceptional thermal conductivity. However, the thermal boundary resistance (TBR) at the GaN–diamond interface poses a significant bottleneck to heat transport, exacerbating self-heating and limiting device performance. In this work, TCAD simulations were employed to systematically investigate the effects of thermal boundary layer (TBL) thickness (dTBL) and thermal conductivity (κTBL) on the electrothermal behavior of GaN-on-diamond HEMTs. Results show that increasing the TBL thickness (5–20 nm) or decreasing its thermal conductivity (0.1–1.0 W/(m·K)) leads to elevated hotspot temperatures and degraded electron mobility, resulting in a notable deterioration of IV characteristics. The nonlinear dependence of device performance on κTBL is attributed to Fourier’s law, where heat flux is inversely proportional to thermal resistance. Furthermore, the co-analysis of substrate thermal conductivity and interfacial quality reveals that interface TBR has a more dominant impact on device behavior than substrate conductivity. Remarkably, devices with low thermal conductivity substrates and optimized interfaces can outperform those with high-conductivity substrates but poor interfacial conditions. These findings underscore the critical importance of interface engineering in thermal management of GaN–diamond HEMTs and provide a theoretical foundation for future work on phonon transport and defect-controlled thermal interfaces. Full article
Show Figures

Graphical abstract

19 pages, 40657 KiB  
Article
Development and Analysis of a Sustainable Interlayer Hybrid Unidirectional Laminate Reinforced with Glass and Flax Fibres
by York Schwieger, Usama Qayyum and Giovanni Pietro Terrasi
Polymers 2025, 17(14), 1953; https://doi.org/10.3390/polym17141953 - 16 Jul 2025
Viewed by 192
Abstract
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because [...] Read more.
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because of their relatively low environmental impact compared to carbon/carbon and carbon/glass hybrids. An analytical model was used to find an ideal combination of the two materials. With that model, the expected stress–strain relation could also be predicted analytically. The modelling was based on preliminary tensile tests of the two basic components investigated in this research: unidirectional laminates reinforced with either flax fibres or S-Glass fibres. Hybrid specimens were then designed, produced in a heat-assisted pressing process, and subjected to tensile tests. The strain measurement was performed using distributed fibre optic sensing. Ultimately, it was possible to obtain repeatable pseudo-ductile stress–strain behaviour with the chosen hybrid when the specimens were subjected to quasi-static uniaxial tension in the direction of the fibres. The intended damage-mode, consisting of a controlled delamination at the flax-fibre/glass-fibre interface after the flax fibres failed, followed by a load transfer to the glass fibre layers, was successfully achieved. The pseudo-ductile strain averaged 0.52% with a standard deviation of 0.09%, and the average load reserve after delamination was 145.5 MPa with a standard deviation of 48.5 MPa. The integrated fibre optic sensors allowed us to monitor and verify the damage process with increasing strain and load. Finally, the analytical model was compared to the measurements and was partially modified by neglecting the Weibull strength distribution of the high-strain material. Full article
Show Figures

Figure 1

14 pages, 2847 KiB  
Article
The Influence of h-BN Distribution Behavior on the Electrothermal Properties of Bismaleimide Resin
by Weizhuo Li, Xuan Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(14), 1929; https://doi.org/10.3390/polym17141929 - 14 Jul 2025
Viewed by 295
Abstract
Thermal conductive composite materials have excellent electrical insulation properties, low cost, and are lightweight, making them a promising alternative to traditional electronic packaging materials and enhancing the heat dissipation of integrated circuits. Due to the differences in specific surface area and volume, thermal [...] Read more.
Thermal conductive composite materials have excellent electrical insulation properties, low cost, and are lightweight, making them a promising alternative to traditional electronic packaging materials and enhancing the heat dissipation of integrated circuits. Due to the differences in specific surface area and volume, thermal conductive fillers have poor interface connections between the polymer and/or thermal conductive filler, thereby increasing phonon scattering and affecting thermal conductivity. This article uses bismaleimide resin as the matrix and h-BN as the thermal conductive filler. The evolution laws of thermal conductivity and dielectric properties of thermal conductive composite materials were systematically characterized through multi-scale filler control and gradient filling design. Among them, h-BN with a diameter of 10 μm has the most significant improvement in thermal conductivity. When the filling amount is 40 wt%, the thermal conductivity reaches 1.31 W/(m·K). Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

25 pages, 5666 KiB  
Article
Implementation of a Neural Network for Adaptive PID Tuning in a High-Temperature Thermal System
by Juan Carlos Almachi, Ramiro Vicente, Edwin Bone, Jessica Montenegro, Edgar Cando and Salvatore Reina
Energies 2025, 18(12), 3113; https://doi.org/10.3390/en18123113 - 13 Jun 2025
Viewed by 894
Abstract
Precise temperature control in high-temperature furnaces is challenged by nonlinearities, parameter drift, and high thermal inertia. This study proposes an adaptive control strategy combining a classical PID loop with real-time gain updates from a feed-forward artificial neural network (ANN). Implemented on an 18 [...] Read more.
Precise temperature control in high-temperature furnaces is challenged by nonlinearities, parameter drift, and high thermal inertia. This study proposes an adaptive control strategy combining a classical PID loop with real-time gain updates from a feed-forward artificial neural network (ANN). Implemented on an 18 kW retrofitted Blue-M furnace, the system was characterized by second-order transfer functions for heating and forced convection cooling. A dataset of 9702 samples was built from eight fixed PID configurations tested under a multi-ramp thermal profile. The selected 3-64-64-32-2 ANN, executed in Python and interfaced with LabVIEW, computes optimal gains in 0.054 ms while preserving real-time monitoring capabilities. Experimental results show that the ANN-assisted PID reduces the mean absolute error to 5.08 °C, limits overshoot to 41% (from 53%), and shortens settling time by 20% compared to the best fixed-gain loop. It also outperforms a fuzzy controller and remains stable under ±5% signal noise. Notably, gain reversals during cooling prevent temperature spikes, improving transient response. Relying on commodity hardware and open-source tools, this approach offers a cost-effective solution for legacy furnace upgrades and provides a replicable model for adaptive control in high-temperature, safety-critical environments like metal processing, battery cycling, and nuclear systems. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

13 pages, 1910 KiB  
Article
Excellent Superhydrophobic Cone-Array Surfaces with Low Contact Time of Droplet Pancake Bouncing Under Various Conditions
by Yuanjie Chen, Yucai Lin, Shile Feng and Yongmei Zheng
Fluids 2025, 10(6), 144; https://doi.org/10.3390/fluids10060144 - 28 May 2025
Viewed by 497
Abstract
Superhydrophobic surfaces with a low liquid–solid contact time have huge application prospects in anti-icing, corrosion-resistant, self-cleaning, etc. Significant attempts have been devoted to reducing the contact time through altering the hydrodynamics of the process through which the droplet contacts the superhydrophobic surface. However, [...] Read more.
Superhydrophobic surfaces with a low liquid–solid contact time have huge application prospects in anti-icing, corrosion-resistant, self-cleaning, etc. Significant attempts have been devoted to reducing the contact time through altering the hydrodynamics of the process through which the droplet contacts the superhydrophobic surface. However, these works are rarely considered to be related to the influence of environmental conditions (e.g., the pH of the droplet, salinity of the droplet, droplet viscosity, and supercooled droplet impact). Here, we report various superhydrophobic cone arrays (SCAs) with low droplet impact contact times under various conditions (pH of the droplet, salinity of the droplet, droplet viscosity, droplet temperature, etc.). We demonstrate that the low contact time of the droplet impacting cone-arrays can be optimized via the critical Weber number, pillar-to-pillar spacing, and pillar height (e.g., 11.1, 350 μm, and 300 μm, respectively). The lowest droplet contact time of ~6 ms, which is reduced by more than 60% compared to conventional bouncing, can be achieved. In addition, directional pancake bouncing behaviors can achieve the largest horizontal displacement (85% of the droplet size, ~3 mm) on a tilted SCA with optimal tilt angles. These findings offer insights into the interface effect for controlling wetting that would extend the practical applications, e.g., liquid repellency, anti-corrosion, anti-icing, heat transfer, etc. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

23 pages, 7506 KiB  
Article
Numerical Modeling of Electromagnetic Field Influences on Fluid Thermodynamic Behavior and Grain Growth During Solidification of 316L Stainless Steel Laser-Welded Plates
by Zhengwei Zhang, Xinyuan Xu, Peng Ge and Kai Li
Metals 2025, 15(6), 609; https://doi.org/10.3390/met15060609 - 28 May 2025
Viewed by 286
Abstract
In the present study, a thermal–electromagnetic hydrodynamics model has been used to study welding temperature and melt flow characteristics during the laser welding of 316L steel. This welding was performed using an assisted electromagnetic field. In addition, a Monte Carlo model was used [...] Read more.
In the present study, a thermal–electromagnetic hydrodynamics model has been used to study welding temperature and melt flow characteristics during the laser welding of 316L steel. This welding was performed using an assisted electromagnetic field. In addition, a Monte Carlo model was used to study grain growth during solidification with the purpose of achieving a better understanding of the control of the microstructure. Based on the numerical model, which has been validated by experimental data, the effects of the current intensity of the electromagnetic field on the temperature distribution, melt flow characteristics, and grain growth are discussed here in detail. The simulation results showed that both Marangoni convection and welding temperature could be controlled by the magnetic damping effect, and that they increased due to the electromagnetic heating effect when using an electromagnetic field. Furthermore, when controlling the temperature distribution and melt flow velocity in the laminar flow of the melt pool, which was assisted by a 30 A current intensity of the electromagnetic field, the temperature gradient decreased by 13.5%. This decrease could be even larger than 50% when a turbulent flow was formed in the melt pool, which has here been demonstrated for a current intensity of 100 A. In addition, undercooling was found to decrease because of the increase in the melt flow velocity when using an assistive electromagnetic field. This led to a longer nucleation time in the melt pool. Furthermore, more and larger directional columnar grains, grown by the driving force of the temperature gradient, could be formed after the consumption of the small, nucleated grains near the solid–liquid interface. In short, by controlling the temperature distribution and melt flow velocity, the required grain morphology (equiaxed or columnar) and dimension (radius, length, or width) can be controlled by coarsening and epitaxial growth. Full article
Show Figures

Figure 1

18 pages, 25199 KiB  
Article
Uneven Hydrophilic–Hydrophobic Nanoflowers Enhancing Solar Interface Evaporation: Se-Doped Carbon Loaded with Gradient Distribution of CoSe/Co
by Linhui Jia, Zhenhao Liu, Hongxun Hao and Zhongxin Liu
Materials 2025, 18(10), 2409; https://doi.org/10.3390/ma18102409 - 21 May 2025
Viewed by 528
Abstract
Solar interface evaporation is a promising technology for sustainable freshwater acquisition. Regulating the hydrophilicity/hydrophobicity of the evaporator can optimize the water transport, heat transfer, and evaporation enthalpy during the evaporation process, thereby significantly improving the evaporation performance. The CoSe/Co-SeC nanoflower was prepared by [...] Read more.
Solar interface evaporation is a promising technology for sustainable freshwater acquisition. Regulating the hydrophilicity/hydrophobicity of the evaporator can optimize the water transport, heat transfer, and evaporation enthalpy during the evaporation process, thereby significantly improving the evaporation performance. The CoSe/Co-SeC nanoflower was prepared by high-temperature selenization of ZIF-67. Each petal of the nanoflower is loaded with a density-gradient distribution CoSe/Co, forming an uneven hydrophilic and hydrophobic surface that transitions from bottom hydrophilicity to top hydrophobicity. During the evaporation process, the hydrophilic bottom of the petals promotes rapid water supply, while the hydrophobic top of the petals protrudes from the water surface to form a large number of solid–liquid–gas three-phase interfaces. Therefore, water clusters activated by the strong hydrophilic sites at the bottom of the petals can reach the gas–liquid interface after a very short transmission distance and achieve water cluster evaporation. In addition, the nanoflower optimized the heat transfer at the solid–liquid interface and further promoted the increase in evaporation rate through micro-meniscus evaporation (MME). As a result, the evaporation rate and energy efficiency of the CoSe/Co-SeC evaporator are as high as 2.44 kg m−2 h−1 and 95.5%. This work passes controllable preparation of the gradient CoSe/Co-SeC and shows the enormous potential of micro-hydrophobic and hydrophilic regulation for improving solar interface evaporation performance. Full article
(This article belongs to the Special Issue Progress in Carbon-Based Materials)
Show Figures

Graphical abstract

16 pages, 13005 KiB  
Article
Investigation of Microstructural Evolution of Silicon Steel Weldment After Post-Weld Heat Treatment—Simulation and Experimental Study
by Jyun-Ting Kuo, Chih-Hsien Chi, Ming-Feng Chiang, Te-Kang Tsao, Wei-Lin Hsu and An-Chou Yeh
Metals 2025, 15(5), 549; https://doi.org/10.3390/met15050549 - 15 May 2025
Viewed by 393
Abstract
It is important to control the microstructure and properties of a weld for the continuous production of silicon steel sheets. Post-weld heat treatment (PWHT) can be applied to adjust the weld properties; however, research on its application to silicon steel weldments remains limited. [...] Read more.
It is important to control the microstructure and properties of a weld for the continuous production of silicon steel sheets. Post-weld heat treatment (PWHT) can be applied to adjust the weld properties; however, research on its application to silicon steel weldments remains limited. This study investigated the microstructure and hardness evolution of the weld after PWHT for high-silicon steel, with Inconel 82 used as the filler material. The weldment contained FCC phase and BCC phase regions, and PWHT were conducted at 520, 620, 720, and 920 °C for 8 h. Experimental observations indicate that G-phase precipitations in FCC phase could increase its hardness, and it peaked at 620 °C with an average hardness of 259 HV. By contrast, the BCC phase region was subjected to martensitic transformation and its hardness increased from 305 to 335 HV after PWHT at 920 °C. To elucidate microstructure evolutions, CALPHAD-based simulations successfully predicted BCC to FCC phase transformation at 920 °C, peak G-phase precipitation at 620 °C, and elemental diffusion at the BCC and FCC interface. The findings indicate that CALPHAD-based simulations offer a robust approach that can be extended to understand the effect of PWHT. Full article
Show Figures

Graphical abstract

13 pages, 9354 KiB  
Article
Dissimilar Joining of Aluminum to High-Melting-Point Alloys by Hot Dipping
by Zhaoxian Liu, Qingjia Su, Pu Wang, Wenzhen Zhao, Ao Fu and Huan He
Coatings 2025, 15(5), 541; https://doi.org/10.3390/coatings15050541 - 30 Apr 2025
Viewed by 383
Abstract
In this study, the dissimilar joining of aluminum to high-melting-point alloys, including steel, titanium, and copper, was successfully achieved through hot-dipping. By precisely controlling the dipping temperature at 670 °C and maintaining a dipping time of 5 s, uniform aluminum layers with a [...] Read more.
In this study, the dissimilar joining of aluminum to high-melting-point alloys, including steel, titanium, and copper, was successfully achieved through hot-dipping. By precisely controlling the dipping temperature at 670 °C and maintaining a dipping time of 5 s, uniform aluminum layers with a thickness of 3–4 mm were successfully formed on the surfaces of high-melting-point alloys. This process enabled effective dissimilar metal joining between Al/steel, Al/Ti, and Al/Cu. Metallurgical bonding at the joining interfaces was achieved through the formation of uniform intermetallic compounds, specifically Fe4Al13, TiAl3, Al2Cu, and Al3Cu4, respectively. The different joints exhibited varying mechanical properties: the Al/Cu joint demonstrated the highest shear strength at 79.1 MPa, while the Fe4Al13-containing joint exhibited the highest hardness, reaching 604.4 HV. Numerical simulations revealed that an obvious decrease in interfacial temperature triggered the solidification and growth of the aluminum layer. Additionally, the specific heat and thermal conductivity of the high-melting-point alloys were found to significantly influence the thickness of the aluminum layer. The hot-dip joining technology is well suited for dissimilar metal bonding involving large contact areas and significant differences in melting points. Full article
Show Figures

Graphical abstract

10 pages, 3195 KiB  
Proceeding Paper
Evaluation of Peltier Cooling Vest
by Vin Klein A. Talamayan, Mharlon Jefferson S. A. Yalung and Jessie R. Balbin
Eng. Proc. 2025, 92(1), 25; https://doi.org/10.3390/engproc2025092025 - 27 Apr 2025
Viewed by 1137
Abstract
We incorporated a Peltier cooling system into vests for personal comfort and applications in various workplaces. We tested the Peltier cooling vest using temperature sensors and evaluated the vest’s performance. The developed Peltier cooling vest included thermoelectric cooler modules to improve cooling efficiency [...] Read more.
We incorporated a Peltier cooling system into vests for personal comfort and applications in various workplaces. We tested the Peltier cooling vest using temperature sensors and evaluated the vest’s performance. The developed Peltier cooling vest included thermoelectric cooler modules to improve cooling efficiency and comfort by using water’s heat transfer and thermal conductivity. Through testing and subjective assessments, the effectiveness of the wearable cooling system and its potential for widespread adoption were validated. Furthermore, an intelligent control algorithm was developed to maintain target temperatures. The built-in temperature sensor enabled temperature stability in the set temperature range. The average cooling response time of the Peltier cooling vest was 9.42 min. In a lower temperature range of 16 to 24 °C, the vest maintained a stable temperature. A correlation between temperature and power consumption was observed. To improve the performance, built-in Bluetooth and a graphic user interface need to be integrated. Then, the Peltier cooling vest and its technology can be used in medical and industrial settings. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

18 pages, 7321 KiB  
Article
Geothermal Genesis Mechanism of the Yinchuan Basin Based on Thermal Parameter Inversion
by Baizhou An, Lige Bai, Jianwei Zhao and Zhaofa Zeng
Sustainability 2025, 17(8), 3424; https://doi.org/10.3390/su17083424 - 11 Apr 2025
Viewed by 328
Abstract
The Yinchuan Basin harbors significant geothermal resource potential and could be a clean energy source critical for transitioning to a low-carbon economy. However, the current research primarily focuses on the exploration and development of geothermal water in the sedimentary basins, with limited studies [...] Read more.
The Yinchuan Basin harbors significant geothermal resource potential and could be a clean energy source critical for transitioning to a low-carbon economy. However, the current research primarily focuses on the exploration and development of geothermal water in the sedimentary basins, with limited studies on the deep geothermal formation mechanisms and regional geothermal types. Although geophysical methods provide insights into the types and formation mechanisms of deep geothermal resources in the basin, there is still a lack of a connection between quantitative understanding and direct evidence. A series of algorithms based on thermal parameter characteristics can directly extract underground thermal features from raw geophysical signal data, offering a powerful tool for characterizing the structure and aggregation patterns of deep thermal sources. Therefore, this study employed a Bayesian thermal parameter inversion method based on interface information to obtain the spatial distribution of thermal conductivity, surface heat flow, and mantle heat parameters in the Ningxia Basin study area. Additionally, correlation analysis and global sensitivity analysis were conducted to further interpret the predicted results. A comprehensive analysis of the geophysical inversion results showed that the deep thermal anomalies in the basin are primarily controlled by fault activities and the lithospheres’ thermal structure, while shallow high-heat flow anomalies are closely related to convective circulation within faults and heat transfer from deep thermal sources. The established geothermal genesis mechanism and model of the Yinchuan Basin provide crucial support for sustainable regional geothermal development planning and the utilization of deep geothermal resources, contributing to energy security and emission reduction goals. Full article
Show Figures

Figure 1

19 pages, 14283 KiB  
Article
A Comprehensive Study on the Degradation Behavior and Mechanism of Expanded Thermoplastic Polyurethane
by Wei Zhao, Shiying Luo, Qing Zhuo, Yuguang Liang, Yuanyuan Li, Hangyu Dong, Liu Qin and Yingru Li
Polymers 2025, 17(8), 1033; https://doi.org/10.3390/polym17081033 - 11 Apr 2025
Cited by 2 | Viewed by 884
Abstract
Expanded thermoplastic polyurethane (ETPU) is used in a wide range of applications due to its excellent properties, but inevitably, aging deteriorates the material properties and shortens service lifetime. This study conducted aging experiments on ETPU to summarize the deterioration trend and provide reliable [...] Read more.
Expanded thermoplastic polyurethane (ETPU) is used in a wide range of applications due to its excellent properties, but inevitably, aging deteriorates the material properties and shortens service lifetime. This study conducted aging experiments on ETPU to summarize the deterioration trend and provide reliable data. The ETPU underwent three distinct aging protocols: thermal aging for 28 days in a controlled 80 °C environment; xenon lamp aging under continuous UV irradiation (via xenon lamp) at 80 °C for 28 days; and weathering aging through 671 days of outdoor exposure to real-world weather conditions. After various structural characterization and performance tests on the aged ETPUs, the results showed that thermal aging is not the key factor causing the aging of ETPU; the internal structure of ETPU is damaged and the performance rapidly deteriorates under the combined effect of light, heat, and humidity. The special heterogeneous structure gives the sample different internal aging characteristics, and the bead interface becomes a defective site after aging, affecting the overall mechanical properties of the material. In the natural state, the lifetime of ETPU is about two years. Our work will provide valuable data for the study of the aging properties of ETPU and contribute to the prediction of the lifetime of the material. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

13 pages, 8991 KiB  
Article
Effect of In Situ Al Roll Coating on Strip Surface Quality in Traditional Twin-Roll Casting of Aluminum Alloys
by Han-Gyoung Cho, Young Do Kim and Min-Seok Kim
Metals 2025, 15(4), 377; https://doi.org/10.3390/met15040377 - 28 Mar 2025
Viewed by 497
Abstract
The twin-roll casting (TRC) process is widely used in the aluminum industry due to its cost efficiency and continuous production capability. However, maintaining consistently high surface quality remains challenging due to complex heat transfer behavior at the roll/strip interface. This study examines the [...] Read more.
The twin-roll casting (TRC) process is widely used in the aluminum industry due to its cost efficiency and continuous production capability. However, maintaining consistently high surface quality remains challenging due to complex heat transfer behavior at the roll/strip interface. This study examines the critical influence of roll surface conditions, especially the formation of an Al coating layer, on solidification behavior and resulting strip quality in the TRC of an Al-5Mg alloy. Experimental results demonstrated that casting without an Al coating layer led to surface defects such as hot tears and porosity due to insufficient cooling. In contrast, strips produced with a stable Al coating layer exhibited excellent surface quality with no surface defects. Numerical simulations further indicated that a stable Al coating enhanced the interfacial heat transfer coefficient (up to 30,000 W/m2K), ensuring effective cooling and complete solidification before the strip exited the roll nip. Moreover, simulations validated the feasibility of using steel rolls in industrial applications, provided the coating layer was consistently maintained. This research highlights the significance of roll surface control in improving TRC product quality. Full article
(This article belongs to the Special Issue Special and Short Processes of Aluminum Alloys)
Show Figures

Figure 1

25 pages, 3414 KiB  
Review
The Role of Urban Vegetation in Mitigating Fire Risk Under Climate Change: A Review
by Deshun Zhang, Manqing Yao, Yingying Chen and Yujia Liu
Sustainability 2025, 17(6), 2680; https://doi.org/10.3390/su17062680 - 18 Mar 2025
Cited by 2 | Viewed by 1531
Abstract
The confluence of global warming, the urban heat island effect, and alterations in the nature of underlying surfaces has led to a continuous escalation in the frequency, scale, and intensity of fires within urban green spaces. Mitigating or eliminating the adverse effects of [...] Read more.
The confluence of global warming, the urban heat island effect, and alterations in the nature of underlying surfaces has led to a continuous escalation in the frequency, scale, and intensity of fires within urban green spaces. Mitigating or eliminating the adverse effects of such fires on the service functions of urban ecosystems, while enhancing the resilience of urban greening systems in disaster prevention and risk reduction, has become a pivotal challenge in modern urban development and management. Academic focus has progressively broadened from isolated urban and forest domains to encompass the more intricate environments of the Wildland–Urban Interface (WUI) and urban–suburban forests, with a particular emphasis on the distinctive characteristics of urban greening and in-depth research. This study employs a combination of CiteSpace bibliometric analysis and a narrative literature review to comprehensively examine three critical aspects of urban fire safety as follows: (1) the evaluation of the fire-resistant performance of landscape plants in urban green spaces; (2) the mechanisms of fire behavior in urban greening systems; and (3) the assessment and prediction of urban fire risks. Our findings indicate that landscape plants play a crucial role in controlling the spread of fires in urban green spaces by providing physical barriers and inhibiting combustion processes, thereby mitigating fire propagation. However, the diversity and non-native characteristics of urban greenery species present challenges. The existing research lacks standardized experimental indicators and often focuses on single-dimensional analyses, leading to conclusions that are limited, inconsistent, or even contradictory. Furthermore, most current fire spread models are designed primarily for forests and wildland–urban interface (WUI) regions. Empirical and semi-empirical models dominate this field, yet future advancements will likely involve coupled models that integrate climate and environmental factors. Fire risk assessment and prediction represent a global research hotspot, with machine learning- and deep learning-based approaches increasingly gaining prominence. These advanced methods have demonstrated superior accuracy compared to traditional techniques in predicting urban fire risks. This synthesis aims to elucidate the current state, trends, and deficiencies within the existing research. Future research should explore methods for screening highly resistant landscape plants, with the goal of bolstering the ecological resilience of urban greening systems and providing theoretical underpinnings for the realization of sustainable urban environmental security. Full article
Show Figures

Figure 1

25 pages, 7534 KiB  
Article
Demonstration and Evaluation of Model Predictive Control (MPC) for a Real-World Heat Pump System in a Commercial Low-Energy Building for Cost Reduction and Enhanced Grid Support
by Leroy Tomás, Manuel Lämmle and Jens Pfafferott
Energies 2025, 18(6), 1434; https://doi.org/10.3390/en18061434 - 14 Mar 2025
Viewed by 1368
Abstract
Heat pumps play a crucial role in decarbonizing buildings, yet conventional control strategies limit their grid-supportive potential. Model Predictive Control (MPC) offers a promising alternative to optimize energy costs and grid performance, but real-world implementations remain scarce. This study demonstrates the feasibility of [...] Read more.
Heat pumps play a crucial role in decarbonizing buildings, yet conventional control strategies limit their grid-supportive potential. Model Predictive Control (MPC) offers a promising alternative to optimize energy costs and grid performance, but real-world implementations remain scarce. This study demonstrates the feasibility of MPC in a low-energy, non-residential building by integrating a controller based on electricity market prices. The system, deployed on a Raspberry Pi and integrated into the building automation system, utilizes weather forecasts and a grey-box model for load prediction. A key challenge is the lack of standardized interfaces for heat pump controls, requiring custom solutions. A 7-day performance analysis compares MPC with conventional control, focusing on economic efficiency and grid support. MPC shifts heat pump operation to periods of lower electricity prices, increasing storage temperatures and reducing the average COP from 7.6 to 6.0. Despite this, energy costs decrease by 40%, lowering the electricity procurement price from 0.36 EUR to 0.12 EUR/kWh, while the Grid Support Coefficient improves by 13%. These results confirm that MPC can enhance heat pump operation with simple component models, provided the system allows flexibility and demand is predictable. Full article
(This article belongs to the Special Issue Development of Energy-Efficient Solutions for Smart Buildings)
Show Figures

Figure 1

Back to TopTop